Virtual Reconfiguration Method of Robotic Mixed-Model Assembly Line Using Bees Algorithm Based on Digital Twin

As an important part of intelligent manufacturing, robotic mixed-model assembly line needs to cost-effectively adjust its configuration to meet the dynamical manufacturing requirements. However, the existing reconfiguration method always considers the configurations of equipment in cyber space and i...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automation science and engineering Vol. 21; no. 3; pp. 2211 - 2222
Main Authors Xu, Wenjun, Li, Zhihao, Liu, Jiayi, Cui, Jia, Hu, Yang
Format Journal Article
LanguageEnglish
Published IEEE 01.07.2024
Subjects
Online AccessGet full text
ISSN1545-5955
1558-3783
DOI10.1109/TASE.2023.3312173

Cover

Abstract As an important part of intelligent manufacturing, robotic mixed-model assembly line needs to cost-effectively adjust its configuration to meet the dynamical manufacturing requirements. However, the existing reconfiguration method always considers the configurations of equipment in cyber space and ignores the interconnections between the physical and cyber spaces. Digital twin provides alternative ways to realize the interconnections between the physical and cyber spaces. In this paper, digital twin model of robotic mixed-model assembly line and the interconnections between physical and cyber spaces are realized by means of digital twin model. In addition, the mathematical model for minimizing the reconfiguration cost and load balancing is built, then the virtual reconfiguration problem is proposed. Afterwards, adaptive neighborhood search Bees algorithm, of which the adaptive neighborhood search strategy is included, is utilized to solve the proposed problem. Finally, the effectiveness of the proposed method is verified and the results show adaptive neighborhood search Bees algorithm generates better solutions compared with the other optimization algorithms. Note to Practitioners-The existing reconfiguration method is always realized in the cyber space and rarely integrates the physical industrial robot. Motivated by this, this paper combines the physical industrial robot with digital twin model of robotic mixed-model assembly line, and uses adaptive neighborhood search Bees algorithm to solve the reconfiguration problem. Based on the digital twin model of robotic mixed-model assembly line, the optimal solution of virtual reconfiguration method could be obtained considering the dynamic manufacturing requirements. Afterwards, the optimal solution can be sent to the physical robotic assembly line through the interconnection between the physical and cyber spaces. In addition, experiments under different cases show that the proposed method could generate the optimal solution when the manufacturing requirements change. In the future, the physical manufacturing process based on robotic mixed-model assembly line will be studied to make the proposed method more applicable.
AbstractList As an important part of intelligent manufacturing, robotic mixed-model assembly line needs to cost-effectively adjust its configuration to meet the dynamical manufacturing requirements. However, the existing reconfiguration method always considers the configurations of equipment in cyber space and ignores the interconnections between the physical and cyber spaces. Digital twin provides alternative ways to realize the interconnections between the physical and cyber spaces. In this paper, digital twin model of robotic mixed-model assembly line and the interconnections between physical and cyber spaces are realized by means of digital twin model. In addition, the mathematical model for minimizing the reconfiguration cost and load balancing is built, then the virtual reconfiguration problem is proposed. Afterwards, adaptive neighborhood search Bees algorithm, of which the adaptive neighborhood search strategy is included, is utilized to solve the proposed problem. Finally, the effectiveness of the proposed method is verified and the results show adaptive neighborhood search Bees algorithm generates better solutions compared with the other optimization algorithms. Note to Practitioners-The existing reconfiguration method is always realized in the cyber space and rarely integrates the physical industrial robot. Motivated by this, this paper combines the physical industrial robot with digital twin model of robotic mixed-model assembly line, and uses adaptive neighborhood search Bees algorithm to solve the reconfiguration problem. Based on the digital twin model of robotic mixed-model assembly line, the optimal solution of virtual reconfiguration method could be obtained considering the dynamic manufacturing requirements. Afterwards, the optimal solution can be sent to the physical robotic assembly line through the interconnection between the physical and cyber spaces. In addition, experiments under different cases show that the proposed method could generate the optimal solution when the manufacturing requirements change. In the future, the physical manufacturing process based on robotic mixed-model assembly line will be studied to make the proposed method more applicable.
Author Li, Zhihao
Xu, Wenjun
Hu, Yang
Cui, Jia
Liu, Jiayi
Author_xml – sequence: 1
  givenname: Wenjun
  orcidid: 0000-0001-5370-3437
  surname: Xu
  fullname: Xu, Wenjun
  email: xuwenjun@whut.edu.cn
  organization: School of Information Engineering and the Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, China
– sequence: 2
  givenname: Zhihao
  surname: Li
  fullname: Li, Zhihao
  email: 1206295906@whut.edu.cn
  organization: School of Information Engineering and the Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Jiayi
  orcidid: 0000-0003-2443-3444
  surname: Liu
  fullname: Liu, Jiayi
  email: jyliu@whut.edu.cn
  organization: School of Information Engineering and the Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, China
– sequence: 4
  givenname: Jia
  surname: Cui
  fullname: Cui, Jia
  email: cuijia@whut.edu.cn
  organization: School of Information Engineering and the Hubei Key Laboratory of Broadband Wireless Communication and Sensor Networks, Wuhan University of Technology, Wuhan, China
– sequence: 5
  givenname: Yang
  surname: Hu
  fullname: Hu, Yang
  email: yanghu@foxmail.com
  organization: China Ship Development and Design Center, Wuhan, China
BookMark eNp9kM9OwzAMhyM0JLbBAyBxyAt0JHWbtsdtjD_SJqSxca3S1O2CugQ1mWBvT6vtgDhwsg_-bP--ERkYa5CQW84mnLPsfjN9W0xCFsIEgIc8gQsy5HGcBpCkMOj7KA7iLI6vyMi5D8bCKM3YkJh33fqDbOgalTWVrg-t9NoaukK_syW1FV3bwnqt6Ep_YxmsbIkNnTqH-6I50qU2SLdOm5rOEB2dNrVttd_t6Uw67HhDH3StfXdh86XNNbmsZOPw5lzHZPu42Myfg-Xr08t8ugxUKIQPijQOeQERB6WElChSkWWQsVQhsAgSGYoEFAchAaBSXBZRKkvIRMFkVfIIxiQ57VWtda7FKlfdD30w30rd5Jzlvba815b32vKzto7kf8jPVu9le_yXuTsxGhF_zYcx58DhBySMewc
CODEN ITASC7
CitedBy_id crossref_primary_10_3390_su17052318
Cites_doi 10.1016/j.jmsy.2021.02.019
10.1016/j.jmsy.2022.09.022
10.1007/s10845-020-01641-7
10.1016/j.jmsy.2023.01.001
10.1109/COASE.2019.8843269
10.1016/j.swevo.2022.101056
10.1109/TASE.2022.3143832
10.1007/s00170-019-04203-1
10.1145/3453474
10.1109/TASE.2023.3289915
10.1109/TASE.2021.3133601
10.1142/s2424862221300040
10.1109/tii.2018.2873186
10.1080/00207543.2019.1636321
10.1080/00207543.2017.1412527
10.1109/CASE49997.2022.9926434
10.1109/TASE.2021.3129439
10.1080/09537287.2018.1520318
10.1016/j.ins.2021.11.052
10.1007/s00170-017-0352-8
10.1016/j.rcim.2019.101852
10.1080/00207543.2020.1847340
10.1109/TEVC.2018.2791283
10.1007/s11465-018-0483-0
10.1016/j.swevo.2020.100746
10.1016/j.aei.2022.101821
10.1016/j.eng.2019.01.014
10.1016/j.jmsy.2023.02.001
10.1007/s00170-016-9449-8
10.1080/0305215x.2017.1351963
10.1080/00207543.2019.1633023
10.1080/0951192X.2019.1699256
10.1016/j.rcim.2019.101829
10.1016/j.rcim.2021.102165
10.1007/s00170-022-09118-y
10.1109/TASE.2022.3178126
10.1109/TEVC.2003.817234
10.1016/j.cie.2018.12.073
10.1080/23311916.2015.1091540
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TASE.2023.3312173
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-3783
EndPage 2222
ExternalDocumentID 10_1109_TASE_2023_3312173
10251131
Genre orig-research
GrantInformation_xml – fundername: DITDP
  grantid: JCKY2020206B015
– fundername: Young Topnotch Talent Cultivation Program of Hubei Province
– fundername: National Natural Science Foundation of China
  grantid: 52205538
  funderid: 10.13039/501100001809
– fundername: Hubei Provincial Natural Science Foundation of China
  grantid: 2021CFA077
  funderid: 10.13039/501100003819
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
ID FETCH-LOGICAL-c266t-b8521b3413cc6aae686993908ce30437a2673c136a333fc1ab48ad396b0afd143
IEDL.DBID RIE
ISSN 1545-5955
IngestDate Wed Oct 01 03:35:44 EDT 2025
Thu Apr 24 22:56:35 EDT 2025
Wed Aug 27 02:33:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c266t-b8521b3413cc6aae686993908ce30437a2673c136a333fc1ab48ad396b0afd143
ORCID 0000-0003-2443-3444
0000-0001-5370-3437
PageCount 12
ParticipantIDs crossref_citationtrail_10_1109_TASE_2023_3312173
crossref_primary_10_1109_TASE_2023_3312173
ieee_primary_10251131
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationTitle IEEE transactions on automation science and engineering
PublicationTitleAbbrev TASE
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref35
ref12
ref34
ref15
ref37
ref14
ref36
ref31
ref11
ref33
ref10
ref32
ref2
ref1
ref17
ref39
ref16
ref38
ref19
ref18
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
ref8
ref7
ref9
Tao (ref30) 2021; 27
ref4
ref3
ref6
ref5
ref40
References_xml – ident: ref3
  doi: 10.1016/j.jmsy.2021.02.019
– ident: ref22
  doi: 10.1016/j.jmsy.2022.09.022
– ident: ref1
  doi: 10.1007/s10845-020-01641-7
– ident: ref23
  doi: 10.1016/j.jmsy.2023.01.001
– ident: ref19
  doi: 10.1109/COASE.2019.8843269
– ident: ref27
  doi: 10.1016/j.swevo.2022.101056
– ident: ref17
  doi: 10.1109/TASE.2022.3143832
– ident: ref7
  doi: 10.1007/s00170-019-04203-1
– ident: ref40
  doi: 10.1145/3453474
– ident: ref20
  doi: 10.1109/TASE.2023.3289915
– ident: ref25
  doi: 10.1109/TASE.2021.3133601
– ident: ref2
  doi: 10.1142/s2424862221300040
– ident: ref10
  doi: 10.1109/tii.2018.2873186
– ident: ref9
  doi: 10.1080/00207543.2019.1636321
– ident: ref36
  doi: 10.1080/00207543.2017.1412527
– ident: ref14
  doi: 10.1109/CASE49997.2022.9926434
– ident: ref26
  doi: 10.1109/TASE.2021.3129439
– ident: ref6
  doi: 10.1080/09537287.2018.1520318
– ident: ref35
  doi: 10.1016/j.ins.2021.11.052
– ident: ref38
  doi: 10.1007/s00170-017-0352-8
– ident: ref32
  doi: 10.1016/j.rcim.2019.101852
– ident: ref16
  doi: 10.1080/00207543.2020.1847340
– ident: ref39
  doi: 10.1109/TEVC.2018.2791283
– ident: ref5
  doi: 10.1007/s11465-018-0483-0
– ident: ref11
  doi: 10.1016/j.swevo.2020.100746
– ident: ref28
  doi: 10.1016/j.aei.2022.101821
– ident: ref18
  doi: 10.1016/j.eng.2019.01.014
– ident: ref21
  doi: 10.1016/j.jmsy.2023.02.001
– volume: 27
  start-page: 1
  issue: 1
  year: 2021
  ident: ref30
  article-title: Theory and application of digital twin model construction
  publication-title: Comput. Integr. Manuf. Syst.
– ident: ref37
  doi: 10.1007/s00170-016-9449-8
– ident: ref4
  doi: 10.1080/0305215x.2017.1351963
– ident: ref24
  doi: 10.1080/00207543.2019.1633023
– ident: ref13
  doi: 10.1080/0951192X.2019.1699256
– ident: ref33
  doi: 10.1016/j.rcim.2019.101829
– ident: ref31
  doi: 10.1016/j.rcim.2021.102165
– ident: ref15
  doi: 10.1007/s00170-022-09118-y
– ident: ref29
  doi: 10.1109/TASE.2022.3178126
– ident: ref34
  doi: 10.1109/TEVC.2003.817234
– ident: ref8
  doi: 10.1016/j.cie.2018.12.073
– ident: ref12
  doi: 10.1080/23311916.2015.1091540
SSID ssj0024890
Score 2.4164176
Snippet As an important part of intelligent manufacturing, robotic mixed-model assembly line needs to cost-effectively adjust its configuration to meet the dynamical...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 2211
SubjectTerms Bees algorithm
Behavioral sciences
Digital twin
Digital twins
Industrial robots
Manufacturing
Robot kinematics
robotic mixed-model assembly line
Service robots
Task analysis
virtual reconfiguration
Title Virtual Reconfiguration Method of Robotic Mixed-Model Assembly Line Using Bees Algorithm Based on Digital Twin
URI https://ieeexplore.ieee.org/document/10251131
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-3783
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024890
  issn: 1545-5955
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PT9swFLZYT3DYBmMabEM-cJqU4NSJkxzbrahCogdoUW-R7bx0ESVBbar9-Ov3npNuZdImblFiW5bec95n-73vY-w8CnSfiMu9vszBC1Ue4H8QpKdzkRb4wVjjsnwnajwLr-bRvCtWd7UwAOCSz8CnR3eXn9d2Q0dluMIJEFPV9Is4UW2x1h9ivcQdqBAk8KI0irorzECkF9PB7cgnnXBfygAxuHwShHZUVVxQuXzFJtvptLkk9_6mMb79-RdT47Pn-5q97OAlH7T-cMj2oDpiBzukg29YdVeuqGiE086zKsrFpnUCfu3EpHld8Jva1DgAvy6_Q-6RXBoOuV7Dg1n-4Lh7Be4yDfgQYM0Hy0W9KpuvD3yIERH7V_xLuSAtEj79VlbHbHY5mn4ee53qgmcxWDeeSTCiGwpu1iqtQSUKMUwqEguSiJB0X8XSBlJpKWVhA23CROcyVUboIkf49Zb1qrqCd4xbiNARYhMWcRHqSGuhQMYC4gj9JhXmhImtGTLbUZKTMsYyc1sTkWZkuYwsl3WWO2Gffnd5bPk4_tf4mIyy07C1x-k_3r9n-9g9bLNxP7Bes9rAR8QcjTlzvvYLPM3Rhg
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nb9QwELVQOQAHWqCIUgo-cEJKcNYfSY5baLVAdw-wRb1FtjPZRmwTtJsVH7-eGSeFBQnELUpsy9KMM8_2zHuMPdeJHRFxeTSSJUTKlAn-B0FGthR5hR-cdyHLd2Ym5-rthb4YitVDLQwAhOQziOkx3OWXrd_QURmucALEVDV9UyuldF-u9YtaLwtHKgQKIp1rPVxiJiJ_OR9_OIlJKTyWMkEULn8LQ1u6KiGsnO6y2fWE-myST_Gmc7H__gdX43_PeI_dHQAmH_cecY_dgOY-u7NFO_iANR_rFZWNcNp7NlW92PRuwKdBTpq3FX_fuhYH4NP6K5QRCabhkOs1XLnlN477V-Ah14AfA6z5eLloV3V3ecWPMSZi_4a_rhekRsLnX-pmn52fnsxfTaJBdyHyGK67yGUY0x2FN--NtWAygygmF5kHSVRIdmRS6RNprJSy8ol1KrOlzI0TtioRgD1kO03bwCPGPWh0hdSpKq2U1dYKAzIVkGr0nFy4AyauzVD4gZSctDGWRdiciLwgyxVkuWKw3AF78bPL556R41-N98koWw17ezz-y_tn7NZkPj0rzt7M3h2y2ziU6nNzn7CdbrWBI0QgnXsa_O4HYOnU0w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Virtual+Reconfiguration+Method+of+Robotic+Mixed-Model+Assembly+Line+Using+Bees+Algorithm+Based+on+Digital+Twin&rft.jtitle=IEEE+transactions+on+automation+science+and+engineering&rft.au=Xu%2C+Wenjun&rft.au=Li%2C+Zhihao&rft.au=Liu%2C+Jiayi&rft.au=Cui%2C+Jia&rft.date=2024-07-01&rft.pub=IEEE&rft.issn=1545-5955&rft.volume=21&rft.issue=3&rft.spage=2211&rft.epage=2222&rft_id=info:doi/10.1109%2FTASE.2023.3312173&rft.externalDocID=10251131
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5955&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5955&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5955&client=summon