HKSCSO: A Novel Enhanced Sand Cat Swarm Optimization Algorithm for UAV Three‐Dimensional Path Planning
ABSTRACT Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring a simple yet effective algorithm. To solve such problems, an improved Sand Cat Swarm Optimization (SCSO) is proposed, addressing th...
Saved in:
| Published in | Concurrency and computation Vol. 37; no. 15-17 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
25.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1532-0626 1532-0634 1532-0634 |
| DOI | 10.1002/cpe.70106 |
Cover
| Abstract | ABSTRACT
Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring a simple yet effective algorithm. To solve such problems, an improved Sand Cat Swarm Optimization (SCSO) is proposed, addressing the issue where traditional SCSO is prone to getting stuck in local optima. In this improved approach, a nonlinear adjustment mechanism based on a dynamic factor k is introduced to better balance the exploration and exploitation phases. Additionally, the predatory attack strategy of Harris's Hawks was introduced to improve the position update formula during the exploration phase of the SCSO, thus enhancing the algorithm's convergence speed. A new variant of the SCSO, named HKSCSO, is proposed and applied to UAV path planning. Cost functions are introduced to evaluate path length, flight altitude, and angle comprehensively. HKSCSO's performance was tested in three 3D urban environments, showing faster convergence and safer paths compared to SCSO, Harris's Hawks Optimization (HHO), Particle Swarm Optimization (PSO), Seagull Optimization Algorithm (SOA), Whale Optimization Algorithm (WOA), Parrot Optimizer (PO), and Mantis Search Algorithm (MSA). These results indicate HKSCSO's potential as an effective solution for UAV three‐dimensional path planning. |
|---|---|
| AbstractList | Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring a simple yet effective algorithm. To solve such problems, an improved Sand Cat Swarm Optimization (SCSO) is proposed, addressing the issue where traditional SCSO is prone to getting stuck in local optima. In this improved approach, a nonlinear adjustment mechanism based on a dynamic factor k is introduced to better balance the exploration and exploitation phases. Additionally, the predatory attack strategy of Harris's Hawks was introduced to improve the position update formula during the exploration phase of the SCSO, thus enhancing the algorithm's convergence speed. A new variant of the SCSO, named HKSCSO, is proposed and applied to UAV path planning. Cost functions are introduced to evaluate path length, flight altitude, and angle comprehensively. HKSCSO's performance was tested in three 3D urban environments, showing faster convergence and safer paths compared to SCSO, Harris's Hawks Optimization (HHO), Particle Swarm Optimization (PSO), Seagull Optimization Algorithm (SOA), Whale Optimization Algorithm (WOA), Parrot Optimizer (PO), and Mantis Search Algorithm (MSA). These results indicate HKSCSO's potential as an effective solution for UAV three‐dimensional path planning. ABSTRACT Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring a simple yet effective algorithm. To solve such problems, an improved Sand Cat Swarm Optimization (SCSO) is proposed, addressing the issue where traditional SCSO is prone to getting stuck in local optima. In this improved approach, a nonlinear adjustment mechanism based on a dynamic factor k is introduced to better balance the exploration and exploitation phases. Additionally, the predatory attack strategy of Harris's Hawks was introduced to improve the position update formula during the exploration phase of the SCSO, thus enhancing the algorithm's convergence speed. A new variant of the SCSO, named HKSCSO, is proposed and applied to UAV path planning. Cost functions are introduced to evaluate path length, flight altitude, and angle comprehensively. HKSCSO's performance was tested in three 3D urban environments, showing faster convergence and safer paths compared to SCSO, Harris's Hawks Optimization (HHO), Particle Swarm Optimization (PSO), Seagull Optimization Algorithm (SOA), Whale Optimization Algorithm (WOA), Parrot Optimizer (PO), and Mantis Search Algorithm (MSA). These results indicate HKSCSO's potential as an effective solution for UAV three‐dimensional path planning. |
| Author | Xian, Sujie Wang, Kang Li, Zhongxin Wu, Zhilin Zeng, Xin |
| Author_xml | – sequence: 1 givenname: Kang orcidid: 0009-0007-8502-9564 surname: Wang fullname: Wang, Kang organization: Nanjing University of Science and Technology – sequence: 2 givenname: Xin surname: Zeng fullname: Zeng, Xin organization: Nanjing University of Science and Technology – sequence: 3 givenname: Sujie surname: Xian fullname: Xian, Sujie organization: Nanjing University of Science and Technology – sequence: 4 givenname: Zhongxin surname: Li fullname: Li, Zhongxin email: njustlzx@163.com organization: Nanjing University of Science and Technology – sequence: 5 givenname: Zhilin surname: Wu fullname: Wu, Zhilin email: wuruinan-1994@njust.edu.cn organization: Nanjing University of Science and Technology |
| BookMark | eNp90MFOg0AQgOGNqYlt9eAb7FUT2tkFFvBGsFpjY5vQeiULLGXNspAFberJR_AZfRKrGG96mjl8M4d_hAa61gKhcwITAkCnWSMmHhBgR2hIXJtawGxn8LtTdoJGbfsEQAjYZIjK-X0cxcsrHOKH-kUoPNMl15nIccx1jiPe4XjHTYWXTScr-co7WWscqm1tZFdWuKgN3oSPeF0aIT7e3q9lJXR7MFzhFe9KvFJca6m3p-i44KoVZz9zjDY3s3U0txbL27soXFgZZYxZhevZqZsRCoGwHRcoBycPHAfygqW-8LycuUUWAAPfSQPqB9xPU-o7vMgDnwpij9Fl__dZN3y_40oljZEVN_uEQPLVKDk0Sr4bHfBFjzNTt60Rxb922tudVGL_N0yi1ay_-ASifndu |
| Cites_doi | 10.1016/j.future.2019.02.028 10.1007/s12206-021-0638-5 10.1016/j.knosys.2018.11.024 10.1016/j.advengsoft.2023.103423 10.1016/j.eswa.2023.122425 10.1109/ACCESS.2022.3218134 10.1109/ICNN.1995.488968 10.36306/konjes.822225 10.1016/j.advengsoft.2022.103272 10.1016/j.eswa.2022.119327 10.1016/j.eswa.2023.119941 10.1109/ACCESS.2022.3201147 10.1109/ACCESS.2019.2962240 10.1016/j.compbiomed.2024.108064 10.1016/j.advengsoft.2016.01.008 10.1007/s42405-020-00317-z 10.4028/www.scientific.net/AMM.421.496 10.1109/MGRS.2021.3122248 10.1016/j.adhoc.2022.103068 10.1007/s00366-022-01604-x 10.1016/j.cma.2023.116200 10.1109/TAES.2022.3231244 10.1109/ACCESS.2020.2990153 |
| ContentType | Journal Article |
| Copyright | 2025 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1002/cpe.70106 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | n/a |
| ExternalDocumentID | 10.1002/cpe.70106 10_1002_cpe_70106 CPE70106 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Basic Scientifc Research Project funderid: JCKY2021209B016 |
| GroupedDBID | .3N .DC .GA 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACCFJ ACCZN ACPOU ACSCC ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AEQDE AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGHNM AGYGG AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZBYB BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS F00 F01 F04 F5P G-S G.N GNP GODZA HGLYW HHY HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LITHE LOXES LP6 LP7 LUTES LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAYXX CITATION LH4 .Y3 1OB 31~ AANHP AASGY ACBWZ ACRPL ACYXJ ADMLS ADNMO ADTOC AFZJQ AGQPQ ASPBG AVWKF AZFZN EJD FEDTE HF~ HVGLF LW6 UNPAY |
| ID | FETCH-LOGICAL-c2666-f573b5c1209e34502a04d9440df6b8e77d65fc906084b9289a8bb284afd982e13 |
| IEDL.DBID | UNPAY |
| ISSN | 1532-0626 1532-0634 |
| IngestDate | Tue Aug 19 23:49:22 EDT 2025 Wed Oct 01 05:58:30 EDT 2025 Mon Jun 30 09:44:24 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 15-17 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2666-f573b5c1209e34502a04d9440df6b8e77d65fc906084b9289a8bb284afd982e13 |
| Notes | Funding This research is supported by the National Basic Scientific Research Project (Grant No. JCKY2021209B016). |
| ORCID | 0009-0007-8502-9564 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70106 |
| PageCount | 1 |
| ParticipantIDs | unpaywall_primary_10_1002_cpe_70106 crossref_primary_10_1002_cpe_70106 wiley_primary_10_1002_cpe_70106_CPE70106 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 25 July 2025 2025-07-25 |
| PublicationDateYYYYMMDD | 2025-07-25 |
| PublicationDate_xml | – month: 07 year: 2025 text: 25 July 2025 day: 25 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA |
| PublicationTitle | Concurrency and computation |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2019; 8 2020; 8 2021; 69 2021; 35 2021; 10 2022; 173 2023; 44 2021; 22 2023; 39 2019; 97 2023; 140 2024; 239 2023; 223 2023; 178 2023; 215 2022; 59 2017 2013; 421 2016; 95 1995 2022; 10 2023; 415 2019; 165 2024; 172 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 Pan Z. (e_1_2_9_8_1) 2021; 69 e_1_2_9_16_1 Joyce T. (e_1_2_9_17_1) 2017 e_1_2_9_19_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 Wang K. (e_1_2_9_18_1) 2023; 44 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_27_1 |
| References_xml | – volume: 69 start-page: 1129 issue: 3 year: 2021 end-page: 1133 article-title: An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi‐UAV Systems publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – volume: 39 start-page: 2627 issue: 4 year: 2023 end-page: 2651 article-title: Sand Cat Swarm Optimization: A Nature‐Inspired Algorithm to Solve Global Optimization Problems publication-title: Engineering With Computers – volume: 10 start-page: 89989 year: 2022 end-page: 90003 article-title: Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration publication-title: IEEE Access – volume: 415 year: 2023 article-title: Mantis Search Algorithm: A Novel Bio‐Inspired Algorithm for Global Optimization and Engineering Design Problems publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 27 year: 2017 end-page: 51 – volume: 140 year: 2023 article-title: RGSO‐UAV: Reverse Glowworm Swarm Optimization Inspired UAV Path‐Planning in A 3D Dynamic Environment publication-title: Ad Hoc Networks – volume: 10 start-page: 113888 year: 2022 end-page: 113901 article-title: A Two‐Stage Approach of Joint Route Planning and Resource Allocation for Multiple UAVs in Unmanned Logistics Distribution publication-title: IEEE Access – volume: 165 start-page: 169 year: 2019 end-page: 196 article-title: Seagull Optimization Algorithm: Theory and Its Applications for Large‐Scale Industrial Engineering Problems publication-title: Knowledge‐Based Systems – volume: 215 year: 2023 article-title: A Hybrid Algorithm Based on Grey Wolf Optimizer and Differential Evolution for UAV Path Planning publication-title: Expert Systems With Applications – volume: 22 start-page: 456 issue: 2 year: 2021 end-page: 467 article-title: Optimal Task Assignment for UAV Swarm Operations in Hostile Environments publication-title: International Journal of AeronauticalSpace Sciences – volume: 8 start-page: 85431 year: 2020 end-page: 85440 article-title: Bi‐Directional Adaptive A* Algorithm Toward Optimal Path Planning for Large‐Scale UAV Under Multi‐Constraints publication-title: IEEE Access – volume: 421 start-page: 496 year: 2013 end-page: 501 article-title: Levy Flight Algorithm for Optimization Problems‐A Literature Review publication-title: Applied Mechanics and Materials – volume: 59 start-page: 3750 issue: 4 year: 2022 end-page: 3765 article-title: Dynamic Mission Planning Algorithm for UAV Formation in BattleField Environment publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: 178 year: 2023 article-title: PSCSO: Enhanced Sand Cat Swarm Optimization Inspired by the Political System to Solve Complex Problems publication-title: Advances in Engineering Software – volume: 35 start-page: 3171 issue: 7 year: 2021 end-page: 3181 article-title: Time‐Optimal Trajectory Planning of Serial Manipulator Based on Adaptive Cuckoo Search Algorithm publication-title: Journal of Mechanical Science and Technology – volume: 223 year: 2023 article-title: SaCHBA_PDN: Modified Honey Badger Algorithm With Multi‐Strategy for UAV Path Planning publication-title: Expert Systems With Applications – volume: 173 year: 2022 article-title: WOASCALF: A New Hybrid Whale Optimization Algorithm Based on Sine Cosine Algorithm and Levy Flight to Solve Global Optimization Problems publication-title: Advances in Engineering Software – volume: 10 start-page: 135 issue: 2 year: 2021 end-page: 171 article-title: Unmanned Aerial Vehicle‐Based Photogrammetric 3D Mapping: A Survey of Techniques, Applications, and Challenges publication-title: IEEE Geoscience and Remote Sensing Magazine – volume: 8 start-page: 9782 year: 2019 end-page: 9795 article-title: Fair‐Energy Trajectory Planning for Multi‐Target Positioning Based on Cooperative Unmanned Aerial Vehicles publication-title: IEEE Access – volume: 8 start-page: 92 year: 2020 end-page: 105 article-title: Dijkstra Algorithm Using UAV Path Planning publication-title: Konya Journal of Engineering Sciences – volume: 239 year: 2024 article-title: A Game Theory Based Many‐Objective Hybrid Tensor Decomposition for Skin Cancer Prediction publication-title: Expert Systems With Applications – volume: 95 start-page: 51 year: 2016 end-page: 67 article-title: The Whale Optimization Algorithm publication-title: Advances in Engineering Software – volume: 44 start-page: 3382 issue: 11 year: 2023 article-title: 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm publication-title: Acta Armamentarii – volume: 97 start-page: 849 year: 2019 end-page: 872 article-title: Harris Hawks Optimization: Algorithm and Applications publication-title: Future Generation Computer Systems – year: 1995 – volume: 172 year: 2024 article-title: Parrot Optimizer: Algorithm and Applications to Medical Problems publication-title: Computers in Biology and Medicine – ident: e_1_2_9_20_1 doi: 10.1016/j.future.2019.02.028 – ident: e_1_2_9_13_1 doi: 10.1007/s12206-021-0638-5 – ident: e_1_2_9_25_1 doi: 10.1016/j.knosys.2018.11.024 – volume: 69 start-page: 1129 issue: 3 year: 2021 ident: e_1_2_9_8_1 article-title: An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi‐UAV Systems publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs – ident: e_1_2_9_15_1 doi: 10.1016/j.advengsoft.2023.103423 – ident: e_1_2_9_16_1 doi: 10.1016/j.eswa.2023.122425 – ident: e_1_2_9_5_1 doi: 10.1109/ACCESS.2022.3218134 – ident: e_1_2_9_24_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_9_9_1 doi: 10.36306/konjes.822225 – ident: e_1_2_9_22_1 doi: 10.1016/j.advengsoft.2022.103272 – ident: e_1_2_9_10_1 doi: 10.1016/j.eswa.2022.119327 – ident: e_1_2_9_11_1 doi: 10.1016/j.eswa.2023.119941 – ident: e_1_2_9_19_1 doi: 10.1109/ACCESS.2022.3201147 – ident: e_1_2_9_3_1 doi: 10.1109/ACCESS.2019.2962240 – volume: 44 start-page: 3382 issue: 11 year: 2023 ident: e_1_2_9_18_1 article-title: 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm publication-title: Acta Armamentarii – ident: e_1_2_9_26_1 doi: 10.1016/j.compbiomed.2024.108064 – ident: e_1_2_9_23_1 doi: 10.1016/j.advengsoft.2016.01.008 – ident: e_1_2_9_4_1 doi: 10.1007/s42405-020-00317-z – ident: e_1_2_9_21_1 doi: 10.4028/www.scientific.net/AMM.421.496 – ident: e_1_2_9_6_1 doi: 10.1109/MGRS.2021.3122248 – ident: e_1_2_9_12_1 doi: 10.1016/j.adhoc.2022.103068 – ident: e_1_2_9_14_1 doi: 10.1007/s00366-022-01604-x – ident: e_1_2_9_27_1 doi: 10.1016/j.cma.2023.116200 – ident: e_1_2_9_2_1 doi: 10.1109/TAES.2022.3231244 – ident: e_1_2_9_7_1 doi: 10.1109/ACCESS.2020.2990153 – start-page: 27 volume-title: A Review of no Free Lunch Theorems, and Their Implications for Metaheuristic Optimization year: 2017 ident: e_1_2_9_17_1 |
| SSID | ssj0011031 |
| Score | 2.403337 |
| Snippet | ABSTRACT
Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution,... Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring... |
| SourceID | unpaywall crossref wiley |
| SourceType | Open Access Repository Index Database Publisher |
| SubjectTerms | Harris's hawk optimization path planning sand cat swarm optimization swarm intelligence unmanned aerial vehicle |
| SummonAdditionalLinks | – databaseName: Wiley Online Library - Core collection (SURFmarket) dbid: DR2 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA7iRS9-i98E9eClM23TJNXTmJOh6MQ58SCUpE2duHVjdoqe_An-Rn-Jb9p1MkERbz2k0Ob9et6Q93kQ2uUUygoAeUswHxoUwQiElC8tCA7uMhUxPzYH-mfnrNakJzfezQQ6LGZhcn6I0YGbiYwsX5sAl-px_4s0NOzpEjcdDeRf22VZO3U5oo6yjXxBzpXqWARQe8EqRJz90ZtjtWhqkPTky7Nst8dxalZojmfRbfGJ-f2Sh9IgVaXw9Rt74z__YQ7NDAEoLuceM48mdLKAZgtxBzyM9UXUqp02Ko36AS7j8-6TbuNq0spuC-CGTCJckSluPMt-B9ch6XSG05y43L7r9u_TVgcDGMbN8jW-AmfRH2_vR0ZGIKcAwRcAO3Ehl7SEmsfVq0rNGsoyWCFUc2bFHneVF5qhW-1SjziS0MinlEQxU0JzHjEvDn3CiKDKBz-QQimogjKOfOFo211Gk0k30SsIg12EE1FDqkehU_OEFjF3tGvH1OXa5qtouzBQ0MvZN4KcZ9kJYO-CbO9W0c7IdL-t2sss8fOKoHJRzR7W_r50HU07RhCYGLqLDTSZ9gd6E1BKqrYyd_wEwQnfQQ priority: 102 providerName: Wiley-Blackwell |
| Title | HKSCSO: A Novel Enhanced Sand Cat Swarm Optimization Algorithm for UAV Three‐Dimensional Path Planning |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70106 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70106 |
| UnpaywallVersion | publishedVersion |
| Volume | 37 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1532-0626 databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4UDp7Ez4hR0qgHL8OxdW3nbUEI0QhEwOBpdlsnRhiEDIme_An-Rn-J776ImGhMvPXQLVvfr-dt-z4vQieMQFgBIK9wakKCwqkKJmUKBYyD6dTxqOlHG_rXTdrokcu-0U_7nEa1MAk_xGLDLbKM2F9HBj7x_MTPp6f72pk7kWUWZTWrKE8NAOM5lO8129ZdwpKqKSqNG66lY51k3EJfn12KSGuzYCJe5mI4XEarcbipF9B99qHJLZOn8ix0yu7rNw7Hf_zJBlpPoSi2Et3ZRCsy2EKFrM0DTq1-Gw0aV51qp3WOLdwcP8shrgWD-N4A7ojAw1UR4s5cTEe4Be5nlNZ1Ymv4MJ4-hoMRBliMe9Yt7oLayI-394uooUBCBoLbAEBx1jhpB_XqtW61oaQNGhQX4jpVfIPpjuFG5bdSJ4aqCZV4JiGq51OHS8Y8aviuqVKVE8cEjRDccSAeCt8zuSYr-i7KBeNA7iEMcuKaRyJ6PQI5m8El95km9YpPdCYrrIiOMiHZk4SHw04YlzUb1s6O166Ijhfi-23WaSyNn2fY1XYtHuz_6YUHKBdOZ_IQ0EnolACX32ilVA8_AQZD4qI |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3xcYALAUrFN6u2h14cNvZ6d424RCEoFAioSSouyFrba4JInChyiNoTP6G_sb-EWTsOohJVxc2HsWTvzOy8We28B_BFMCwrCOQtyT1sUCSnmFKesjA5hMODiHuxOdC_bPJGh327cW_m4LiYhcn5IWYHbiYzsv3aJLg5kD58YQ0Nh7osTEszD4uMY59iINH3GXlUxQgY5GyptkURtxe8QtQ-nL36qhotjZOh-jlRvd5rpJqVmtMS3BYfmd8weSiP06Ac_vqLv_G9f7EKK1MMSqp50KzBnE7WoVToO5Bpun-AbuO8VWtdHZEqaQ4edY_Uk252YYC0VBKRmkpJa6JGfXKF-05_OtBJqr27weg-7fYJ4mHSqf4gbYwX_efp94lREshZQMg1Ik9SKCZtQOe03q41rKkygxViQedW7AoncEMzd6sd5lJbURZ5jNEo5oHUQkTcjUOPcipZ4GEoKBkEWAhVHHnS1hXnIywkg0RvAkHHSDtihlePYbPmSi1jYWunEjNH6IrYgk-Fh_xhTsDh51TLto9r52drtwWfZ777l9XXzBVvW_i163r2sP3_pgew1GhfXvgXZ83zHVi2jT4wNewXu7CQjsZ6D0FLGuxnsfkM0dnjYg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3RILVcgLYgvrtqe-jFYWOvd9eIS5QPpaUNUUMqLsha22uCSJwocojgxE_gN_JLmLXjVFRqhXrzYSzZOzM7b1Y77wF8FgzLCgJ5S3IPGxTJKaaUpyxMDuHwIOJebA70f7R5q8e-nbvnS3BczMLk_BCLAzeTGdl-bRJcj6P48DdraDjWZWFamlewzFxPmgt99Z8L8qiKETDI2VJtiyJuL3iFqH24ePVZNXozTcbqdqYGg-dINSs1zTW4KD4yv2FyXZ6mQTm8-4O_8X__Yh1W5xiUVPOgeQtLOnkHa4W-A5mn-3vot066te7pEamS9uhGD0gj6WcXBkhXJRGpqZR0Z2oyJKe47wznA52kOrgcTa7S_pAgHia96i9yhvGiH-8f6kZJIGcBIR1EnqRQTNqAXrNxVmtZc2UGK8SCzq3YFU7ghmbuVjvMpbaiLPIYo1HMA6mFiLgbhx7lVLLAw1BQMgiwEKo48qStK84mlJJRoreAoGOkHTHDq8ewWXOllrGwtVOJmSN0RWzDx8JD_jgn4PBzqmXbx7Xzs7Xbhk8L3_3L6kvmir9b-LVOI3vYebnpB3jdqTf971_bJ7uwYht5YGrIL_aglE6meh8xSxocZKH5BJ-d4uY |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4UDp7Ez4hR06gHL8OxdW3nbUEI0QgkgMHT7LZOjDAWMiR68if4G_0lvvsiYqIx8dZDt2x9v5637fu8CJ0yAmEFgLzCqQkJCqcqmJQpFDAOplPHo6Yfb-jftGizT64GxiDrcxrXwqT8EIsNt9gyEn8dG3jo-amfz073tXM3lBUWZzWrqEgNAOMFVOy3OtZdypKqKSpNGq5lY53k3EJfn12KSGuzIBQvczEaLaPVJNw0Sug-_9D0lslTZRY5Fff1G4fjP_5kA61nUBRbqe5sohUZbKFS3uYBZ1a_jYbN626t277AFm5NnuUI14Nhcm8Ad0Xg4ZqIcHcupmPcBvczzuo6sTV6mEwfo-EYAyzGfesW90Bt5Mfb-2XcUCAlA8EdAKA4b5y0g_qNeq_WVLIGDYoLcZ0qvsF0x3Dj8lupE0PVhEo8kxDV86nDJWMeNXzXVKnKiWOCRgjuOBAPhe-ZXJNVfRcVgkkg9xAGOXHNIzG9HoGczeCS-0yTetUnOpNVVkbHuZDsMOXhsFPGZc2GtbOTtSujk4X4fpt1lkjj5xl2rVNPBvt_euEBKkTTmTwEdBI5R5kGfgK8CeG5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HKSCSO+%3A+A+Novel+Enhanced+Sand+Cat+Swarm+Optimization+Algorithm+for+UAV+Three%E2%80%90Dimensional+Path+Planning&rft.jtitle=Concurrency+and+computation&rft.au=Wang%2C+Kang&rft.au=Zeng%2C+Xin&rft.au=Xian%2C+Sujie&rft.au=Li%2C+Zhongxin&rft.date=2025-07-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=15-17&rft_id=info:doi/10.1002%2Fcpe.70106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_70106 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |