The Mixed Subjects Design: Treating Large Language Models as Potentially Informative Observations

Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not interchangeable, there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parame...

Full description

Saved in:
Bibliographic Details
Published inSociological methods & research Vol. 54; no. 3; pp. 1074 - 1109
Main Authors Broska, David, Howes, Michael, van Loon, Austin
Format Journal Article
LanguageEnglish
Published Los Angeles, CA SAGE Publications 01.08.2025
SAGE PUBLICATIONS, INC
Subjects
Online AccessGet full text
ISSN0049-1241
1552-8294
DOI10.1177/00491241251326865

Cover

Abstract Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not interchangeable, there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parameters. We argue that LLM predictions should be treated as potentially informative observations, while human subjects serve as a gold standard in a mixed subjects design. This paradigm preserves validity and offers more precise estimates at a lower cost than experiments relying exclusively on human subjects. We demonstrate—and extend—prediction-powered inference (PPI), a method that combines predictions and observations. We define the PPI correlation as a measure of interchangeability and derive the effective sample size for PPI. We also introduce a power analysis to optimally choose between informative but costly human subjects and less informative but cheap predictions of human behavior. Mixed subjects designs could enhance scientific productivity and reduce inequality in access to costly evidence.
AbstractList Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed behavior are often not interchangeable, there is limited guidance on using LLMs to obtain valid estimates of causal effects and other parameters. We argue that LLM predictions should be treated as potentially informative observations, while human subjects serve as a gold standard in a mixed subjects design. This paradigm preserves validity and offers more precise estimates at a lower cost than experiments relying exclusively on human subjects. We demonstrate—and extend—prediction-powered inference (PPI), a method that combines predictions and observations. We define the PPI correlation as a measure of interchangeability and derive the effective sample size for PPI. We also introduce a power analysis to optimally choose between informative but costly human subjects and less informative but cheap predictions of human behavior. Mixed subjects designs could enhance scientific productivity and reduce inequality in access to costly evidence.
Author Howes, Michael
van Loon, Austin
Broska, David
Author_xml – sequence: 1
  givenname: David
  orcidid: 0000-0002-5176-1163
  surname: Broska
  fullname: Broska, David
  email: dbroska@stanford.edu
– sequence: 2
  givenname: Michael
  orcidid: 0009-0007-8048-3397
  surname: Howes
  fullname: Howes, Michael
– sequence: 3
  givenname: Austin
  orcidid: 0000-0002-9565-7392
  surname: van Loon
  fullname: van Loon, Austin
BookMark eNp1kFtLAzEQhYNUsK3-AN8CPm_NbW--Sb0VWiq4Pi_ZZHbdsk1qslvsvzelgg_iy8zAnO8McyZoZKwBhK4pmVGapreEiJwyQVlMOUuyJD5DYxrHLMpYLkZofNxHR8EFmni_IYSylPAxksUH4FX7BRq_DdUGVO_xA_i2MXe4cCD71jR4KV0DoZpmkGFYWQ2dx9LjV9uD6VvZdQe8MLV12wDsAa8rD24fZmv8JTqvZefh6qdP0fvTYzF_iZbr58X8fhkpliR9RFOd5xWrGVAhE9CVEApyDQSIkhlnlWbAqVBK1TITUBHNKy2IVnkOccYUn6Kbk-_O2c8BfF9u7OBMOFlyxniWZiGZoKInlXLWewd1uXPtVrpDSUl5TLL8k2RgZifGh-9_Xf8HvgHPFXYV
Cites_doi 10.1126/science.aaz8170
10.1177/2158244016636433
10.18653/v1/2025.naacl-long.179
10.1017/pan.2023.2
10.1093/pan/mpr057
10.1177/23780231241259651
10.32614/CRAN.package.ipd
10.1162/coli_a_00502
10.1073/pnas.2322083121
10.1177/2053951715602495
10.1038/s41586-024-07146-0
10.3386/w31122
10.1214/18-AOAS1161SF
10.1146/annurev-economics-091622-010157
10.1098/rsos.231393
10.1126/science.adh4764
10.1002/mar.21982
10.2307/3006175
10.1093/pan/mpt024
10.2307/j.ctvpb3xkg
10.1017/pan.2024.5
10.1214/ss/1009213726
10.1016/j.tics.2023.04.008
10.3758/s13428-019-01273-7
10.3758/s13428-024-02455-8
10.1093/pnasnexus/pgae245
10.1038/d41586-023-01295-4
10.1126/science.adi6000
10.1038/s41586-021-04128-4
10.3758/s13428-023-02307-x
10.1093/restud/rdx033
10.1201/9780429246593
10.1257/jel.20231736
10.1073/pnas.2313925121
10.1073/pnas.2314021121
10.1177/0049124115585360
10.1126/science.adi1778
10.1073/pnas.2218523120
10.31234/osf.io/5b26t
10.1177/0049124118769113
10.1186/s40537-024-00986-7
10.1177/0735275118794987
10.1287/mksc.2023.0454
10.1038/s41586-018-0637-6
10.1038/s41586-021-04198-4
10.1073/pnas.2307008121
10.1126/science.1167742
10.1073/pnas.2216261120
ContentType Journal Article
Copyright The Author(s) 2025
Copyright SAGE PUBLICATIONS, INC. 2025
Copyright_xml – notice: The Author(s) 2025
– notice: Copyright SAGE PUBLICATIONS, INC. 2025
DBID AAYXX
CITATION
7U4
8BJ
AHOVV
BHHNA
DWI
FQK
JBE
WZK
DOI 10.1177/00491241251326865
DatabaseName CrossRef
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
Education Research Index
Sociological Abstracts
Sociological Abstracts
International Bibliography of the Social Sciences
International Bibliography of the Social Sciences
Sociological Abstracts (Ovid)
DatabaseTitle CrossRef
Sociological Abstracts (pre-2017)
International Bibliography of the Social Sciences (IBSS)
Sociological Abstracts
DatabaseTitleList Sociological Abstracts (pre-2017)
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Sociology & Social History
EISSN 1552-8294
EndPage 1109
ExternalDocumentID 10_1177_00491241251326865
10.1177_00491241251326865
GroupedDBID --Z
-TM
-~X
.2G
.2L
01A
09Z
0R~
123
186
1OL
1~K
31S
31V
31W
31X
3R3
4.4
41~
53G
56W
5VS
9M8
AABOD
AACKU
AADIR
AADUE
AAEJI
AAGGD
AAGLT
AAJPV
AAKTJ
AAMFR
AANSI
AAPEO
AAPII
AAQDB
AAQXI
AARIX
AATAA
AAWLO
ABAWP
ABCCA
ABCJG
ABDLQ
ABEHJ
ABEIX
ABFXH
ABHQH
ABIDT
ABIPJ
ABIVO
ABJNI
ABKRH
ABPNF
ABPPZ
ABQKF
ABQPY
ABQXT
ABRHV
ABTDE
ABUJY
ABYTW
ACAEP
ACCVC
ACDXX
ACFUR
ACFZE
ACGFS
ACGOD
ACHQT
ACJER
ACLZU
ACNCT
ACOFE
ACOXC
ACROE
ACRPL
ACSIQ
ACUFS
ACUIR
ADDLC
ADEBD
ADEIA
ADMHG
ADNMO
ADNON
ADPEE
ADRRZ
ADSTG
ADTOS
ADUKL
ADYCS
ADZJE
AEDXQ
AEEHM
AEOBU
AESMA
AESZF
AETEA
AEUHG
AEVPJ
AEWDL
AEWHI
AEXNY
AFEET
AFFNX
AFKBI
AFKRG
AFMOU
AFQAA
AFUIA
AFWMB
AGDVU
AGKLV
AGNHF
AGNWV
AGQPQ
AGWNL
AHDMH
AHHFK
AHWHD
AJGYC
AJUZI
AJVBE
ALFTD
ALMA_UNASSIGNED_HOLDINGS
AMNSR
ANDLU
ARBYP
ARTOV
ASPBG
AUTPY
AUVAJ
AVWKF
AYPQM
AZFZN
B8O
B8S
B8T
B8Z
BDZRT
BKOMP
BMVBW
BPACV
BYIEH
CAG
CBRKF
CCGJY
CEADM
COF
CS3
DD0
DD~
DG~
DOPDO
DU5
DV7
DV8
EBS
EJD
F5P
FEDTE
FHBDP
GROUPED_SAGE_PREMIER_JOURNAL_COLLECTION
H13
HF~
HVGLF
HZ~
H~9
J8X
LPU
N9A
O9-
OHT
P.B
P2P
PQQKQ
Q1R
Q7O
Q7P
Q7X
RIG
ROL
S01
SASJQ
SAUOL
SBI
SCNPE
SFB
SFC
SFK
SFR
SFT
SFX
SGP
SGU
SGV
SHB
SHF
SHM
SPJ
SPK
SPP
SQCSI
SSDHQ
TN5
ULY
WH7
WHG
XOL
XZL
YHZ
YNT
YYP
YYQ
YZZ
ZCG
ZPLXX
ZPPRI
ZUP
ZY4
~32
AAYXX
AJHME
CITATION
7U4
8BJ
AHOVV
BHHNA
DWI
FQK
JBE
WZK
ID FETCH-LOGICAL-c266t-17d99b2f2e14a6edb44ce9de0e0ca832bd2e314cccfa84eb0d3bd40dc99e582c3
ISSN 0049-1241
IngestDate Wed Aug 13 06:36:41 EDT 2025
Wed Oct 01 05:37:08 EDT 2025
Sun Aug 10 06:46:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords prediction-powered inference (PPI)
PPI correlation
mixed subjects design
effective sample size
large language models
PPI poweranalysis
machine learning
computational social science
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c266t-17d99b2f2e14a6edb44ce9de0e0ca832bd2e314cccfa84eb0d3bd40dc99e582c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5176-1163
0009-0007-8048-3397
0000-0002-9565-7392
PQID 3223878132
PQPubID 48873
PageCount 36
ParticipantIDs proquest_journals_3223878132
crossref_primary_10_1177_00491241251326865
sage_journals_10_1177_00491241251326865
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20250800
2025-08-00
20250801
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 8
  year: 2025
  text: 20250800
PublicationDecade 2020
PublicationPlace Los Angeles, CA
PublicationPlace_xml – name: Los Angeles, CA
– name: Thousand Oaks
PublicationTitle Sociological methods & research
PublicationYear 2025
Publisher SAGE Publications
SAGE PUBLICATIONS, INC
Publisher_xml – name: SAGE Publications
– name: SAGE PUBLICATIONS, INC
References Stadtfeld, Snijders, Steglich, van Duijn 2020; 49
Zack, Kennedy, Long 2019; 13
Meng 2018; 12
Angelopoulos, Bates, Fannjiang, Jordan, Zrnic 2023; 382
Freese, Peterson 2018; 36
Ziems, Held, Shaikh, Chen, Zhang, Yang 2024; 50
Levay, Freese, Druckman 2016; 6
Breiman 2001; 16
Milkman, Gromet, Ho, Kay, Lee, Pandiloski, Park 2021; 600
Harding, D’Alessandro, Laskowski, Long 2023; 39
Korinek 2023; 61
Blackwell, Honaker, King 2017; 46
Voelkel, Stagnaro, Chu, Pink, Mernyk, Redekopp, Ghezae 2024; 386
Zrnic, Candès 2024; 121
Tappin, Wittenberg, Hewitt, Berinsky, Rand 2023; 120
Sarstedt, Adler, Rau, Schmitt 2024; 41
Hainmueller, Hopkins, Yamamoto 2014; 22
Grossmann, Feinberg, Parker, Christakis, Tetlock, Cunningham 2023; 380
Binz, Schulz 2023; 120
McFarland, McFarland 2015; 2
Messeri, Crockett 2024; 627
Bail 2024; 121
Hussain, Binz, Mata, Wulff 2024; 56
Bradley, Kuriwaki, Isakov, Sejdinovic, Meng, Flaxman 2021; 600
Dillion, Tandon, Gu, Gray 2023; 27
Park, Schoenegger, Zhu 2024; 56
Almaatouq, Griffiths, Suchow, Whiting, Evans, Watts 2024; 47
Berinsky, Huber, Lenz 2012; 20
Chu, Voelkel, Stagnaro, Kang, Druckman, Rand, Willer 2024; 121
Stantcheva 2023; 15
Awad, Dsouza, Kim, Schulz, Henrich, Shariff, Bonnefon, Rahwan 2018; 563
Abdurahman, Atari, Karimi-Malekabadi, Xue, Trager, Park, Golazizian, Omrani, Dehghani 2024; 3
Argyle, Busby, Fulda, Gubler, Rytting, Wingate 2023; 31
Spirling 2023; 616
Thye 2000; 78
Alvero, Lee, Regla-Vargas, Kizilcec, Joachims, Antonio 2024; 11
Davidson 2024; 10
Lazer, Pentland, Watts, Aral, Athey, Contractor, Freelon 2020; 369
Lazer, Pentland, Adamic, Aral, Barabasi, Brewer, Christakis 2009; 323
DellaVigna, Pope 2018; 85
Mei, Xie, Yuan, Jackson 2024; 121
Chandler, Rosenzweig, Moss, Robinson, Litman 2019; 51
Li, Castelo, Katona, Sarvary 2024; 43
Takemoto 2024; 11
Bisbee, Clinton, Dorff, Kenkel, Larson 2024; 32
e_1_3_4_61_1
e_1_3_4_9_1
e_1_3_4_42_1
e_1_3_4_7_1
e_1_3_4_40_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_46_1
Salganik M (e_1_3_4_50_1) 2019
e_1_3_4_44_1
e_1_3_4_27_1
e_1_3_4_25_1
e_1_3_4_48_1
e_1_3_4_29_1
Harding J. (e_1_3_4_33_1) 2023; 39
e_1_3_4_53_1
e_1_3_4_30_1
e_1_3_4_51_1
e_1_3_4_13_1
e_1_3_4_34_1
e_1_3_4_59_1
e_1_3_4_55_1
e_1_3_4_11_1
e_1_3_4_32_1
e_1_3_4_17_1
e_1_3_4_38_1
e_1_3_4_15_1
e_1_3_4_36_1
e_1_3_4_57_1
Zack E. S. (e_1_3_4_60_1) 2019; 13
e_1_3_4_19_1
e_1_3_4_4_1
e_1_3_4_2_1
e_1_3_4_62_1
e_1_3_4_8_1
e_1_3_4_20_1
e_1_3_4_41_1
e_1_3_4_6_1
e_1_3_4_24_1
e_1_3_4_45_1
e_1_3_4_22_1
e_1_3_4_43_1
e_1_3_4_28_1
e_1_3_4_49_1
e_1_3_4_26_1
e_1_3_4_47_1
Cohen J (e_1_3_4_21_1) 1988
e_1_3_4_31_1
e_1_3_4_52_1
e_1_3_4_12_1
e_1_3_4_35_1
e_1_3_4_58_1
e_1_3_4_10_1
e_1_3_4_54_1
e_1_3_4_16_1
e_1_3_4_39_1
e_1_3_4_14_1
e_1_3_4_37_1
e_1_3_4_56_1
e_1_3_4_18_1
Almaatouq A. (e_1_3_4_3_1) 2024; 47
References_xml – volume: 563
  start-page: 59
  issue: 7729
  year: 2018
  end-page: 64
  article-title: The Moral Machine Experiment
  publication-title: Nature
– volume: 46
  start-page: 303
  issue: 3
  year: 2017
  end-page: 41
  article-title: A Unified Approach to Measurement Error and Missing Data: Overview and Applications
  publication-title: Sociological Methods & Research
– volume: 51
  start-page: 2022
  issue: 5
  year: 2019
  end-page: 38
  article-title: Online Panels in Social Science Research: Expanding Sampling Methods Beyond Mechanical Turk
  publication-title: Behavior Research Methods
– volume: 369
  start-page: 1060
  issue: 6507
  year: 2020
  end-page: 2
  article-title: Computational Social Science: Obstacles and Opportunities
  publication-title: Science (New York, N.Y.)
– volume: 56
  start-page: 8214
  issue: 8
  year: 2024
  end-page: 37
  article-title: A Tutorial on Open-source Large Language Models for Behavioral Science
  publication-title: Behavior Research Methods
– volume: 121
  issue: 21
  year: 2024
  article-title: Can Generative AI Improve Social Science?
  publication-title: Proceedings of the National Academy of Sciences
– volume: 627
  start-page: 49
  issue: 8002
  year: 2024
  end-page: 58
  article-title: Artificial Intelligence and Illusions of Understanding in Scientific Research
  publication-title: Nature
– volume: 22
  start-page: 1
  issue: 1
  year: 2014
  end-page: 30
  article-title: Causal Inference in Conjoint Analysis: Understanding Multidimensional Choices Via Stated Preference Experiments
  publication-title: Political Analysis
– volume: 27
  start-page: 597
  issue: 7
  year: 2023
  end-page: 600
  article-title: Can AI Language Models Replace Human Participants?
  publication-title: Trends in Cognitive Sciences
– volume: 56
  start-page: 5754
  issue: 6
  year: 2024
  end-page: 70
  article-title: Diminished Diversity-of-thought in a Standard Large Language Model
  publication-title: Behavior Research Methods
– volume: 31
  start-page: 337
  issue: 3
  year: 2023
  end-page: 51
  article-title: Out of One, Many: Using Language Models to Simulate Human Samples
  publication-title: Political Analysis
– volume: 78
  start-page: 1277
  issue: 4
  year: 2000
  end-page: 309
  article-title: Reliability in Experimental Sociology
  publication-title: Social Forces
– volume: 121
  issue: 3
  year: 2024
  article-title: Academics are More Specific, and Practitioners More Sensitive, in Forecasting Interventions to Strengthen Democratic Attitudes
  publication-title: Proceedings of the National Academy of Sciences
– volume: 2
  start-page: 2053951715602495
  issue: 2
  year: 2015
  article-title: Big Data and the Danger of Being Precisely Inaccurate
  publication-title: Big Data & Society
– volume: 600
  start-page: 478
  issue: 7889
  year: 2021
  end-page: 83
  article-title: Megastudies Improve the Impact of Applied Behavioural Science
  publication-title: Nature
– volume: 3
  start-page: 245
  issue: 7
  year: 2024
  article-title: Perils and Opportunities in Using Large Language Models in Psychological Research
  publication-title: PNAS Nexus
– volume: 382
  start-page: 669
  issue: 6671
  year: 2023
  end-page: 74
  article-title: Prediction-powered Inference
  publication-title: Science (New York, N.Y.)
– volume: 61
  start-page: 1281
  issue: 4
  year: 2023
  end-page: 317
  article-title: Generative AI for Economic Research: Use Cases and Implications for Economists
  publication-title: Journal of Economic Literature
– volume: 47
  year: 2024
  article-title: Beyond Playing 20 Questions with Nature: Integrative Experiment Design in the Social and Behavioral Sciences
  publication-title: Behavioral and Brain Sciences
– volume: 120
  issue: 25
  year: 2023
  article-title: Quantifying the Potential Persuasive Returns to Political Microtargeting
  publication-title: Proceedings of the National Academy of Sciences
– volume: 120
  issue: 6
  year: 2023
  article-title: Using Cognitive Psychology to Understand Gpt-3
  publication-title: Proceedings of the National Academy of Sciences
– volume: 10
  start-page: 23780231241259651
  year: 2024
  article-title: Start Generating: Harnessing Generative Artificial Intelligence for Sociological Research
  publication-title: Socius
– volume: 616
  start-page: 413
  issue: 7957
  year: 2023
  article-title: Why Open-source Generative AI Models are An Ethical Way Forward for Science
  publication-title: Nature
– volume: 15
  start-page: 205
  issue: 2023
  year: 2023
  end-page: 34
  article-title: How to Run Surveys: A Guide to Creating Your Own Identifying Variation and Revealing the Invisible
  publication-title: Annual Review of Economics
– volume: 121
  issue: 15
  year: 2024
  article-title: Cross-prediction-powered Inference
  publication-title: Proceedings of the National Academy of Sciences
– volume: 323
  start-page: 721
  issue: 5915
  year: 2009
  end-page: 3
  article-title: Computational Social Science
  publication-title: Science (New York, N.Y.)
– volume: 49
  start-page: 1103
  issue: 4
  year: 2020
  end-page: 32
  article-title: Statistical Power in Longitudinal Network Studies
  publication-title: Sociological Methods & Research
– volume: 39
  start-page: 215
  year: 2023
  end-page: 227
  article-title: Ai Language Models Cannot Replace Human Research Participants
  publication-title: AI & Society
– volume: 11
  start-page: 231393
  issue: 2
  year: 2024
  article-title: The Moral Machine Experiment on Large Language Models
  publication-title: Royal Society Open Science
– volume: 386
  issue: 6719
  year: 2024
  article-title: Megastudy Testing 25 Treatments to Reduce Antidemocratic Attitudes and Partisan Animosity
  publication-title: Science (New York, N.Y.)
– volume: 11
  start-page: 138
  issue: 1
  year: 2024
  article-title: Large Language Models, Social Demography, and Hegemony: Comparing Authorship in Human and Synthetic Text
  publication-title: Journal of Big Data
– volume: 41
  start-page: 1254
  issue: 6
  year: 2024
  end-page: 70
  article-title: Using Large Language Models to Generate Silicon Samples in Consumer and Marketing Research: Challenges, Opportunities, and Guidelines
  publication-title: Psychology & Marketing
– volume: 380
  start-page: 1108
  issue: 6650
  year: 2023
  end-page: 9
  article-title: AI and the Transformation of Social Science Research
  publication-title: Science (New York, N.Y.)
– volume: 12
  start-page: 685
  issue: 2
  year: 2018
  end-page: 726
  article-title: Statistical Paradises and Paradoxes in Big Data (I): Law of Large Populations, Big Data Paradox, and the 2016 US Presidential Election
  publication-title: The Annals of Applied Statistics
– volume: 36
  start-page: 289
  issue: 3
  year: 2018
  end-page: 313
  article-title: The Emergence of Statistical Objectivity: Changing Ideas of Epistemic Vice and Virtue in Science
  publication-title: Sociological Theory
– volume: 85
  start-page: 1029
  issue: 2
  year: 2018
  end-page: 69
  article-title: What Motivates Effort? Evidence and Expert Forecasts
  publication-title: The Review of Economic Studies
– volume: 43
  start-page: 254
  issue: 2
  year: 2024
  end-page: 66
  article-title: Frontiers: Determining the Validity of Large Language Models for Automated Perceptual Analysis
  publication-title: Marketing Science
– volume: 20
  start-page: 351
  issue: 3
  year: 2012
  end-page: 68
  article-title: Evaluating Online Labor Markets for Experimental Research: Amazon.com’s Mechanical Turk
  publication-title: Political Analysis
– volume: 600
  start-page: 695
  issue: 7890
  year: 2021
  end-page: 700
  article-title: Unrepresentative Big Surveys Significantly Overestimated Us Vaccine Uptake
  publication-title: Nature
– volume: 6
  start-page: 1
  issue: 1
  year: 2016
  end-page: 17
  article-title: The Demographic and Political Composition of Mechanical Turk Samples
  publication-title: Sage Open
– volume: 13
  start-page: 215
  issue: 2
  year: 2019
  end-page: 227
  article-title: Can Nonprobability Samples Be Used for Social Science Research? A Cautionary Tale
  publication-title: Survey Research Methods
– volume: 32
  start-page: 401
  issue: 4
  year: 2024
  end-page: 16
  article-title: Synthetic Replacements for Human Survey Data? The Perils of Large Language Models
  publication-title: Political Analysis
– volume: 121
  issue: 9
  year: 2024
  article-title: A Turing Test of Whether Ai Chatbots are Behaviorally Similar to Humans
  publication-title: Proceedings of the National Academy of Sciences
– volume: 50
  start-page: 237
  issue: 1
  year: 2024
  end-page: 91
  article-title: Can Large Language Models Transform Computational Social Science?
  publication-title: Computational Linguistics
– volume: 16
  start-page: 199
  issue: 3
  year: 2001
  end-page: 231
  article-title: Statistical Modeling: The Two Cultures (with Comments and a Rejoinder by the Author)
  publication-title: Statistical Science
– ident: e_1_3_4_39_1
  doi: 10.1126/science.aaz8170
– ident: e_1_3_4_40_1
  doi: 10.1177/2158244016636433
– ident: e_1_3_4_30_1
  doi: 10.18653/v1/2025.naacl-long.179
– ident: e_1_3_4_8_1
– volume: 47
  year: 2024
  ident: e_1_3_4_3_1
  article-title: Beyond Playing 20 Questions with Nature: Integrative Experiment Design in the Social and Behavioral Sciences
  publication-title: Behavioral and Brain Sciences
– ident: e_1_3_4_7_1
  doi: 10.1017/pan.2023.2
– volume: 39
  start-page: 215
  year: 2023
  ident: e_1_3_4_33_1
  article-title: Ai Language Models Cannot Replace Human Research Participants
  publication-title: AI & Society
– ident: e_1_3_4_12_1
  doi: 10.1093/pan/mpr057
– ident: e_1_3_4_58_1
– ident: e_1_3_4_22_1
  doi: 10.1177/23780231241259651
– ident: e_1_3_4_49_1
  doi: 10.32614/CRAN.package.ipd
– ident: e_1_3_4_61_1
  doi: 10.1162/coli_a_00502
– ident: e_1_3_4_27_1
– ident: e_1_3_4_62_1
  doi: 10.1073/pnas.2322083121
– volume-title: Statistical Power Analysis for the Behavioral Sciences
  year: 1988
  ident: e_1_3_4_21_1
– ident: e_1_3_4_42_1
  doi: 10.1177/2053951715602495
– ident: e_1_3_4_45_1
  doi: 10.1038/s41586-024-07146-0
– ident: e_1_3_4_29_1
– ident: e_1_3_4_35_1
  doi: 10.3386/w31122
– ident: e_1_3_4_44_1
  doi: 10.1214/18-AOAS1161SF
– ident: e_1_3_4_6_1
– ident: e_1_3_4_54_1
  doi: 10.1146/annurev-economics-091622-010157
– ident: e_1_3_4_55_1
  doi: 10.1098/rsos.231393
– ident: e_1_3_4_59_1
  doi: 10.1126/science.adh4764
– ident: e_1_3_4_51_1
  doi: 10.1002/mar.21982
– ident: e_1_3_4_57_1
  doi: 10.2307/3006175
– ident: e_1_3_4_32_1
  doi: 10.1093/pan/mpt024
– ident: e_1_3_4_19_1
  doi: 10.2307/j.ctvpb3xkg
– ident: e_1_3_4_26_1
– ident: e_1_3_4_34_1
– ident: e_1_3_4_14_1
  doi: 10.1017/pan.2024.5
– ident: e_1_3_4_17_1
  doi: 10.1214/ss/1009213726
– ident: e_1_3_4_24_1
  doi: 10.1016/j.tics.2023.04.008
– ident: e_1_3_4_48_1
– ident: e_1_3_4_18_1
  doi: 10.3758/s13428-019-01273-7
– ident: e_1_3_4_36_1
  doi: 10.3758/s13428-024-02455-8
– ident: e_1_3_4_2_1
  doi: 10.1093/pnasnexus/pgae245
– ident: e_1_3_4_52_1
  doi: 10.1038/d41586-023-01295-4
– ident: e_1_3_4_5_1
  doi: 10.1126/science.adi6000
– ident: e_1_3_4_46_1
  doi: 10.1038/s41586-021-04128-4
– ident: e_1_3_4_47_1
  doi: 10.3758/s13428-023-02307-x
– ident: e_1_3_4_23_1
  doi: 10.1093/restud/rdx033
– ident: e_1_3_4_25_1
  doi: 10.1201/9780429246593
– ident: e_1_3_4_37_1
  doi: 10.1257/jel.20231736
– ident: e_1_3_4_43_1
  doi: 10.1073/pnas.2313925121
– ident: e_1_3_4_11_1
  doi: 10.1073/pnas.2314021121
– ident: e_1_3_4_15_1
  doi: 10.1177/0049124115585360
– ident: e_1_3_4_31_1
  doi: 10.1126/science.adi1778
– volume: 13
  start-page: 215
  issue: 2
  year: 2019
  ident: e_1_3_4_60_1
  article-title: Can Nonprobability Samples Be Used for Social Science Research? A Cautionary Tale
  publication-title: Survey Research Methods
– ident: e_1_3_4_13_1
  doi: 10.1073/pnas.2218523120
– ident: e_1_3_4_9_1
  doi: 10.31234/osf.io/5b26t
– ident: e_1_3_4_53_1
  doi: 10.1177/0049124118769113
– ident: e_1_3_4_4_1
  doi: 10.1186/s40537-024-00986-7
– ident: e_1_3_4_28_1
  doi: 10.1177/0735275118794987
– ident: e_1_3_4_41_1
  doi: 10.1287/mksc.2023.0454
– ident: e_1_3_4_10_1
  doi: 10.1038/s41586-018-0637-6
– ident: e_1_3_4_16_1
  doi: 10.1038/s41586-021-04198-4
– ident: e_1_3_4_20_1
  doi: 10.1073/pnas.2307008121
– ident: e_1_3_4_38_1
  doi: 10.1126/science.1167742
– volume-title: Bit by Bit: Social Research in the Digital Age
  year: 2019
  ident: e_1_3_4_50_1
– ident: e_1_3_4_56_1
  doi: 10.1073/pnas.2216261120
SSID ssj0012703
Score 2.4142206
Snippet Large language models (LLMs) provide cost-effective but possibly inaccurate predictions of human behavior. Despite growing evidence that predicted and observed...
SourceID proquest
crossref
sage
SourceType Aggregation Database
Index Database
Publisher
StartPage 1074
SubjectTerms Behavior
Cost analysis
Cost Effectiveness
Human subjects
Humans
Inequality
Large language models
Power structure
Predictions
Productivity
Research subjects
Title The Mixed Subjects Design: Treating Large Language Models as Potentially Informative Observations
URI https://journals.sagepub.com/doi/full/10.1177/00491241251326865
https://www.proquest.com/docview/3223878132
Volume 54
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVSPB
  databaseName: SAGE HSS 2020
  customDbUrl:
  eissn: 1552-8294
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012703
  issn: 0049-1241
  databaseCode: AYPQM
  dateStart: 19990201
  isFulltext: true
  titleUrlDefault: https://journals.sagepub.com
  providerName: SAGE Publications
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9swFBZZ-rKX0d1Yuq7oYWyw4WLLsmz3rXQbZSxbBy10T0GXY9gWkjE70O4n7Ff36GJHDS2sexHBCRLR-Xz0SfrOOYS8LKWUWvEqaSqjEp6pIpFCQIJUu6xTqJvClWSZfhbHZ_zjeXE-Gv2NVEurTu3rPzfGlfyPVfEZ2tVGyd7BskOn-AA_o32xRQtj-882nn6_sJxxpX44XcY7p8hwh-aODtoYJiv2xtYfTLrqZ_PW1pc5WXZWKyTn88u3ISzJCYm-qOGoto3Jax_c4uzqS0-3DjohY9Bwsox7-_an3JDMO4mud0qxVj-EUH1ahuLWtrrYIj6LYMWghBv8K7fFFXwqq30ILrVAn8t8KePe5_rE0QFbeeRArT40WoxtPtSbHb27arbj2eGQpCENrXzVietJtTcWu0GCmPV5zje7uEe2WCkEG5Otw28nX6fDnRQr06BX8P8x3JG79F2bnVxnOeutS6QWdATmdJs8CDsPeuhh9JCMYPGI7AwBS_QV9aHa1GeOuXxMJOKLOnzRHl_U4-uA9uiiDl20Rxf16KKypRG6aIQuGqPrCTn78P706DgJJTkSjUyuS7LS1LViDYOMSwFGca6hNpBCqiUuDsowyDOutW5kxUGlJleGp0bXNRQV0_lTMl4sF_CM0FJwlQtIRZ3nvElBSkCu3tgEhcw0lZqQN_0Uzn75zCuzW402Ibv9JM_CC9rOcK3Kq7LCn0zIazvx669u7WjnLqM-J_fXb8EuGXe_V_ACOWqn9gJ4rgC-goru
linkProvider SAGE Publications
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB60fdAXb7H1yoMoCCt7ZI_4Vjyo2npABcWHJcesiKUVdwvqrzfZox4oiC_7siFkM7MzH8k33wBshZxzKWhkJZESFnWEb_EgQEtD7ZDZyBI_b8nSPQ_a1_T0xr8pWZWmFqbcwXTP0Kr0ivJgPf67w1yMh-mcZPKyRh5R4E9CPWQaxdSg3rq9vOqO7xDc0C7vl43gP3XKO80fJ_malT6g5id2V55wjmfhrlpqwTN53BtlepVv31Qc__ctczBT4lDSKhxnHiZwsADNcfkK2SZF4S4pdEReF4FrjyLdhxdUREcbc3yTksOc_7FPejn0HNyTjiGW62dxCEpMp7V-SnhKLoeZ4SXxfv-VlCVQJtCSCzE-Fk6X4Pr4qHfQtsoGDZbUeT2znFAxJtzERYfyAJWgVCJTaKMtuQ4VQrnoOVRKmfCIorCVJxS1lWQM_ciV3jLUBsMBrgAJAyq8AO2AeR5NbOQcNXJLjFydq5JINGC3MlD8VOhwxE4lVf59GxuwVpkwrowQ68jlRWGkhzRgx1jk49WvEzX_PHITptq9bifunJyfrcK0a7oE5zTBNahlzyNc19AlExulj74DBkHiCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED-6BMpe2q3bWNKs00NpYeDOH7It7a20DV2bpCm00D0ZfZzHWEhC7cCyv36SLSdd6aDsxS8WQtad74673_0OYD8VQihJmZczLT0ayNgTSYKeCbVT7iPP42oky3CUnN_Si7v4ziXcbC-Mu8HiyMKqzIkqY23_7rnOP7saoyXk4cYvWd9sog-WxC-gzYwfC1vQPv42vh6u6ghh6rsasyX9p4Graz65yd-eaR1uPkB4VU6nvw1Zc9waa_LzaFGak_5-xOT4_9_zCrZcPEqOawV6DRs43YHuqo2FHJC6gZfUfCLLNyCMZpHhj1-oibE6No1TkNMKB_KF3FQh6PQ7GViAuXnWyVBiJ65NCiIKMp6VFp8kJpMlca1Q1uCSK7lKDxdv4bZ_dnNy7rlBDZ4y_r30glRzLsM8xICKBLWkVCHX6KOvhDEZUocYBVQplQtGUfo6kpr6WnGOMQtV9A5a09kU3wNJEyqjBP2ERxHNfRQCTQSXW9q6UOdMduBTI6RsXvNxZEFDWf74GjvQa8SYNYLIjAWLWMrMkg4cWqmsX_1zo-6zV36EzfFpPxt8HV3uwsvQDguu0II9aJX3C_xgIphS7jk1_QNWKORt
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Mixed+Subjects+Design%3A+Treating+Large+Language+Models+as+Potentially+Informative+Observations&rft.jtitle=Sociological+methods+%26+research&rft.au=Broska%2C+David&rft.au=Howes%2C+Michael&rft.au=van+Loon%2C+Austin&rft.date=2025-08-01&rft.issn=0049-1241&rft.eissn=1552-8294&rft.volume=54&rft.issue=3&rft.spage=1074&rft.epage=1109&rft_id=info:doi/10.1177%2F00491241251326865&rft.externalDBID=n%2Fa&rft.externalDocID=10_1177_00491241251326865
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0049-1241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0049-1241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0049-1241&client=summon