DETECTION OF KNEE OSTEOARTHRITIS BASED ON CENTER OF PRESSURE DATA AND THE BAT ALGORITHM
The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center of pressure data obtained from the patients. The introduced automatic detection pipeline is based on the two modern algorithms of grey wolf...
Saved in:
| Published in | Journal of mechanics in medicine and biology Vol. 24; no. 3 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
World Scientific Publishing Company
01.04.2024
World Scientific Publishing Co. Pte., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0219-5194 1793-6810 |
| DOI | 10.1142/S0219519423500549 |
Cover
| Abstract | The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center of pressure data obtained from the patients. The introduced automatic detection pipeline is based on the two modern algorithms of grey wolf and BAT. The extracted statistical features and the obtained data from healthy individuals and patients are processed with the grey wolf binary algorithm. The results are fed into the binary bat algorithm to select important features and increase the pipeline accuracy. Then the groups are classified using a four-layer neural network. We show that the proposed method with a simple four-layer neural network offers fantastic accuracy in high-speed processing large data and classifies the high-dimensional knee osteoarthritis center of pressure data with appropriate precision, recall, specificity, and F1 values. The proposed method has direct applications in knee osteoarthritis diagnostics in clinics. |
|---|---|
| AbstractList | The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center of pressure data obtained from the patients. The introduced automatic detection pipeline is based on the two modern algorithms of grey wolf and BAT. The extracted statistical features and the obtained data from healthy individuals and patients are processed with the grey wolf binary algorithm. The results are fed into the binary bat algorithm to select important features and increase the pipeline accuracy. Then the groups are classified using a four-layer neural network. We show that the proposed method with a simple four-layer neural network offers fantastic accuracy in high-speed processing large data and classifies the high-dimensional knee osteoarthritis center of pressure data with appropriate precision, recall, specificity, and F1 values. The proposed method has direct applications in knee osteoarthritis diagnostics in clinics. |
| Author | ABEDINI-NASSAB, ROOZBEH AKRAMI, SEYED MOHAMMAD REZA ASHTIANI, MOHAMMED N. MIANDOAB, MAHRAD POURYOSEF |
| Author_xml | – sequence: 1 givenname: MAHRAD POURYOSEF surname: MIANDOAB fullname: MIANDOAB, MAHRAD POURYOSEF – sequence: 2 givenname: MOHAMMED N. surname: ASHTIANI fullname: ASHTIANI, MOHAMMED N. – sequence: 3 givenname: ROOZBEH surname: ABEDINI-NASSAB fullname: ABEDINI-NASSAB, ROOZBEH – sequence: 4 givenname: SEYED MOHAMMAD REZA surname: AKRAMI fullname: AKRAMI, SEYED MOHAMMAD REZA |
| BookMark | eNplkE1Lw0AQhhepYFv9Ad4WPEd3J1-7x5hsm2BNJNniMazbDaTUpCYt4r83IeKlp2F4n2cG3gWaNW1jELqn5JFSB54KApS7lDtgu4S4Dr9Cc-pz2_IYJTM0H2NrzG_Qou_3ZNgdwuboPRJShDLJUpyt8EsqBM4KKbIgl3GeyKTAz0EhIjzkoUilyEfsLRdFsc0FjgIZ4CCNsIzFAEocbNbZoMWvt-i6Uofe3P3NJdquhAxja5OtkzDYWBo8j1sV18xllFHFiKkqYL7WBrhhYCulPozSNncVcUB5PuzA98HWXDkEOGgAQ-wlepjuHrv262z6U7lvz10zvCxt6rkeYx4fKTpRumv7vjNVeezqT9X9lJSUY3_lRX-DQybnu-0Ou17XpjnVVa3_1UvlF8fFan8 |
| Cites_doi | 10.1007/s00521-019-04368-6 10.3390/s22103810 10.1109/MHS.1995.494215 10.1016/j.camwa.2011.11.010 10.3390/life12081126 10.1016/j.medengphy.2017.02.004 10.1016/j.gaitpost.2006.01.007 10.1186/ar3467 10.1016/j.patcog.2004.06.009 10.14814/phy2.15067 10.1038/s41584-018-0130-5 10.3390/ijerph16071281 10.1186/s13018-021-02823-6 10.3390/ijerph191912890 10.1109/ACCESS.2020.3006335 10.1016/j.advengsoft.2013.12.007 10.1109/AIPR.2004.41 10.18100/ijamec.2018447313 10.1002/cpe.6718 10.1155/2015/891390 10.1109/BIBM.2017.8217734 10.1038/s41584-020-00523-9 10.3390/ijms22115711 10.24018/ejece.2021.5.1.265 10.1016/j.biopha.2019.109724 10.1016/j.exger.2020.111170 10.1109/TNB.2018.2840082 10.1073/pnas.1703856114 10.1109/SIBGRAPI.2012.47 10.1007/s11277-021-08721-8 10.5535/arm.20071 10.1016/j.neucom.2015.06.083 10.1080/10255840701550956 10.3390/jsan11030048 10.1016/S0167-7012(00)00201-3 10.1016/j.joca.2018.12.027 10.1038/s41598-019-43546-3 10.1038/s41598-017-03110-3 |
| ContentType | Journal Article |
| Copyright | 2023, World Scientific Publishing Company 2023. World Scientific Publishing Company |
| Copyright_xml | – notice: 2023, World Scientific Publishing Company – notice: 2023. World Scientific Publishing Company |
| DBID | AAYXX CITATION |
| DOI | 10.1142/S0219519423500549 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1793-6810 |
| ExternalDocumentID | 10_1142_S0219519423500549 S0219519423500549 |
| GroupedDBID | 0R~ 4.4 53G 5GY ABDBF ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EAD EAP EBD EBS EJD EMK EOJEC EPL ESX F5P HZ~ I-F MK~ ML~ O9- OBODZ P2P P71 RWJ TUS AAYXX ACUHS CITATION |
| ID | FETCH-LOGICAL-c2669-f9c858181a80eff287cce29e823aaabeac395a042a672d27723c9a40292c22e03 |
| ISSN | 0219-5194 |
| IngestDate | Mon Jun 30 12:44:27 EDT 2025 Tue Jul 01 04:02:21 EDT 2025 Fri Aug 23 08:19:25 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | grey wolf Knee osteoarthritis detection data analysis center of pressure BAT |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2669-f9c858181a80eff287cce29e823aaabeac395a042a672d27723c9a40292c22e03 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0729-7770 |
| PQID | 3165688690 |
| PQPubID | 2049871 |
| ParticipantIDs | crossref_primary_10_1142_S0219519423500549 worldscientific_primary_S0219519423500549 proquest_journals_3165688690 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20240400 2024-04-00 20240401 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 20240400 |
| PublicationDecade | 2020 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Journal of mechanics in medicine and biology |
| PublicationYear | 2024 |
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
| References | Holland J (S0219519423500549BIB026) 1975 S0219519423500549BIB016 S0219519423500549BIB038 S0219519423500549BIB017 S0219519423500549BIB039 S0219519423500549BIB019 S0219519423500549BIB012 S0219519423500549BIB034 S0219519423500549BIB013 S0219519423500549BIB035 S0219519423500549BIB014 Almazini H (S0219519423500549BIB033) 2021; 14 S0219519423500549BIB036 S0219519423500549BIB015 S0219519423500549BIB030 S0219519423500549BIB031 S0219519423500549BIB010 S0219519423500549BIB032 S0219519423500549BIB011 S0219519423500549BIB009 S0219519423500549BIB005 S0219519423500549BIB027 S0219519423500549BIB006 S0219519423500549BIB028 S0219519423500549BIB007 S0219519423500549BIB029 S0219519423500549BIB008 S0219519423500549BIB001 S0219519423500549BIB023 S0219519423500549BIB002 S0219519423500549BIB024 S0219519423500549BIB003 S0219519423500549BIB004 S0219519423500549BIB041 S0219519423500549BIB020 S0219519423500549BIB042 S0219519423500549BIB021 S0219519423500549BIB043 S0219519423500549BIB022 S0219519423500549BIB044 de Dieu Uwisengeyimana J (S0219519423500549BIB018) 2017; 2 Esfandiari A (S0219519423500549BIB037) 2022 |
| References_xml | – ident: S0219519423500549BIB034 doi: 10.1007/s00521-019-04368-6 – ident: S0219519423500549BIB039 doi: 10.3390/s22103810 – ident: S0219519423500549BIB027 doi: 10.1109/MHS.1995.494215 – ident: S0219519423500549BIB032 doi: 10.1016/j.camwa.2011.11.010 – ident: S0219519423500549BIB015 doi: 10.3390/life12081126 – ident: S0219519423500549BIB019 doi: 10.1016/j.medengphy.2017.02.004 – ident: S0219519423500549BIB020 doi: 10.1016/j.gaitpost.2006.01.007 – ident: S0219519423500549BIB006 doi: 10.1186/ar3467 – ident: S0219519423500549BIB042 doi: 10.1016/j.patcog.2004.06.009 – ident: S0219519423500549BIB009 doi: 10.14814/phy2.15067 – ident: S0219519423500549BIB011 doi: 10.1038/s41584-018-0130-5 – ident: S0219519423500549BIB022 doi: 10.3390/ijerph16071281 – ident: S0219519423500549BIB007 doi: 10.1186/s13018-021-02823-6 – ident: S0219519423500549BIB016 doi: 10.3390/ijerph191912890 – ident: S0219519423500549BIB023 doi: 10.1109/ACCESS.2020.3006335 – volume: 2 start-page: 95 issue: 3 year: 2017 ident: S0219519423500549BIB018 publication-title: Biomed Stat Informatics – ident: S0219519423500549BIB031 doi: 10.1016/j.advengsoft.2013.12.007 – ident: S0219519423500549BIB028 doi: 10.1109/AIPR.2004.41 – ident: S0219519423500549BIB044 doi: 10.18100/ijamec.2018447313 – ident: S0219519423500549BIB036 doi: 10.1002/cpe.6718 – ident: S0219519423500549BIB024 doi: 10.1155/2015/891390 – ident: S0219519423500549BIB012 doi: 10.1109/BIBM.2017.8217734 – year: 2022 ident: S0219519423500549BIB037 publication-title: J Amb Intell Humanized Comput – ident: S0219519423500549BIB005 doi: 10.1038/s41584-020-00523-9 – ident: S0219519423500549BIB003 doi: 10.3390/ijms22115711 – ident: S0219519423500549BIB041 doi: 10.24018/ejece.2021.5.1.265 – ident: S0219519423500549BIB004 doi: 10.1016/j.biopha.2019.109724 – ident: S0219519423500549BIB010 doi: 10.1016/j.exger.2020.111170 – ident: S0219519423500549BIB013 doi: 10.1109/TNB.2018.2840082 – ident: S0219519423500549BIB001 doi: 10.1073/pnas.1703856114 – ident: S0219519423500549BIB029 doi: 10.1109/SIBGRAPI.2012.47 – ident: S0219519423500549BIB035 doi: 10.1007/s11277-021-08721-8 – ident: S0219519423500549BIB014 doi: 10.5535/arm.20071 – ident: S0219519423500549BIB030 doi: 10.1016/j.neucom.2015.06.083 – ident: S0219519423500549BIB021 doi: 10.1080/10255840701550956 – ident: S0219519423500549BIB017 doi: 10.3390/jsan11030048 – start-page: 1 volume-title: Applying Genetic Algorithm to Increase the Efficiency of a Data Flow-Based Test Data Generation Approach year: 1975 ident: S0219519423500549BIB026 – volume: 14 start-page: 474 issue: 2 year: 2021 ident: S0219519423500549BIB033 publication-title: Int J Intell Eng Syst – ident: S0219519423500549BIB043 doi: 10.1016/S0167-7012(00)00201-3 – ident: S0219519423500549BIB008 doi: 10.1016/j.joca.2018.12.027 – ident: S0219519423500549BIB038 doi: 10.1038/s41598-019-43546-3 – ident: S0219519423500549BIB002 doi: 10.1038/s41598-017-03110-3 |
| SSID | ssj0021408 |
| Score | 2.2959468 |
| Snippet | The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center... |
| SourceID | proquest crossref worldscientific |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Algorithms Center of pressure Knee Neural networks Research Article |
| Title | DETECTION OF KNEE OSTEOARTHRITIS BASED ON CENTER OF PRESSURE DATA AND THE BAT ALGORITHM |
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0219519423500549 https://www.proquest.com/docview/3165688690 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1793-6810 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0021408 issn: 0219-5194 databaseCode: ABDBF dateStart: 20010501 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj5NAEN_UXkx8ufgZe56GB2OiDSfdhRYel7K1eKVcgMbevRDglpwPtqftPeh_6H_lzEJpz16M2gfSwHaAmV9nZ3Y-lpDXA2Zjo3JDH0jKdBM0np6XeaEbjDq0KE3ZU1X8wbQ_npkf59a81fq5k7V0s85Pih931pX8j1ThHMgVq2T_QbINUTgB30G-cAQJw_GvZOyJRKgkEMzdOZ0K0Q3jRIRgo44jP_Fj8MJj4XXh-lBg61scpliOqQ4eT7hqLoVJPy5PunzyIYSf1Y2t9w3WLxKrhLGr8-dFE5NXwYe6k1MjPB_IhtxVi618HHGvexbOovMwFk0eMV9doW5RuQTB8grXzy-3YSHuCs-f-vqUx3FFJwrDC1c0ca1YnMOLBeGYBwGQj8QFvMtpxAN_dxmD7ma_KGWpUoeUPlM5UrurcMPlSfdsLZW23OY6oYYEdauDCVqtSMhKg4PC0bHJ2q6Kr8q0ayizu2cOk6rYNZBEipRZaM0622lykxowDdPRbDJJEzFP3lx_1XEDMwz017u53CMHFCYYo00OuOu5o8b7B09WmQWbZ65D7HDf93t3vW0kbT2fQ9VGd9VwaccUSh6SwxoSGq8A-Yi05OIxuV_tavr9CfnUwFILRxrCUrsNS03BUoPrFSxx2AaWGsJSA_xoAEsYmGgNLJ-S2Ugkw7Fe79-hF2D2OXrpFLYFBmEvsw1ZluCbF4WkjrQpy7IshymfOVYGs0bWH9BLCn4eK5zMNFBLUCoN9oy0F8uFfE40ZrEyy23HoWVhWgNqFwP4WLRflr3C6MsOebdhWHpdtWlJq5J7mu5xt0OONyxN63_zKmXYhsrG_dk65O1vbG5I7pE6-jOpF-TBFuvHpL3-diNfghG7zl_V8PgFCsiF-w |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DETECTION+OF+KNEE+OSTEOARTHRITIS+BASED+ON+CENTER+OF+PRESSURE+DATA+AND+THE+BAT+ALGORITHM&rft.jtitle=Journal+of+mechanics+in+medicine+and+biology&rft.au=MIANDOAB%2C+MAHRAD+POURYOSEF&rft.au=Ashtiani%2C+Mohammed+N&rft.au=ABEDINI-NASSAB%2C+ROOZBEH&rft.au=SEYED+MOHAMMAD+REZA+AKRAMI&rft.date=2024-04-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0219-5194&rft.eissn=1793-6810&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1142%2FS0219519423500549&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-5194&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-5194&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-5194&client=summon |