HKSCSO: A Novel Enhanced Sand Cat Swarm Optimization Algorithm for UAV Three‐Dimensional Path Planning

ABSTRACT Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring a simple yet effective algorithm. To solve such problems, an improved Sand Cat Swarm Optimization (SCSO) is proposed, addressing th...

Full description

Saved in:
Bibliographic Details
Published inConcurrency and computation Vol. 37; no. 15-17
Main Authors Wang, Kang, Zeng, Xin, Xian, Sujie, Li, Zhongxin, Wu, Zhilin
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 25.07.2025
Subjects
Online AccessGet full text
ISSN1532-0626
1532-0634
1532-0634
DOI10.1002/cpe.70106

Cover

Abstract ABSTRACT Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring a simple yet effective algorithm. To solve such problems, an improved Sand Cat Swarm Optimization (SCSO) is proposed, addressing the issue where traditional SCSO is prone to getting stuck in local optima. In this improved approach, a nonlinear adjustment mechanism based on a dynamic factor k is introduced to better balance the exploration and exploitation phases. Additionally, the predatory attack strategy of Harris's Hawks was introduced to improve the position update formula during the exploration phase of the SCSO, thus enhancing the algorithm's convergence speed. A new variant of the SCSO, named HKSCSO, is proposed and applied to UAV path planning. Cost functions are introduced to evaluate path length, flight altitude, and angle comprehensively. HKSCSO's performance was tested in three 3D urban environments, showing faster convergence and safer paths compared to SCSO, Harris's Hawks Optimization (HHO), Particle Swarm Optimization (PSO), Seagull Optimization Algorithm (SOA), Whale Optimization Algorithm (WOA), Parrot Optimizer (PO), and Mantis Search Algorithm (MSA). These results indicate HKSCSO's potential as an effective solution for UAV three‐dimensional path planning.
AbstractList Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring a simple yet effective algorithm. To solve such problems, an improved Sand Cat Swarm Optimization (SCSO) is proposed, addressing the issue where traditional SCSO is prone to getting stuck in local optima. In this improved approach, a nonlinear adjustment mechanism based on a dynamic factor k is introduced to better balance the exploration and exploitation phases. Additionally, the predatory attack strategy of Harris's Hawks was introduced to improve the position update formula during the exploration phase of the SCSO, thus enhancing the algorithm's convergence speed. A new variant of the SCSO, named HKSCSO, is proposed and applied to UAV path planning. Cost functions are introduced to evaluate path length, flight altitude, and angle comprehensively. HKSCSO's performance was tested in three 3D urban environments, showing faster convergence and safer paths compared to SCSO, Harris's Hawks Optimization (HHO), Particle Swarm Optimization (PSO), Seagull Optimization Algorithm (SOA), Whale Optimization Algorithm (WOA), Parrot Optimizer (PO), and Mantis Search Algorithm (MSA). These results indicate HKSCSO's potential as an effective solution for UAV three‐dimensional path planning.
ABSTRACT Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring a simple yet effective algorithm. To solve such problems, an improved Sand Cat Swarm Optimization (SCSO) is proposed, addressing the issue where traditional SCSO is prone to getting stuck in local optima. In this improved approach, a nonlinear adjustment mechanism based on a dynamic factor k is introduced to better balance the exploration and exploitation phases. Additionally, the predatory attack strategy of Harris's Hawks was introduced to improve the position update formula during the exploration phase of the SCSO, thus enhancing the algorithm's convergence speed. A new variant of the SCSO, named HKSCSO, is proposed and applied to UAV path planning. Cost functions are introduced to evaluate path length, flight altitude, and angle comprehensively. HKSCSO's performance was tested in three 3D urban environments, showing faster convergence and safer paths compared to SCSO, Harris's Hawks Optimization (HHO), Particle Swarm Optimization (PSO), Seagull Optimization Algorithm (SOA), Whale Optimization Algorithm (WOA), Parrot Optimizer (PO), and Mantis Search Algorithm (MSA). These results indicate HKSCSO's potential as an effective solution for UAV three‐dimensional path planning.
Author Xian, Sujie
Wang, Kang
Li, Zhongxin
Wu, Zhilin
Zeng, Xin
Author_xml – sequence: 1
  givenname: Kang
  orcidid: 0009-0007-8502-9564
  surname: Wang
  fullname: Wang, Kang
  organization: Nanjing University of Science and Technology
– sequence: 2
  givenname: Xin
  surname: Zeng
  fullname: Zeng, Xin
  organization: Nanjing University of Science and Technology
– sequence: 3
  givenname: Sujie
  surname: Xian
  fullname: Xian, Sujie
  organization: Nanjing University of Science and Technology
– sequence: 4
  givenname: Zhongxin
  surname: Li
  fullname: Li, Zhongxin
  email: njustlzx@163.com
  organization: Nanjing University of Science and Technology
– sequence: 5
  givenname: Zhilin
  surname: Wu
  fullname: Wu, Zhilin
  email: wuruinan-1994@njust.edu.cn
  organization: Nanjing University of Science and Technology
BookMark eNp90MFOg0AQgOGNqYlt9eAb7FUT2tkFFvBGsFpjY5vQeiULLGXNspAFberJR_AZfRKrGG96mjl8M4d_hAa61gKhcwITAkCnWSMmHhBgR2hIXJtawGxn8LtTdoJGbfsEQAjYZIjK-X0cxcsrHOKH-kUoPNMl15nIccx1jiPe4XjHTYWXTScr-co7WWscqm1tZFdWuKgN3oSPeF0aIT7e3q9lJXR7MFzhFe9KvFJca6m3p-i44KoVZz9zjDY3s3U0txbL27soXFgZZYxZhevZqZsRCoGwHRcoBycPHAfygqW-8LycuUUWAAPfSQPqB9xPU-o7vMgDnwpij9Fl__dZN3y_40oljZEVN_uEQPLVKDk0Sr4bHfBFjzNTt60Rxb922tudVGL_N0yi1ay_-ASifndu
Cites_doi 10.1016/j.future.2019.02.028
10.1007/s12206-021-0638-5
10.1016/j.knosys.2018.11.024
10.1016/j.advengsoft.2023.103423
10.1016/j.eswa.2023.122425
10.1109/ACCESS.2022.3218134
10.1109/ICNN.1995.488968
10.36306/konjes.822225
10.1016/j.advengsoft.2022.103272
10.1016/j.eswa.2022.119327
10.1016/j.eswa.2023.119941
10.1109/ACCESS.2022.3201147
10.1109/ACCESS.2019.2962240
10.1016/j.compbiomed.2024.108064
10.1016/j.advengsoft.2016.01.008
10.1007/s42405-020-00317-z
10.4028/www.scientific.net/AMM.421.496
10.1109/MGRS.2021.3122248
10.1016/j.adhoc.2022.103068
10.1007/s00366-022-01604-x
10.1016/j.cma.2023.116200
10.1109/TAES.2022.3231244
10.1109/ACCESS.2020.2990153
ContentType Journal Article
Copyright 2025 John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1002/cpe.70106
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage n/a
ExternalDocumentID 10.1002/cpe.70106
10_1002_cpe_70106
CPE70106
Genre researchArticle
GrantInformation_xml – fundername: National Basic Scientifc Research Project
  funderid: JCKY2021209B016
GroupedDBID .3N
.DC
.GA
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACCFJ
ACCZN
ACPOU
ACSCC
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGHNM
AGYGG
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
HGLYW
HHY
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAYXX
CITATION
LH4
.Y3
1OB
31~
AANHP
AASGY
ACBWZ
ACRPL
ACYXJ
ADMLS
ADNMO
ADTOC
AFZJQ
AGQPQ
ASPBG
AVWKF
AZFZN
EJD
FEDTE
HF~
HVGLF
LW6
UNPAY
ID FETCH-LOGICAL-c2666-f573b5c1209e34502a04d9440df6b8e77d65fc906084b9289a8bb284afd982e13
IEDL.DBID UNPAY
ISSN 1532-0626
1532-0634
IngestDate Tue Aug 19 23:49:22 EDT 2025
Wed Oct 01 05:58:30 EDT 2025
Mon Jun 30 09:44:24 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15-17
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2666-f573b5c1209e34502a04d9440df6b8e77d65fc906084b9289a8bb284afd982e13
Notes Funding
This research is supported by the National Basic Scientific Research Project (Grant No. JCKY2021209B016).
ORCID 0009-0007-8502-9564
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70106
PageCount 1
ParticipantIDs unpaywall_primary_10_1002_cpe_70106
crossref_primary_10_1002_cpe_70106
wiley_primary_10_1002_cpe_70106_CPE70106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 25 July 2025
2025-07-25
PublicationDateYYYYMMDD 2025-07-25
PublicationDate_xml – month: 07
  year: 2025
  text: 25 July 2025
  day: 25
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Concurrency and computation
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2019; 8
2020; 8
2021; 69
2021; 35
2021; 10
2022; 173
2023; 44
2021; 22
2023; 39
2019; 97
2023; 140
2024; 239
2023; 223
2023; 178
2023; 215
2022; 59
2017
2013; 421
2016; 95
1995
2022; 10
2023; 415
2019; 165
2024; 172
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
Pan Z. (e_1_2_9_8_1) 2021; 69
e_1_2_9_16_1
Joyce T. (e_1_2_9_17_1) 2017
e_1_2_9_19_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
Wang K. (e_1_2_9_18_1) 2023; 44
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_27_1
References_xml – volume: 69
  start-page: 1129
  issue: 3
  year: 2021
  end-page: 1133
  article-title: An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi‐UAV Systems
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– volume: 39
  start-page: 2627
  issue: 4
  year: 2023
  end-page: 2651
  article-title: Sand Cat Swarm Optimization: A Nature‐Inspired Algorithm to Solve Global Optimization Problems
  publication-title: Engineering With Computers
– volume: 10
  start-page: 89989
  year: 2022
  end-page: 90003
  article-title: Sand Cat Swarm Optimization Based on Stochastic Variation With Elite Collaboration
  publication-title: IEEE Access
– volume: 415
  year: 2023
  article-title: Mantis Search Algorithm: A Novel Bio‐Inspired Algorithm for Global Optimization and Engineering Design Problems
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 27
  year: 2017
  end-page: 51
– volume: 140
  year: 2023
  article-title: RGSO‐UAV: Reverse Glowworm Swarm Optimization Inspired UAV Path‐Planning in A 3D Dynamic Environment
  publication-title: Ad Hoc Networks
– volume: 10
  start-page: 113888
  year: 2022
  end-page: 113901
  article-title: A Two‐Stage Approach of Joint Route Planning and Resource Allocation for Multiple UAVs in Unmanned Logistics Distribution
  publication-title: IEEE Access
– volume: 165
  start-page: 169
  year: 2019
  end-page: 196
  article-title: Seagull Optimization Algorithm: Theory and Its Applications for Large‐Scale Industrial Engineering Problems
  publication-title: Knowledge‐Based Systems
– volume: 215
  year: 2023
  article-title: A Hybrid Algorithm Based on Grey Wolf Optimizer and Differential Evolution for UAV Path Planning
  publication-title: Expert Systems With Applications
– volume: 22
  start-page: 456
  issue: 2
  year: 2021
  end-page: 467
  article-title: Optimal Task Assignment for UAV Swarm Operations in Hostile Environments
  publication-title: International Journal of AeronauticalSpace Sciences
– volume: 8
  start-page: 85431
  year: 2020
  end-page: 85440
  article-title: Bi‐Directional Adaptive A* Algorithm Toward Optimal Path Planning for Large‐Scale UAV Under Multi‐Constraints
  publication-title: IEEE Access
– volume: 421
  start-page: 496
  year: 2013
  end-page: 501
  article-title: Levy Flight Algorithm for Optimization Problems‐A Literature Review
  publication-title: Applied Mechanics and Materials
– volume: 59
  start-page: 3750
  issue: 4
  year: 2022
  end-page: 3765
  article-title: Dynamic Mission Planning Algorithm for UAV Formation in BattleField Environment
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 178
  year: 2023
  article-title: PSCSO: Enhanced Sand Cat Swarm Optimization Inspired by the Political System to Solve Complex Problems
  publication-title: Advances in Engineering Software
– volume: 35
  start-page: 3171
  issue: 7
  year: 2021
  end-page: 3181
  article-title: Time‐Optimal Trajectory Planning of Serial Manipulator Based on Adaptive Cuckoo Search Algorithm
  publication-title: Journal of Mechanical Science and Technology
– volume: 223
  year: 2023
  article-title: SaCHBA_PDN: Modified Honey Badger Algorithm With Multi‐Strategy for UAV Path Planning
  publication-title: Expert Systems With Applications
– volume: 173
  year: 2022
  article-title: WOASCALF: A New Hybrid Whale Optimization Algorithm Based on Sine Cosine Algorithm and Levy Flight to Solve Global Optimization Problems
  publication-title: Advances in Engineering Software
– volume: 10
  start-page: 135
  issue: 2
  year: 2021
  end-page: 171
  article-title: Unmanned Aerial Vehicle‐Based Photogrammetric 3D Mapping: A Survey of Techniques, Applications, and Challenges
  publication-title: IEEE Geoscience and Remote Sensing Magazine
– volume: 8
  start-page: 9782
  year: 2019
  end-page: 9795
  article-title: Fair‐Energy Trajectory Planning for Multi‐Target Positioning Based on Cooperative Unmanned Aerial Vehicles
  publication-title: IEEE Access
– volume: 8
  start-page: 92
  year: 2020
  end-page: 105
  article-title: Dijkstra Algorithm Using UAV Path Planning
  publication-title: Konya Journal of Engineering Sciences
– volume: 239
  year: 2024
  article-title: A Game Theory Based Many‐Objective Hybrid Tensor Decomposition for Skin Cancer Prediction
  publication-title: Expert Systems With Applications
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  article-title: The Whale Optimization Algorithm
  publication-title: Advances in Engineering Software
– volume: 44
  start-page: 3382
  issue: 11
  year: 2023
  article-title: 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm
  publication-title: Acta Armamentarii
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  article-title: Harris Hawks Optimization: Algorithm and Applications
  publication-title: Future Generation Computer Systems
– year: 1995
– volume: 172
  year: 2024
  article-title: Parrot Optimizer: Algorithm and Applications to Medical Problems
  publication-title: Computers in Biology and Medicine
– ident: e_1_2_9_20_1
  doi: 10.1016/j.future.2019.02.028
– ident: e_1_2_9_13_1
  doi: 10.1007/s12206-021-0638-5
– ident: e_1_2_9_25_1
  doi: 10.1016/j.knosys.2018.11.024
– volume: 69
  start-page: 1129
  issue: 3
  year: 2021
  ident: e_1_2_9_8_1
  article-title: An Improved Artificial Potential Field Method for Path Planning and Formation Control of the Multi‐UAV Systems
  publication-title: IEEE Transactions on Circuits and Systems II: Express Briefs
– ident: e_1_2_9_15_1
  doi: 10.1016/j.advengsoft.2023.103423
– ident: e_1_2_9_16_1
  doi: 10.1016/j.eswa.2023.122425
– ident: e_1_2_9_5_1
  doi: 10.1109/ACCESS.2022.3218134
– ident: e_1_2_9_24_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_9_9_1
  doi: 10.36306/konjes.822225
– ident: e_1_2_9_22_1
  doi: 10.1016/j.advengsoft.2022.103272
– ident: e_1_2_9_10_1
  doi: 10.1016/j.eswa.2022.119327
– ident: e_1_2_9_11_1
  doi: 10.1016/j.eswa.2023.119941
– ident: e_1_2_9_19_1
  doi: 10.1109/ACCESS.2022.3201147
– ident: e_1_2_9_3_1
  doi: 10.1109/ACCESS.2019.2962240
– volume: 44
  start-page: 3382
  issue: 11
  year: 2023
  ident: e_1_2_9_18_1
  article-title: 3D Path Planning of Unmanned Aerial Vehicle Based on Enhanced Sand Cat Swarm Optimization Algorithm
  publication-title: Acta Armamentarii
– ident: e_1_2_9_26_1
  doi: 10.1016/j.compbiomed.2024.108064
– ident: e_1_2_9_23_1
  doi: 10.1016/j.advengsoft.2016.01.008
– ident: e_1_2_9_4_1
  doi: 10.1007/s42405-020-00317-z
– ident: e_1_2_9_21_1
  doi: 10.4028/www.scientific.net/AMM.421.496
– ident: e_1_2_9_6_1
  doi: 10.1109/MGRS.2021.3122248
– ident: e_1_2_9_12_1
  doi: 10.1016/j.adhoc.2022.103068
– ident: e_1_2_9_14_1
  doi: 10.1007/s00366-022-01604-x
– ident: e_1_2_9_27_1
  doi: 10.1016/j.cma.2023.116200
– ident: e_1_2_9_2_1
  doi: 10.1109/TAES.2022.3231244
– ident: e_1_2_9_7_1
  doi: 10.1109/ACCESS.2020.2990153
– start-page: 27
  volume-title: A Review of no Free Lunch Theorems, and Their Implications for Metaheuristic Optimization
  year: 2017
  ident: e_1_2_9_17_1
SSID ssj0011031
Score 2.403337
Snippet ABSTRACT Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution,...
Three‐dimensional path planning for UAV in complex terrains and obstacle‐limited areas is one of the major challenges faced during mission execution, requiring...
SourceID unpaywall
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
SubjectTerms Harris's hawk optimization
path planning
sand cat swarm optimization
swarm intelligence
unmanned aerial vehicle
SummonAdditionalLinks – databaseName: Wiley Online Library - Core collection (SURFmarket)
  dbid: DR2
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NS8MwGA7iRS9-i98E9eClM23TJNXTmJOh6MQ58SCUpE2duHVjdoqe_An-Rn-Jb9p1MkERbz2k0Ob9et6Q93kQ2uUUygoAeUswHxoUwQiElC8tCA7uMhUxPzYH-mfnrNakJzfezQQ6LGZhcn6I0YGbiYwsX5sAl-px_4s0NOzpEjcdDeRf22VZO3U5oo6yjXxBzpXqWARQe8EqRJz90ZtjtWhqkPTky7Nst8dxalZojmfRbfGJ-f2Sh9IgVaXw9Rt74z__YQ7NDAEoLuceM48mdLKAZgtxBzyM9UXUqp02Ko36AS7j8-6TbuNq0spuC-CGTCJckSluPMt-B9ch6XSG05y43L7r9u_TVgcDGMbN8jW-AmfRH2_vR0ZGIKcAwRcAO3Ehl7SEmsfVq0rNGsoyWCFUc2bFHneVF5qhW-1SjziS0MinlEQxU0JzHjEvDn3CiKDKBz-QQimogjKOfOFo211Gk0k30SsIg12EE1FDqkehU_OEFjF3tGvH1OXa5qtouzBQ0MvZN4KcZ9kJYO-CbO9W0c7IdL-t2sss8fOKoHJRzR7W_r50HU07RhCYGLqLDTSZ9gd6E1BKqrYyd_wEwQnfQQ
  priority: 102
  providerName: Wiley-Blackwell
Title HKSCSO: A Novel Enhanced Sand Cat Swarm Optimization Algorithm for UAV Three‐Dimensional Path Planning
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.70106
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/cpe.70106
UnpaywallVersion publishedVersion
Volume 37
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1532-0626
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4UDp7Ez4hR0qgHL8OxdW3nbUEI0QhEwOBpdlsnRhiEDIme_An-Rn-J776ImGhMvPXQLVvfr-dt-z4vQieMQFgBIK9wakKCwqkKJmUKBYyD6dTxqOlHG_rXTdrokcu-0U_7nEa1MAk_xGLDLbKM2F9HBj7x_MTPp6f72pk7kWUWZTWrKE8NAOM5lO8129ZdwpKqKSqNG66lY51k3EJfn12KSGuzYCJe5mI4XEarcbipF9B99qHJLZOn8ix0yu7rNw7Hf_zJBlpPoSi2Et3ZRCsy2EKFrM0DTq1-Gw0aV51qp3WOLdwcP8shrgWD-N4A7ojAw1UR4s5cTEe4Be5nlNZ1Ymv4MJ4-hoMRBliMe9Yt7oLayI-394uooUBCBoLbAEBx1jhpB_XqtW61oaQNGhQX4jpVfIPpjuFG5bdSJ4aqCZV4JiGq51OHS8Y8aviuqVKVE8cEjRDccSAeCt8zuSYr-i7KBeNA7iEMcuKaRyJ6PQI5m8El95km9YpPdCYrrIiOMiHZk4SHw04YlzUb1s6O166Ijhfi-23WaSyNn2fY1XYtHuz_6YUHKBdOZ_IQ0EnolACX32ilVA8_AQZD4qI
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3xcYALAUrFN6u2h14cNvZ6d424RCEoFAioSSouyFrba4JInChyiNoTP6G_sb-EWTsOohJVxc2HsWTvzOy8We28B_BFMCwrCOQtyT1sUCSnmFKesjA5hMODiHuxOdC_bPJGh327cW_m4LiYhcn5IWYHbiYzsv3aJLg5kD58YQ0Nh7osTEszD4uMY59iINH3GXlUxQgY5GyptkURtxe8QtQ-nL36qhotjZOh-jlRvd5rpJqVmtMS3BYfmd8weSiP06Ac_vqLv_G9f7EKK1MMSqp50KzBnE7WoVToO5Bpun-AbuO8VWtdHZEqaQ4edY_Uk252YYC0VBKRmkpJa6JGfXKF-05_OtBJqr27weg-7fYJ4mHSqf4gbYwX_efp94lREshZQMg1Ik9SKCZtQOe03q41rKkygxViQedW7AoncEMzd6sd5lJbURZ5jNEo5oHUQkTcjUOPcipZ4GEoKBkEWAhVHHnS1hXnIywkg0RvAkHHSDtihlePYbPmSi1jYWunEjNH6IrYgk-Fh_xhTsDh51TLto9r52drtwWfZ777l9XXzBVvW_i163r2sP3_pgew1GhfXvgXZ83zHVi2jT4wNewXu7CQjsZ6D0FLGuxnsfkM0dnjYg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NT9tAEB3RILVcgLYgvrtqe-jFYWOvd9eIS5QPpaUNUUMqLsha22uCSJwocojgxE_gN_JLmLXjVFRqhXrzYSzZOzM7b1Y77wF8FgzLCgJ5S3IPGxTJKaaUpyxMDuHwIOJebA70f7R5q8e-nbvnS3BczMLk_BCLAzeTGdl-bRJcj6P48DdraDjWZWFamlewzFxPmgt99Z8L8qiKETDI2VJtiyJuL3iFqH24ePVZNXozTcbqdqYGg-dINSs1zTW4KD4yv2FyXZ6mQTm8-4O_8X__Yh1W5xiUVPOgeQtLOnkHa4W-A5mn-3vot066te7pEamS9uhGD0gj6WcXBkhXJRGpqZR0Z2oyJKe47wznA52kOrgcTa7S_pAgHia96i9yhvGiH-8f6kZJIGcBIR1EnqRQTNqAXrNxVmtZc2UGK8SCzq3YFU7ghmbuVjvMpbaiLPIYo1HMA6mFiLgbhx7lVLLAw1BQMgiwEKo48qStK84mlJJRoreAoGOkHTHDq8ewWXOllrGwtVOJmSN0RWzDx8JD_jgn4PBzqmXbx7Xzs7Xbhk8L3_3L6kvmir9b-LVOI3vYebnpB3jdqTf971_bJ7uwYht5YGrIL_aglE6meh8xSxocZKH5BJ-d4uY
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8IwGG4UDp7Ez4hR06gHL8OxdW3nbUEI0QgkgMHT7LZOjDAWMiR68if4G_0lvvsiYqIx8dZDt2x9v5637fu8CJ0yAmEFgLzCqQkJCqcqmJQpFDAOplPHo6Yfb-jftGizT64GxiDrcxrXwqT8EIsNt9gyEn8dG3jo-amfz073tXM3lBUWZzWrqEgNAOMFVOy3OtZdypKqKSpNGq5lY53k3EJfn12KSGuzIBQvczEaLaPVJNw0Sug-_9D0lslTZRY5Fff1G4fjP_5kA61nUBRbqe5sohUZbKFS3uYBZ1a_jYbN626t277AFm5NnuUI14Nhcm8Ad0Xg4ZqIcHcupmPcBvczzuo6sTV6mEwfo-EYAyzGfesW90Bt5Mfb-2XcUCAlA8EdAKA4b5y0g_qNeq_WVLIGDYoLcZ0qvsF0x3Dj8lupE0PVhEo8kxDV86nDJWMeNXzXVKnKiWOCRgjuOBAPhe-ZXJNVfRcVgkkg9xAGOXHNIzG9HoGczeCS-0yTetUnOpNVVkbHuZDsMOXhsFPGZc2GtbOTtSujk4X4fpt1lkjj5xl2rVNPBvt_euEBKkTTmTwEdBI5R5kGfgK8CeG5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HKSCSO+%3A+A+Novel+Enhanced+Sand+Cat+Swarm+Optimization+Algorithm+for+UAV+Three%E2%80%90Dimensional+Path+Planning&rft.jtitle=Concurrency+and+computation&rft.au=Wang%2C+Kang&rft.au=Zeng%2C+Xin&rft.au=Xian%2C+Sujie&rft.au=Li%2C+Zhongxin&rft.date=2025-07-25&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=37&rft.issue=15-17&rft_id=info:doi/10.1002%2Fcpe.70106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_70106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon