DETECTION OF KNEE OSTEOARTHRITIS BASED ON CENTER OF PRESSURE DATA AND THE BAT ALGORITHM

The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center of pressure data obtained from the patients. The introduced automatic detection pipeline is based on the two modern algorithms of grey wolf...

Full description

Saved in:
Bibliographic Details
Published inJournal of mechanics in medicine and biology Vol. 24; no. 3
Main Authors MIANDOAB, MAHRAD POURYOSEF, ASHTIANI, MOHAMMED N., ABEDINI-NASSAB, ROOZBEH, AKRAMI, SEYED MOHAMMAD REZA
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.04.2024
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0219-5194
1793-6810
DOI10.1142/S0219519423500549

Cover

Abstract The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center of pressure data obtained from the patients. The introduced automatic detection pipeline is based on the two modern algorithms of grey wolf and BAT. The extracted statistical features and the obtained data from healthy individuals and patients are processed with the grey wolf binary algorithm. The results are fed into the binary bat algorithm to select important features and increase the pipeline accuracy. Then the groups are classified using a four-layer neural network. We show that the proposed method with a simple four-layer neural network offers fantastic accuracy in high-speed processing large data and classifies the high-dimensional knee osteoarthritis center of pressure data with appropriate precision, recall, specificity, and F1 values. The proposed method has direct applications in knee osteoarthritis diagnostics in clinics.
AbstractList The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center of pressure data obtained from the patients. The introduced automatic detection pipeline is based on the two modern algorithms of grey wolf and BAT. The extracted statistical features and the obtained data from healthy individuals and patients are processed with the grey wolf binary algorithm. The results are fed into the binary bat algorithm to select important features and increase the pipeline accuracy. Then the groups are classified using a four-layer neural network. We show that the proposed method with a simple four-layer neural network offers fantastic accuracy in high-speed processing large data and classifies the high-dimensional knee osteoarthritis center of pressure data with appropriate precision, recall, specificity, and F1 values. The proposed method has direct applications in knee osteoarthritis diagnostics in clinics.
Author ABEDINI-NASSAB, ROOZBEH
AKRAMI, SEYED MOHAMMAD REZA
ASHTIANI, MOHAMMED N.
MIANDOAB, MAHRAD POURYOSEF
Author_xml – sequence: 1
  givenname: MAHRAD POURYOSEF
  surname: MIANDOAB
  fullname: MIANDOAB, MAHRAD POURYOSEF
– sequence: 2
  givenname: MOHAMMED N.
  surname: ASHTIANI
  fullname: ASHTIANI, MOHAMMED N.
– sequence: 3
  givenname: ROOZBEH
  surname: ABEDINI-NASSAB
  fullname: ABEDINI-NASSAB, ROOZBEH
– sequence: 4
  givenname: SEYED MOHAMMAD REZA
  surname: AKRAMI
  fullname: AKRAMI, SEYED MOHAMMAD REZA
BookMark eNplkE1Lw0AQhhepYFv9Ad4WPEd3J1-7x5hsm2BNJNniMazbDaTUpCYt4r83IeKlp2F4n2cG3gWaNW1jELqn5JFSB54KApS7lDtgu4S4Dr9Cc-pz2_IYJTM0H2NrzG_Qou_3ZNgdwuboPRJShDLJUpyt8EsqBM4KKbIgl3GeyKTAz0EhIjzkoUilyEfsLRdFsc0FjgIZ4CCNsIzFAEocbNbZoMWvt-i6Uofe3P3NJdquhAxja5OtkzDYWBo8j1sV18xllFHFiKkqYL7WBrhhYCulPozSNncVcUB5PuzA98HWXDkEOGgAQ-wlepjuHrv262z6U7lvz10zvCxt6rkeYx4fKTpRumv7vjNVeezqT9X9lJSUY3_lRX-DQybnu-0Ou17XpjnVVa3_1UvlF8fFan8
Cites_doi 10.1007/s00521-019-04368-6
10.3390/s22103810
10.1109/MHS.1995.494215
10.1016/j.camwa.2011.11.010
10.3390/life12081126
10.1016/j.medengphy.2017.02.004
10.1016/j.gaitpost.2006.01.007
10.1186/ar3467
10.1016/j.patcog.2004.06.009
10.14814/phy2.15067
10.1038/s41584-018-0130-5
10.3390/ijerph16071281
10.1186/s13018-021-02823-6
10.3390/ijerph191912890
10.1109/ACCESS.2020.3006335
10.1016/j.advengsoft.2013.12.007
10.1109/AIPR.2004.41
10.18100/ijamec.2018447313
10.1002/cpe.6718
10.1155/2015/891390
10.1109/BIBM.2017.8217734
10.1038/s41584-020-00523-9
10.3390/ijms22115711
10.24018/ejece.2021.5.1.265
10.1016/j.biopha.2019.109724
10.1016/j.exger.2020.111170
10.1109/TNB.2018.2840082
10.1073/pnas.1703856114
10.1109/SIBGRAPI.2012.47
10.1007/s11277-021-08721-8
10.5535/arm.20071
10.1016/j.neucom.2015.06.083
10.1080/10255840701550956
10.3390/jsan11030048
10.1016/S0167-7012(00)00201-3
10.1016/j.joca.2018.12.027
10.1038/s41598-019-43546-3
10.1038/s41598-017-03110-3
ContentType Journal Article
Copyright 2023, World Scientific Publishing Company
2023. World Scientific Publishing Company
Copyright_xml – notice: 2023, World Scientific Publishing Company
– notice: 2023. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0219519423500549
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1793-6810
ExternalDocumentID 10_1142_S0219519423500549
S0219519423500549
GroupedDBID 0R~
4.4
53G
5GY
ABDBF
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EAD
EAP
EBD
EBS
EJD
EMK
EOJEC
EPL
ESX
F5P
HZ~
I-F
MK~
ML~
O9-
OBODZ
P2P
P71
RWJ
TUS
AAYXX
ACUHS
CITATION
ID FETCH-LOGICAL-c2669-f9c858181a80eff287cce29e823aaabeac395a042a672d27723c9a40292c22e03
ISSN 0219-5194
IngestDate Mon Jun 30 12:44:27 EDT 2025
Tue Jul 01 04:02:21 EDT 2025
Fri Aug 23 08:19:25 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords grey wolf
Knee osteoarthritis detection
data analysis
center of pressure
BAT
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2669-f9c858181a80eff287cce29e823aaabeac395a042a672d27723c9a40292c22e03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0729-7770
PQID 3165688690
PQPubID 2049871
ParticipantIDs crossref_primary_10_1142_S0219519423500549
worldscientific_primary_S0219519423500549
proquest_journals_3165688690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20240400
2024-04-00
20240401
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 20240400
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of mechanics in medicine and biology
PublicationYear 2024
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Holland J (S0219519423500549BIB026) 1975
S0219519423500549BIB016
S0219519423500549BIB038
S0219519423500549BIB017
S0219519423500549BIB039
S0219519423500549BIB019
S0219519423500549BIB012
S0219519423500549BIB034
S0219519423500549BIB013
S0219519423500549BIB035
S0219519423500549BIB014
Almazini H (S0219519423500549BIB033) 2021; 14
S0219519423500549BIB036
S0219519423500549BIB015
S0219519423500549BIB030
S0219519423500549BIB031
S0219519423500549BIB010
S0219519423500549BIB032
S0219519423500549BIB011
S0219519423500549BIB009
S0219519423500549BIB005
S0219519423500549BIB027
S0219519423500549BIB006
S0219519423500549BIB028
S0219519423500549BIB007
S0219519423500549BIB029
S0219519423500549BIB008
S0219519423500549BIB001
S0219519423500549BIB023
S0219519423500549BIB002
S0219519423500549BIB024
S0219519423500549BIB003
S0219519423500549BIB004
S0219519423500549BIB041
S0219519423500549BIB020
S0219519423500549BIB042
S0219519423500549BIB021
S0219519423500549BIB043
S0219519423500549BIB022
S0219519423500549BIB044
de Dieu Uwisengeyimana J (S0219519423500549BIB018) 2017; 2
Esfandiari A (S0219519423500549BIB037) 2022
References_xml – ident: S0219519423500549BIB034
  doi: 10.1007/s00521-019-04368-6
– ident: S0219519423500549BIB039
  doi: 10.3390/s22103810
– ident: S0219519423500549BIB027
  doi: 10.1109/MHS.1995.494215
– ident: S0219519423500549BIB032
  doi: 10.1016/j.camwa.2011.11.010
– ident: S0219519423500549BIB015
  doi: 10.3390/life12081126
– ident: S0219519423500549BIB019
  doi: 10.1016/j.medengphy.2017.02.004
– ident: S0219519423500549BIB020
  doi: 10.1016/j.gaitpost.2006.01.007
– ident: S0219519423500549BIB006
  doi: 10.1186/ar3467
– ident: S0219519423500549BIB042
  doi: 10.1016/j.patcog.2004.06.009
– ident: S0219519423500549BIB009
  doi: 10.14814/phy2.15067
– ident: S0219519423500549BIB011
  doi: 10.1038/s41584-018-0130-5
– ident: S0219519423500549BIB022
  doi: 10.3390/ijerph16071281
– ident: S0219519423500549BIB007
  doi: 10.1186/s13018-021-02823-6
– ident: S0219519423500549BIB016
  doi: 10.3390/ijerph191912890
– ident: S0219519423500549BIB023
  doi: 10.1109/ACCESS.2020.3006335
– volume: 2
  start-page: 95
  issue: 3
  year: 2017
  ident: S0219519423500549BIB018
  publication-title: Biomed Stat Informatics
– ident: S0219519423500549BIB031
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: S0219519423500549BIB028
  doi: 10.1109/AIPR.2004.41
– ident: S0219519423500549BIB044
  doi: 10.18100/ijamec.2018447313
– ident: S0219519423500549BIB036
  doi: 10.1002/cpe.6718
– ident: S0219519423500549BIB024
  doi: 10.1155/2015/891390
– ident: S0219519423500549BIB012
  doi: 10.1109/BIBM.2017.8217734
– year: 2022
  ident: S0219519423500549BIB037
  publication-title: J Amb Intell Humanized Comput
– ident: S0219519423500549BIB005
  doi: 10.1038/s41584-020-00523-9
– ident: S0219519423500549BIB003
  doi: 10.3390/ijms22115711
– ident: S0219519423500549BIB041
  doi: 10.24018/ejece.2021.5.1.265
– ident: S0219519423500549BIB004
  doi: 10.1016/j.biopha.2019.109724
– ident: S0219519423500549BIB010
  doi: 10.1016/j.exger.2020.111170
– ident: S0219519423500549BIB013
  doi: 10.1109/TNB.2018.2840082
– ident: S0219519423500549BIB001
  doi: 10.1073/pnas.1703856114
– ident: S0219519423500549BIB029
  doi: 10.1109/SIBGRAPI.2012.47
– ident: S0219519423500549BIB035
  doi: 10.1007/s11277-021-08721-8
– ident: S0219519423500549BIB014
  doi: 10.5535/arm.20071
– ident: S0219519423500549BIB030
  doi: 10.1016/j.neucom.2015.06.083
– ident: S0219519423500549BIB021
  doi: 10.1080/10255840701550956
– ident: S0219519423500549BIB017
  doi: 10.3390/jsan11030048
– start-page: 1
  volume-title: Applying Genetic Algorithm to Increase the Efficiency of a Data Flow-Based Test Data Generation Approach
  year: 1975
  ident: S0219519423500549BIB026
– volume: 14
  start-page: 474
  issue: 2
  year: 2021
  ident: S0219519423500549BIB033
  publication-title: Int J Intell Eng Syst
– ident: S0219519423500549BIB043
  doi: 10.1016/S0167-7012(00)00201-3
– ident: S0219519423500549BIB008
  doi: 10.1016/j.joca.2018.12.027
– ident: S0219519423500549BIB038
  doi: 10.1038/s41598-019-43546-3
– ident: S0219519423500549BIB002
  doi: 10.1038/s41598-017-03110-3
SSID ssj0021408
Score 2.2959468
Snippet The high rate of knee osteoarthritis has raised the need for accurate diagnostic methods. In this study, we propose a precise detection method using the center...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Algorithms
Center of pressure
Knee
Neural networks
Research Article
Title DETECTION OF KNEE OSTEOARTHRITIS BASED ON CENTER OF PRESSURE DATA AND THE BAT ALGORITHM
URI http://www.worldscientific.com/doi/abs/10.1142/S0219519423500549
https://www.proquest.com/docview/3165688690
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1793-6810
  dateEnd: 20241105
  omitProxy: true
  ssIdentifier: ssj0021408
  issn: 0219-5194
  databaseCode: ABDBF
  dateStart: 20010501
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dj5NAEN_UXkx8ufgZe56GB2OiDSfdhRYel7K1eKVcgMbevRDglpwPtqftPeh_6H_lzEJpz16M2gfSwHaAmV9nZ3Y-lpDXA2Zjo3JDH0jKdBM0np6XeaEbjDq0KE3ZU1X8wbQ_npkf59a81fq5k7V0s85Pih931pX8j1ThHMgVq2T_QbINUTgB30G-cAQJw_GvZOyJRKgkEMzdOZ0K0Q3jRIRgo44jP_Fj8MJj4XXh-lBg61scpliOqQ4eT7hqLoVJPy5PunzyIYSf1Y2t9w3WLxKrhLGr8-dFE5NXwYe6k1MjPB_IhtxVi618HHGvexbOovMwFk0eMV9doW5RuQTB8grXzy-3YSHuCs-f-vqUx3FFJwrDC1c0ca1YnMOLBeGYBwGQj8QFvMtpxAN_dxmD7ma_KGWpUoeUPlM5UrurcMPlSfdsLZW23OY6oYYEdauDCVqtSMhKg4PC0bHJ2q6Kr8q0ayizu2cOk6rYNZBEipRZaM0622lykxowDdPRbDJJEzFP3lx_1XEDMwz017u53CMHFCYYo00OuOu5o8b7B09WmQWbZ65D7HDf93t3vW0kbT2fQ9VGd9VwaccUSh6SwxoSGq8A-Yi05OIxuV_tavr9CfnUwFILRxrCUrsNS03BUoPrFSxx2AaWGsJSA_xoAEsYmGgNLJ-S2Ugkw7Fe79-hF2D2OXrpFLYFBmEvsw1ZluCbF4WkjrQpy7IshymfOVYGs0bWH9BLCn4eK5zMNFBLUCoN9oy0F8uFfE40ZrEyy23HoWVhWgNqFwP4WLRflr3C6MsOebdhWHpdtWlJq5J7mu5xt0OONyxN63_zKmXYhsrG_dk65O1vbG5I7pE6-jOpF-TBFuvHpL3-diNfghG7zl_V8PgFCsiF-w
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DETECTION+OF+KNEE+OSTEOARTHRITIS+BASED+ON+CENTER+OF+PRESSURE+DATA+AND+THE+BAT+ALGORITHM&rft.jtitle=Journal+of+mechanics+in+medicine+and+biology&rft.au=MIANDOAB%2C+MAHRAD+POURYOSEF&rft.au=Ashtiani%2C+Mohammed+N&rft.au=ABEDINI-NASSAB%2C+ROOZBEH&rft.au=SEYED+MOHAMMAD+REZA+AKRAMI&rft.date=2024-04-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0219-5194&rft.eissn=1793-6810&rft.volume=24&rft.issue=3&rft_id=info:doi/10.1142%2FS0219519423500549&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-5194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-5194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-5194&client=summon