The Mixed Subjects Design: Treating Large Language Models as Potentially Informative Observations
Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not interchangeable, there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parame...
Saved in:
Published in | Sociological methods & research Vol. 54; no. 3; pp. 1074 - 1109 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Los Angeles, CA
SAGE Publications
01.08.2025
SAGE PUBLICATIONS, INC |
Subjects | |
Online Access | Get full text |
ISSN | 0049-1241 1552-8294 |
DOI | 10.1177/00491241251326865 |
Cover
Abstract | Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not interchangeable, there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parameters. We argue that LLM predictions should be treated as potentially informative observations, while human subjects serve as a gold standard in a mixed subjects design. This paradigm preserves validity and offers more precise estimates at a lower cost than experiments relying exclusively on human subjects. We demonstrate—and extend—prediction-powered inference (PPI), a method that combines predictions and observations. We define the PPI correlation as a measure of interchangeability and derive the effective sample size for PPI. We also introduce a power analysis to optimally choose between informative but costly human subjects and less informative but cheap predictions of human behavior. Mixed subjects designs could enhance scientific productivity and reduce inequality in access to costly evidence. |
---|---|
AbstractList | Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not interchangeable, there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parameters. We argue that LLM predictions should be treated as potentially informative observations, while human subjects serve as a gold standard in a mixed subjects design. This paradigm preserves validity and offers more precise estimates at a lower cost than experiments relying exclusively on human subjects. We demonstrate—and extend—prediction-powered inference (PPI), a method that combines predictions and observations. We define the PPI correlation as a measure of interchangeability and derive the effective sample size for PPI. We also introduce a power analysis to optimally choose between informative but costly human subjects and less informative but cheap predictions of human behavior. Mixed subjects designs could enhance scientific productivity and reduce inequality in access to costly evidence. |
Author | Howes, Michael van Loon, Austin Broska, David |
Author_xml | – sequence: 1 givenname: David orcidid: 0000-0002-5176-1163 surname: Broska fullname: Broska, David email: dbroska@stanford.edu – sequence: 2 givenname: Michael orcidid: 0009-0007-8048-3397 surname: Howes fullname: Howes, Michael – sequence: 3 givenname: Austin orcidid: 0000-0002-9565-7392 surname: van Loon fullname: van Loon, Austin |
BookMark | eNp1kFtLAzEQhYNUsK3-AN8CPm_NbW--Sb0VWiq4Pi_ZZHbdsk1qslvsvzelgg_iy8zAnO8McyZoZKwBhK4pmVGapreEiJwyQVlMOUuyJD5DYxrHLMpYLkZofNxHR8EFmni_IYSylPAxksUH4FX7BRq_DdUGVO_xA_i2MXe4cCD71jR4KV0DoZpmkGFYWQ2dx9LjV9uD6VvZdQe8MLV12wDsAa8rD24fZmv8JTqvZefh6qdP0fvTYzF_iZbr58X8fhkpliR9RFOd5xWrGVAhE9CVEApyDQSIkhlnlWbAqVBK1TITUBHNKy2IVnkOccYUn6Kbk-_O2c8BfF9u7OBMOFlyxniWZiGZoKInlXLWewd1uXPtVrpDSUl5TLL8k2RgZifGh-9_Xf8HvgHPFXYV |
Cites_doi | 10.1126/science.aaz8170 10.1177/2158244016636433 10.18653/v1/2025.naacl-long.179 10.1017/pan.2023.2 10.1093/pan/mpr057 10.1177/23780231241259651 10.32614/CRAN.package.ipd 10.1162/coli_a_00502 10.1073/pnas.2322083121 10.1177/2053951715602495 10.1038/s41586-024-07146-0 10.3386/w31122 10.1214/18-AOAS1161SF 10.1146/annurev-economics-091622-010157 10.1098/rsos.231393 10.1126/science.adh4764 10.1002/mar.21982 10.2307/3006175 10.1093/pan/mpt024 10.2307/j.ctvpb3xkg 10.1017/pan.2024.5 10.1214/ss/1009213726 10.1016/j.tics.2023.04.008 10.3758/s13428-019-01273-7 10.3758/s13428-024-02455-8 10.1093/pnasnexus/pgae245 10.1038/d41586-023-01295-4 10.1126/science.adi6000 10.1038/s41586-021-04128-4 10.3758/s13428-023-02307-x 10.1093/restud/rdx033 10.1201/9780429246593 10.1257/jel.20231736 10.1073/pnas.2313925121 10.1073/pnas.2314021121 10.1177/0049124115585360 10.1126/science.adi1778 10.1073/pnas.2218523120 10.31234/osf.io/5b26t 10.1177/0049124118769113 10.1186/s40537-024-00986-7 10.1177/0735275118794987 10.1287/mksc.2023.0454 10.1038/s41586-018-0637-6 10.1038/s41586-021-04198-4 10.1073/pnas.2307008121 10.1126/science.1167742 10.1073/pnas.2216261120 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 Copyright SAGE PUBLICATIONS, INC. 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: Copyright SAGE PUBLICATIONS, INC. 2025 |
DBID | AAYXX CITATION 7U4 8BJ AHOVV BHHNA DWI FQK JBE WZK |
DOI | 10.1177/00491241251326865 |
DatabaseName | CrossRef Sociological Abstracts (pre-2017) International Bibliography of the Social Sciences (IBSS) Education Research Index Sociological Abstracts Sociological Abstracts International Bibliography of the Social Sciences International Bibliography of the Social Sciences Sociological Abstracts (Ovid) |
DatabaseTitle | CrossRef Sociological Abstracts (pre-2017) International Bibliography of the Social Sciences (IBSS) Sociological Abstracts |
DatabaseTitleList | Sociological Abstracts (pre-2017) CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sociology & Social History |
EISSN | 1552-8294 |
EndPage | 1109 |
ExternalDocumentID | 10_1177_00491241251326865 10.1177_00491241251326865 |
GroupedDBID | --Z -TM -~X .2G .2L 01A 09Z 0R~ 123 186 1OL 1~K 31S 31V 31W 31X 3R3 4.4 41~ 53G 56W 5VS 9M8 AABOD AACKU AADIR AADUE AAEJI AAGGD AAGLT AAJPV AAKTJ AAMFR AANSI AAPEO AAPII AAQDB AAQXI AARIX AATAA AAWLO ABAWP ABCCA ABCJG ABDLQ ABEHJ ABEIX ABFXH ABHQH ABIDT ABIPJ ABIVO ABJNI ABKRH ABPNF ABPPZ ABQKF ABQPY ABQXT ABRHV ABTDE ABUJY ABYTW ACAEP ACCVC ACDXX ACFUR ACFZE ACGFS ACGOD ACHQT ACJER ACLZU ACNCT ACOFE ACOXC ACROE ACRPL ACSIQ ACUFS ACUIR ADDLC ADEBD ADEIA ADMHG ADNMO ADNON ADPEE ADRRZ ADSTG ADTOS ADUKL ADYCS ADZJE AEDXQ AEEHM AEOBU AESMA AESZF AETEA AEUHG AEVPJ AEWDL AEWHI AEXNY AFEET AFFNX AFKBI AFKRG AFMOU AFQAA AFUIA AFWMB AGDVU AGKLV AGNHF AGNWV AGQPQ AGWNL AHDMH AHHFK AHWHD AJGYC AJUZI AJVBE ALFTD ALMA_UNASSIGNED_HOLDINGS AMNSR ANDLU ARBYP ARTOV ASPBG AUTPY AUVAJ AVWKF AYPQM AZFZN B8O B8S B8T B8Z BDZRT BKOMP BMVBW BPACV BYIEH CAG CBRKF CCGJY CEADM COF CS3 DD0 DD~ DG~ DOPDO DU5 DV7 DV8 EBS EJD F5P FEDTE FHBDP GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION H13 HF~ HVGLF HZ~ H~9 J8X LPU N9A O9- OHT P.B P2P PQQKQ Q1R Q7O Q7P Q7X RIG ROL S01 SASJQ SAUOL SBI SCNPE SFB SFC SFK SFR SFT SFX SGP SGU SGV SHB SHF SHM SPJ SPK SPP SQCSI SSDHQ TN5 ULY WH7 WHG XOL XZL YHZ YNT YYP YYQ YZZ ZCG ZPLXX ZPPRI ZUP ZY4 ~32 AAYXX AJHME CITATION 7U4 8BJ AHOVV BHHNA DWI FQK JBE WZK |
ID | FETCH-LOGICAL-c266t-17d99b2f2e14a6edb44ce9de0e0ca832bd2e314cccfa84eb0d3bd40dc99e582c3 |
ISSN | 0049-1241 |
IngestDate | Wed Aug 13 06:36:41 EDT 2025 Wed Oct 01 05:37:08 EDT 2025 Sun Aug 10 06:46:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | prediction-powered inference (PPI) PPI correlation mixed subjects design effective sample size large language models PPI poweranalysis machine learning computational social science |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c266t-17d99b2f2e14a6edb44ce9de0e0ca832bd2e314cccfa84eb0d3bd40dc99e582c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5176-1163 0009-0007-8048-3397 0000-0002-9565-7392 |
PQID | 3223878132 |
PQPubID | 48873 |
PageCount | 36 |
ParticipantIDs | proquest_journals_3223878132 crossref_primary_10_1177_00491241251326865 sage_journals_10_1177_00491241251326865 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20250800 2025-08-00 20250801 |
PublicationDateYYYYMMDD | 2025-08-01 |
PublicationDate_xml | – month: 8 year: 2025 text: 20250800 |
PublicationDecade | 2020 |
PublicationPlace | Los Angeles, CA |
PublicationPlace_xml | – name: Los Angeles, CA – name: Thousand Oaks |
PublicationTitle | Sociological methods & research |
PublicationYear | 2025 |
Publisher | SAGE Publications SAGE PUBLICATIONS, INC |
Publisher_xml | – name: SAGE Publications – name: SAGE PUBLICATIONS, INC |
References | Stadtfeld, Snijders, Steglich, van Duijn 2020; 49 Zack, Kennedy, Long 2019; 13 Meng 2018; 12 Angelopoulos, Bates, Fannjiang, Jordan, Zrnic 2023; 382 Freese, Peterson 2018; 36 Ziems, Held, Shaikh, Chen, Zhang, Yang 2024; 50 Levay, Freese, Druckman 2016; 6 Breiman 2001; 16 Milkman, Gromet, Ho, Kay, Lee, Pandiloski, Park 2021; 600 Harding, D’Alessandro, Laskowski, Long 2023; 39 Korinek 2023; 61 Blackwell, Honaker, King 2017; 46 Voelkel, Stagnaro, Chu, Pink, Mernyk, Redekopp, Ghezae 2024; 386 Zrnic, Candès 2024; 121 Tappin, Wittenberg, Hewitt, Berinsky, Rand 2023; 120 Sarstedt, Adler, Rau, Schmitt 2024; 41 Hainmueller, Hopkins, Yamamoto 2014; 22 Grossmann, Feinberg, Parker, Christakis, Tetlock, Cunningham 2023; 380 Binz, Schulz 2023; 120 McFarland, McFarland 2015; 2 Messeri, Crockett 2024; 627 Bail 2024; 121 Hussain, Binz, Mata, Wulff 2024; 56 Bradley, Kuriwaki, Isakov, Sejdinovic, Meng, Flaxman 2021; 600 Dillion, Tandon, Gu, Gray 2023; 27 Park, Schoenegger, Zhu 2024; 56 Almaatouq, Griffiths, Suchow, Whiting, Evans, Watts 2024; 47 Berinsky, Huber, Lenz 2012; 20 Chu, Voelkel, Stagnaro, Kang, Druckman, Rand, Willer 2024; 121 Stantcheva 2023; 15 Awad, Dsouza, Kim, Schulz, Henrich, Shariff, Bonnefon, Rahwan 2018; 563 Abdurahman, Atari, Karimi-Malekabadi, Xue, Trager, Park, Golazizian, Omrani, Dehghani 2024; 3 Argyle, Busby, Fulda, Gubler, Rytting, Wingate 2023; 31 Spirling 2023; 616 Thye 2000; 78 Alvero, Lee, Regla-Vargas, Kizilcec, Joachims, Antonio 2024; 11 Davidson 2024; 10 Lazer, Pentland, Watts, Aral, Athey, Contractor, Freelon 2020; 369 Lazer, Pentland, Adamic, Aral, Barabasi, Brewer, Christakis 2009; 323 DellaVigna, Pope 2018; 85 Mei, Xie, Yuan, Jackson 2024; 121 Chandler, Rosenzweig, Moss, Robinson, Litman 2019; 51 Li, Castelo, Katona, Sarvary 2024; 43 Takemoto 2024; 11 Bisbee, Clinton, Dorff, Kenkel, Larson 2024; 32 e_1_3_4_61_1 e_1_3_4_9_1 e_1_3_4_42_1 e_1_3_4_7_1 e_1_3_4_40_1 e_1_3_4_5_1 e_1_3_4_23_1 e_1_3_4_46_1 Salganik M (e_1_3_4_50_1) 2019 e_1_3_4_44_1 e_1_3_4_27_1 e_1_3_4_25_1 e_1_3_4_48_1 e_1_3_4_29_1 Harding J. (e_1_3_4_33_1) 2023; 39 e_1_3_4_53_1 e_1_3_4_30_1 e_1_3_4_51_1 e_1_3_4_13_1 e_1_3_4_34_1 e_1_3_4_59_1 e_1_3_4_55_1 e_1_3_4_11_1 e_1_3_4_32_1 e_1_3_4_17_1 e_1_3_4_38_1 e_1_3_4_15_1 e_1_3_4_36_1 e_1_3_4_57_1 Zack E. S. (e_1_3_4_60_1) 2019; 13 e_1_3_4_19_1 e_1_3_4_4_1 e_1_3_4_2_1 e_1_3_4_62_1 e_1_3_4_8_1 e_1_3_4_20_1 e_1_3_4_41_1 e_1_3_4_6_1 e_1_3_4_24_1 e_1_3_4_45_1 e_1_3_4_22_1 e_1_3_4_43_1 e_1_3_4_28_1 e_1_3_4_49_1 e_1_3_4_26_1 e_1_3_4_47_1 Cohen J (e_1_3_4_21_1) 1988 e_1_3_4_31_1 e_1_3_4_52_1 e_1_3_4_12_1 e_1_3_4_35_1 e_1_3_4_58_1 e_1_3_4_10_1 e_1_3_4_54_1 e_1_3_4_16_1 e_1_3_4_39_1 e_1_3_4_14_1 e_1_3_4_37_1 e_1_3_4_56_1 e_1_3_4_18_1 Almaatouq A. (e_1_3_4_3_1) 2024; 47 |
References_xml | – volume: 563 start-page: 59 issue: 7729 year: 2018 end-page: 64 article-title: The Moral Machine Experiment publication-title: Nature – volume: 46 start-page: 303 issue: 3 year: 2017 end-page: 41 article-title: A Unified Approach to Measurement Error and Missing Data: Overview and Applications publication-title: Sociological Methods & Research – volume: 51 start-page: 2022 issue: 5 year: 2019 end-page: 38 article-title: Online Panels in Social Science Research: Expanding Sampling Methods Beyond Mechanical Turk publication-title: Behavior Research Methods – volume: 369 start-page: 1060 issue: 6507 year: 2020 end-page: 2 article-title: Computational Social Science: Obstacles and Opportunities publication-title: Science (New York, N.Y.) – volume: 56 start-page: 8214 issue: 8 year: 2024 end-page: 37 article-title: A Tutorial on Open-source Large Language Models for Behavioral Science publication-title: Behavior Research Methods – volume: 121 issue: 21 year: 2024 article-title: Can Generative AI Improve Social Science? publication-title: Proceedings of the National Academy of Sciences – volume: 627 start-page: 49 issue: 8002 year: 2024 end-page: 58 article-title: Artificial Intelligence and Illusions of Understanding in Scientific Research publication-title: Nature – volume: 22 start-page: 1 issue: 1 year: 2014 end-page: 30 article-title: Causal Inference in Conjoint Analysis: Understanding Multidimensional Choices Via Stated Preference Experiments publication-title: Political Analysis – volume: 27 start-page: 597 issue: 7 year: 2023 end-page: 600 article-title: Can AI Language Models Replace Human Participants? publication-title: Trends in Cognitive Sciences – volume: 56 start-page: 5754 issue: 6 year: 2024 end-page: 70 article-title: Diminished Diversity-of-thought in a Standard Large Language Model publication-title: Behavior Research Methods – volume: 31 start-page: 337 issue: 3 year: 2023 end-page: 51 article-title: Out of One, Many: Using Language Models to Simulate Human Samples publication-title: Political Analysis – volume: 78 start-page: 1277 issue: 4 year: 2000 end-page: 309 article-title: Reliability in Experimental Sociology publication-title: Social Forces – volume: 121 issue: 3 year: 2024 article-title: Academics are More Specific, and Practitioners More Sensitive, in Forecasting Interventions to Strengthen Democratic Attitudes publication-title: Proceedings of the National Academy of Sciences – volume: 2 start-page: 2053951715602495 issue: 2 year: 2015 article-title: Big Data and the Danger of Being Precisely Inaccurate publication-title: Big Data & Society – volume: 600 start-page: 478 issue: 7889 year: 2021 end-page: 83 article-title: Megastudies Improve the Impact of Applied Behavioural Science publication-title: Nature – volume: 3 start-page: 245 issue: 7 year: 2024 article-title: Perils and Opportunities in Using Large Language Models in Psychological Research publication-title: PNAS Nexus – volume: 382 start-page: 669 issue: 6671 year: 2023 end-page: 74 article-title: Prediction-powered Inference publication-title: Science (New York, N.Y.) – volume: 61 start-page: 1281 issue: 4 year: 2023 end-page: 317 article-title: Generative AI for Economic Research: Use Cases and Implications for Economists publication-title: Journal of Economic Literature – volume: 47 year: 2024 article-title: Beyond Playing 20 Questions with Nature: Integrative Experiment Design in the Social and Behavioral Sciences publication-title: Behavioral and Brain Sciences – volume: 120 issue: 25 year: 2023 article-title: Quantifying the Potential Persuasive Returns to Political Microtargeting publication-title: Proceedings of the National Academy of Sciences – volume: 120 issue: 6 year: 2023 article-title: Using Cognitive Psychology to Understand Gpt-3 publication-title: Proceedings of the National Academy of Sciences – volume: 10 start-page: 23780231241259651 year: 2024 article-title: Start Generating: Harnessing Generative Artificial Intelligence for Sociological Research publication-title: Socius – volume: 616 start-page: 413 issue: 7957 year: 2023 article-title: Why Open-source Generative AI Models are An Ethical Way Forward for Science publication-title: Nature – volume: 15 start-page: 205 issue: 2023 year: 2023 end-page: 34 article-title: How to Run Surveys: A Guide to Creating Your Own Identifying Variation and Revealing the Invisible publication-title: Annual Review of Economics – volume: 121 issue: 15 year: 2024 article-title: Cross-prediction-powered Inference publication-title: Proceedings of the National Academy of Sciences – volume: 323 start-page: 721 issue: 5915 year: 2009 end-page: 3 article-title: Computational Social Science publication-title: Science (New York, N.Y.) – volume: 49 start-page: 1103 issue: 4 year: 2020 end-page: 32 article-title: Statistical Power in Longitudinal Network Studies publication-title: Sociological Methods & Research – volume: 39 start-page: 215 year: 2023 end-page: 227 article-title: Ai Language Models Cannot Replace Human Research Participants publication-title: AI & Society – volume: 11 start-page: 231393 issue: 2 year: 2024 article-title: The Moral Machine Experiment on Large Language Models publication-title: Royal Society Open Science – volume: 386 issue: 6719 year: 2024 article-title: Megastudy Testing 25 Treatments to Reduce Antidemocratic Attitudes and Partisan Animosity publication-title: Science (New York, N.Y.) – volume: 11 start-page: 138 issue: 1 year: 2024 article-title: Large Language Models, Social Demography, and Hegemony: Comparing Authorship in Human and Synthetic Text publication-title: Journal of Big Data – volume: 41 start-page: 1254 issue: 6 year: 2024 end-page: 70 article-title: Using Large Language Models to Generate Silicon Samples in Consumer and Marketing Research: Challenges, Opportunities, and Guidelines publication-title: Psychology & Marketing – volume: 380 start-page: 1108 issue: 6650 year: 2023 end-page: 9 article-title: AI and the Transformation of Social Science Research publication-title: Science (New York, N.Y.) – volume: 12 start-page: 685 issue: 2 year: 2018 end-page: 726 article-title: Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and the 2016 US Presidential Election publication-title: The Annals of Applied Statistics – volume: 36 start-page: 289 issue: 3 year: 2018 end-page: 313 article-title: The Emergence of Statistical Objectivity: Changing Ideas of Epistemic Vice and Virtue in Science publication-title: Sociological Theory – volume: 85 start-page: 1029 issue: 2 year: 2018 end-page: 69 article-title: What Motivates Effort? Evidence and Expert Forecasts publication-title: The Review of Economic Studies – volume: 43 start-page: 254 issue: 2 year: 2024 end-page: 66 article-title: Frontiers: Determining the Validity of Large Language Models for Automated Perceptual Analysis publication-title: Marketing Science – volume: 20 start-page: 351 issue: 3 year: 2012 end-page: 68 article-title: Evaluating Online Labor Markets for Experimental Research: Amazon.com’s Mechanical Turk publication-title: Political Analysis – volume: 600 start-page: 695 issue: 7890 year: 2021 end-page: 700 article-title: Unrepresentative Big Surveys Significantly Overestimated Us Vaccine Uptake publication-title: Nature – volume: 6 start-page: 1 issue: 1 year: 2016 end-page: 17 article-title: The Demographic and Political Composition of Mechanical Turk Samples publication-title: Sage Open – volume: 13 start-page: 215 issue: 2 year: 2019 end-page: 227 article-title: Can Nonprobability Samples Be Used for Social Science Research? A Cautionary Tale publication-title: Survey Research Methods – volume: 32 start-page: 401 issue: 4 year: 2024 end-page: 16 article-title: Synthetic Replacements for Human Survey Data? The Perils of Large Language Models publication-title: Political Analysis – volume: 121 issue: 9 year: 2024 article-title: A Turing Test of Whether Ai Chatbots are Behaviorally Similar to Humans publication-title: Proceedings of the National Academy of Sciences – volume: 50 start-page: 237 issue: 1 year: 2024 end-page: 91 article-title: Can Large Language Models Transform Computational Social Science? publication-title: Computational Linguistics – volume: 16 start-page: 199 issue: 3 year: 2001 end-page: 231 article-title: Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author) publication-title: Statistical Science – ident: e_1_3_4_39_1 doi: 10.1126/science.aaz8170 – ident: e_1_3_4_40_1 doi: 10.1177/2158244016636433 – ident: e_1_3_4_30_1 doi: 10.18653/v1/2025.naacl-long.179 – ident: e_1_3_4_8_1 – volume: 47 year: 2024 ident: e_1_3_4_3_1 article-title: Beyond Playing 20 Questions with Nature: Integrative Experiment Design in the Social and Behavioral Sciences publication-title: Behavioral and Brain Sciences – ident: e_1_3_4_7_1 doi: 10.1017/pan.2023.2 – volume: 39 start-page: 215 year: 2023 ident: e_1_3_4_33_1 article-title: Ai Language Models Cannot Replace Human Research Participants publication-title: AI & Society – ident: e_1_3_4_12_1 doi: 10.1093/pan/mpr057 – ident: e_1_3_4_58_1 – ident: e_1_3_4_22_1 doi: 10.1177/23780231241259651 – ident: e_1_3_4_49_1 doi: 10.32614/CRAN.package.ipd – ident: e_1_3_4_61_1 doi: 10.1162/coli_a_00502 – ident: e_1_3_4_27_1 – ident: e_1_3_4_62_1 doi: 10.1073/pnas.2322083121 – volume-title: Statistical Power Analysis for the Behavioral Sciences year: 1988 ident: e_1_3_4_21_1 – ident: e_1_3_4_42_1 doi: 10.1177/2053951715602495 – ident: e_1_3_4_45_1 doi: 10.1038/s41586-024-07146-0 – ident: e_1_3_4_29_1 – ident: e_1_3_4_35_1 doi: 10.3386/w31122 – ident: e_1_3_4_44_1 doi: 10.1214/18-AOAS1161SF – ident: e_1_3_4_6_1 – ident: e_1_3_4_54_1 doi: 10.1146/annurev-economics-091622-010157 – ident: e_1_3_4_55_1 doi: 10.1098/rsos.231393 – ident: e_1_3_4_59_1 doi: 10.1126/science.adh4764 – ident: e_1_3_4_51_1 doi: 10.1002/mar.21982 – ident: e_1_3_4_57_1 doi: 10.2307/3006175 – ident: e_1_3_4_32_1 doi: 10.1093/pan/mpt024 – ident: e_1_3_4_19_1 doi: 10.2307/j.ctvpb3xkg – ident: e_1_3_4_26_1 – ident: e_1_3_4_34_1 – ident: e_1_3_4_14_1 doi: 10.1017/pan.2024.5 – ident: e_1_3_4_17_1 doi: 10.1214/ss/1009213726 – ident: e_1_3_4_24_1 doi: 10.1016/j.tics.2023.04.008 – ident: e_1_3_4_48_1 – ident: e_1_3_4_18_1 doi: 10.3758/s13428-019-01273-7 – ident: e_1_3_4_36_1 doi: 10.3758/s13428-024-02455-8 – ident: e_1_3_4_2_1 doi: 10.1093/pnasnexus/pgae245 – ident: e_1_3_4_52_1 doi: 10.1038/d41586-023-01295-4 – ident: e_1_3_4_5_1 doi: 10.1126/science.adi6000 – ident: e_1_3_4_46_1 doi: 10.1038/s41586-021-04128-4 – ident: e_1_3_4_47_1 doi: 10.3758/s13428-023-02307-x – ident: e_1_3_4_23_1 doi: 10.1093/restud/rdx033 – ident: e_1_3_4_25_1 doi: 10.1201/9780429246593 – ident: e_1_3_4_37_1 doi: 10.1257/jel.20231736 – ident: e_1_3_4_43_1 doi: 10.1073/pnas.2313925121 – ident: e_1_3_4_11_1 doi: 10.1073/pnas.2314021121 – ident: e_1_3_4_15_1 doi: 10.1177/0049124115585360 – ident: e_1_3_4_31_1 doi: 10.1126/science.adi1778 – volume: 13 start-page: 215 issue: 2 year: 2019 ident: e_1_3_4_60_1 article-title: Can Nonprobability Samples Be Used for Social Science Research? A Cautionary Tale publication-title: Survey Research Methods – ident: e_1_3_4_13_1 doi: 10.1073/pnas.2218523120 – ident: e_1_3_4_9_1 doi: 10.31234/osf.io/5b26t – ident: e_1_3_4_53_1 doi: 10.1177/0049124118769113 – ident: e_1_3_4_4_1 doi: 10.1186/s40537-024-00986-7 – ident: e_1_3_4_28_1 doi: 10.1177/0735275118794987 – ident: e_1_3_4_41_1 doi: 10.1287/mksc.2023.0454 – ident: e_1_3_4_10_1 doi: 10.1038/s41586-018-0637-6 – ident: e_1_3_4_16_1 doi: 10.1038/s41586-021-04198-4 – ident: e_1_3_4_20_1 doi: 10.1073/pnas.2307008121 – ident: e_1_3_4_38_1 doi: 10.1126/science.1167742 – volume-title: Bit by Bit: Social Research in the Digital Age year: 2019 ident: e_1_3_4_50_1 – ident: e_1_3_4_56_1 doi: 10.1073/pnas.2216261120 |
SSID | ssj0012703 |
Score | 2.4142206 |
Snippet | Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed... |
SourceID | proquest crossref sage |
SourceType | Aggregation Database Index Database Publisher |
StartPage | 1074 |
SubjectTerms | Behavior Cost analysis Cost Effectiveness Human subjects Humans Inequality Large language models Power structure Predictions Productivity Research subjects |
Title | The Mixed Subjects Design: Treating Large Language Models as Potentially Informative Observations |
URI | https://journals.sagepub.com/doi/full/10.1177/00491241251326865 https://www.proquest.com/docview/3223878132 |
Volume | 54 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVSPB databaseName: SAGE HSS 2020 customDbUrl: eissn: 1552-8294 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012703 issn: 0049-1241 databaseCode: AYPQM dateStart: 19990201 isFulltext: true titleUrlDefault: https://journals.sagepub.com providerName: SAGE Publications |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rKX0d1Yuq7oYWyw4WLLsmz3rXQbZSxbBy10T0GXY9gWkjE70O4n7Ff36GJHDS2sexHBCRLR-Xz0SfrOOYS8LKWUWvEqaSqjEp6pIpFCQIJUu6xTqJvClWSZfhbHZ_zjeXE-Gv2NVEurTu3rPzfGlfyPVfEZ2tVGyd7BskOn-AA_o32xRQtj-882nn6_sJxxpX44XcY7p8hwh-aODtoYJiv2xtYfTLrqZ_PW1pc5WXZWKyTn88u3ISzJCYm-qOGoto3Jax_c4uzqS0-3DjohY9Bwsox7-_an3JDMO4mud0qxVj-EUH1ahuLWtrrYIj6LYMWghBv8K7fFFXwqq30ILrVAn8t8KePe5_rE0QFbeeRArT40WoxtPtSbHb27arbj2eGQpCENrXzVietJtTcWu0GCmPV5zje7uEe2WCkEG5Otw28nX6fDnRQr06BX8P8x3JG79F2bnVxnOeutS6QWdATmdJs8CDsPeuhh9JCMYPGI7AwBS_QV9aHa1GeOuXxMJOKLOnzRHl_U4-uA9uiiDl20Rxf16KKypRG6aIQuGqPrCTn78P706DgJJTkSjUyuS7LS1LViDYOMSwFGca6hNpBCqiUuDsowyDOutW5kxUGlJleGp0bXNRQV0_lTMl4sF_CM0FJwlQtIRZ3nvElBSkCu3tgEhcw0lZqQN_0Uzn75zCuzW402Ibv9JM_CC9rOcK3Kq7LCn0zIazvx669u7WjnLqM-J_fXb8EuGXe_V_ACOWqn9gJ4rgC-goru |
linkProvider | SAGE Publications |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60fdAXb7H1yoMoCCt7ZI_4Vjyo2npABcWHJcesiKUVdwvqrzfZox4oiC_7siFkM7MzH8k33wBshZxzKWhkJZESFnWEb_EgQEtD7ZDZyBI_b8nSPQ_a1_T0xr8pWZWmFqbcwXTP0Kr0ivJgPf67w1yMh-mcZPKyRh5R4E9CPWQaxdSg3rq9vOqO7xDc0C7vl43gP3XKO80fJ_malT6g5id2V55wjmfhrlpqwTN53BtlepVv31Qc__ctczBT4lDSKhxnHiZwsADNcfkK2SZF4S4pdEReF4FrjyLdhxdUREcbc3yTksOc_7FPejn0HNyTjiGW62dxCEpMp7V-SnhKLoeZ4SXxfv-VlCVQJtCSCzE-Fk6X4Pr4qHfQtsoGDZbUeT2znFAxJtzERYfyAJWgVCJTaKMtuQ4VQrnoOVRKmfCIorCVJxS1lWQM_ciV3jLUBsMBrgAJAyq8AO2AeR5NbOQcNXJLjFydq5JINGC3MlD8VOhwxE4lVf59GxuwVpkwrowQ68jlRWGkhzRgx1jk49WvEzX_PHITptq9bifunJyfrcK0a7oE5zTBNahlzyNc19AlExulj74DBkHiCg |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6BMpe2q3bWNKs00NpYeDOH7It7a20DV2bpCm00D0ZfZzHWEhC7cCyv36SLSdd6aDsxS8WQtad74673_0OYD8VQihJmZczLT0ayNgTSYKeCbVT7iPP42oky3CUnN_Si7v4ziXcbC-Mu8HiyMKqzIkqY23_7rnOP7saoyXk4cYvWd9sog-WxC-gzYwfC1vQPv42vh6u6ghh6rsasyX9p4Graz65yd-eaR1uPkB4VU6nvw1Zc9waa_LzaFGak_5-xOT4_9_zCrZcPEqOawV6DRs43YHuqo2FHJC6gZfUfCLLNyCMZpHhj1-oibE6No1TkNMKB_KF3FQh6PQ7GViAuXnWyVBiJ65NCiIKMp6VFp8kJpMlca1Q1uCSK7lKDxdv4bZ_dnNy7rlBDZ4y_r30glRzLsM8xICKBLWkVCHX6KOvhDEZUocYBVQplQtGUfo6kpr6WnGOMQtV9A5a09kU3wNJEyqjBP2ERxHNfRQCTQSXW9q6UOdMduBTI6RsXvNxZEFDWf74GjvQa8SYNYLIjAWLWMrMkg4cWqmsX_1zo-6zV36EzfFpPxt8HV3uwsvQDguu0II9aJX3C_xgIphS7jk1_QNWKORt |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mixed+Subjects+Design%3A+Treating+Large+Language+Models+as+Potentially+Informative+Observations&rft.jtitle=Sociological+methods+%26+research&rft.au=Broska%2C+David&rft.au=Howes%2C+Michael&rft.au=van+Loon%2C+Austin&rft.date=2025-08-01&rft.issn=0049-1241&rft.eissn=1552-8294&rft.volume=54&rft.issue=3&rft.spage=1074&rft.epage=1109&rft_id=info:doi/10.1177%2F00491241251326865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00491241251326865 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-1241&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-1241&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-1241&client=summon |