Deformation spaces of Coxeter truncation polytopes
A convex polytope P$P$ in the real projective space with reflections in the facets of P$P$ is a Coxeter polytope if the reflections generate a subgroup Γ$\Gamma$ of the group of projective transformations so that the Γ$\Gamma$‐translates of the interior of P$P$ are mutually disjoint. It follows from...
Saved in:
| Published in | Journal of the London Mathematical Society Vol. 106; no. 4; pp. 3822 - 3864 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
London Mathematical Society ; Wiley
01.12.2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0024-6107 1469-7750 |
| DOI | 10.1112/jlms.12675 |
Cover
| Abstract | A convex polytope P$P$ in the real projective space with reflections in the facets of P$P$ is a Coxeter polytope if the reflections generate a subgroup Γ$\Gamma$ of the group of projective transformations so that the Γ$\Gamma$‐translates of the interior of P$P$ are mutually disjoint. It follows from work of Vinberg that if P$P$ is a Coxeter polytope, then the interior Ω$\Omega$ of the Γ$\Gamma$‐orbit of P$P$ is convex and Γ$\Gamma$ acts properly discontinuously on Ω$\Omega$. A Coxeter polytope P$P$ is 2$\hskip.001pt 2$‐perfect if P∖Ω$P \smallsetminus \Omega$ consists of only some vertices of P$P$. In this paper, we describe the deformation spaces of 2$\hskip.001pt 2$‐perfect Coxeter polytopes P$P$ of dimensions d⩾4$d \geqslant 4$ with the same dihedral angles when the underlying polytope of P$P$ is a truncation polytope, that is, a polytope obtained from a simplex by successively truncating vertices. The deformation spaces of Coxeter truncation polytopes of dimensions d=2$d = 2$ and d=3$d = 3$ were studied, respectively, by Goldman and the third author. |
|---|---|
| AbstractList | A convex polytope P in the real projective space with reflections in the facets of P is a Coxeter polytope if the reflections generate a subgroup Γ of the group of projective transformations so that the Γ-translates of the interior of P are mutually disjoint. It follows from work of Vinberg that if P is a Coxeter polytope, then the interior Ω of the Γ-orbit of P is convex and Γ acts properly discontinuously on Ω. A Coxeter polytope P is 2-perfect if P ∖ Ω consists of only some vertices of P. In this paper, we describe the deformation spaces of 2-perfect Coxeter polytopes P of dimension d ⩾ 4 with the same dihedral angles when the underlying polytope of P is a truncation polytope, i.e. a polytope obtained from a simplex by successively truncating vertices. The deformation spaces of Coxeter truncation polytopes of dimension d = 2 and d = 3 were studied respectively by Goldman and the third author. A convex polytope P$P$ in the real projective space with reflections in the facets of P$P$ is a Coxeter polytope if the reflections generate a subgroup Γ$\Gamma$ of the group of projective transformations so that the Γ$\Gamma$‐translates of the interior of P$P$ are mutually disjoint. It follows from work of Vinberg that if P$P$ is a Coxeter polytope, then the interior Ω$\Omega$ of the Γ$\Gamma$‐orbit of P$P$ is convex and Γ$\Gamma$ acts properly discontinuously on Ω$\Omega$. A Coxeter polytope P$P$ is 2$\hskip.001pt 2$‐perfect if P∖Ω$P \smallsetminus \Omega$ consists of only some vertices of P$P$. In this paper, we describe the deformation spaces of 2$\hskip.001pt 2$‐perfect Coxeter polytopes P$P$ of dimensions d⩾4$d \geqslant 4$ with the same dihedral angles when the underlying polytope of P$P$ is a truncation polytope, that is, a polytope obtained from a simplex by successively truncating vertices. The deformation spaces of Coxeter truncation polytopes of dimensions d=2$d = 2$ and d=3$d = 3$ were studied, respectively, by Goldman and the third author. |
| Author | Lee, Gye‐Seon Choi, Suhyoung Marquis, Ludovic |
| Author_xml | – sequence: 1 givenname: Suhyoung surname: Choi fullname: Choi, Suhyoung organization: KAIST – sequence: 2 givenname: Gye‐Seon surname: Lee fullname: Lee, Gye‐Seon email: gyeseonlee@snu.ac.kr organization: Seoul National University – sequence: 3 givenname: Ludovic surname: Marquis fullname: Marquis, Ludovic organization: IRMAR ‐ UMR 6625 |
| BackLink | https://hal.science/hal-03326703$$DView record in HAL |
| BookMark | eNp9kMtOwzAQRS1UJNrChi_IFqSUGae2m2VVHgUFsQDWluOMRao0juzw6N_TEsSS1Uh3zh1pzoSNWt8SY-cIM0TkV5tmG2fIpRJHbIxzmadKCRixMQCfpxJBnbBJjBsAzBD4mPFrcj5sTV_7NomdsRQT75KV_6KeQtKH99YOy843u953FE_ZsTNNpLPfOWWvtzcvq3VaPN3dr5ZFarmUIi0pV5jPcymsVaIUgqOoCIVdGOlKclRWljISJIyUFitUtioXDghyTkJU2ZRdDHffTKO7UG9N2Glvar1eFvqQQZbtP4Xsg-_Zy4G1wccYyP0VEPTBjD6Y0T9m9jAO8Gfd0O4fUj8Uj89D5xu4l2hB |
| Cites_doi | 10.1112/jlms.12407 10.24033/bsmf.1551 10.4171/GGD/558 10.1112/jlms.12208 10.2140/gt.2010.14.2103 10.1007/s00222-005-0478-4 10.1007/978-1-4612-1146-4 10.1112/topo.12161 10.1007/s10711-009-9438-2 10.2140/gt.2015.19.1777 10.4171/GGD/416 10.2140/gt.2007.11.1777 10.5802/aif.2950 10.1007/978-1-4612-1148-8 10.1016/0021-8693(82)90318-0 10.2140/gt.2018.22.1593 10.1007/s10711-006-9066-z 10.1051/m2an/196903R300031 10.1515/9781400865321 10.1016/j.aim.2015.02.009 10.1007/BFb0096285 10.1007/BF01224736 10.1007/s10711-014-0004-1 10.1090/ecgd/367 10.4310/jdg/1214444635 10.24033/asens.2421 10.2140/pjm.1973.46.349 10.5802/aif.279 10.2140/gt.2018.22.1349 |
| ContentType | Journal Article |
| Copyright | 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC VOOES |
| DOI | 10.1112/jlms.12675 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 1469-7750 |
| EndPage | 3864 |
| ExternalDocumentID | oai:HAL:hal-03326703v2 10_1112_jlms_12675 JLMS12675 |
| Genre | article |
| GrantInformation_xml | – fundername: Centre Henri Lebesgue funderid: ANR‐11‐LABX‐0020 LEBESGUE – fundername: National Science Foundation funderid: DMS 1107452; 1107263; 1107367 – fundername: Deutsche Forschungsgemeinschaft funderid: 237100532 – fundername: European Research Council funderid: 614733 – fundername: National Research Foundation of Korea funderid: 2019R1A2C108454413; 2020R1C1C1A01013667 |
| GroupedDBID | --Z -DZ -~X .2P .I3 0R~ 1OB 1OC 1TH 33P 4.4 5GY 5VS 6OB 6TJ 70D AAHHS AAHQN AAIJN AAJKP AAMNL AAMVS AANLZ AAOGV AASGY AASVR AAUQX AAXRX AAYCA AAYJJ AAZKR ABCUV ABEFU ABEJV ABEUO ABFSI ABITZ ABIXL ABJNI ABLJU ABNGD ABNKS ABQLI ABQTQ ABSAR ABSMQ ABTAH ABVKB ABXVV ABZBJ ACAHQ ACCFJ ACCZN ACGFS ACNCT ACPOU ACQPF ACUFI ACXBN ACXQS ADBBV ADEOM ADEYI ADHZD ADKYN ADMGS ADOCK ADOZA ADRIX ADXAS ADZMN ADZXQ AECKG AEEZP AEGPL AEIGN AEJOX AEPUE AEQDE AEUYR AFBPY AFFPM AFGKR AFIYH AFKSM AFPWT AFWVQ AFZJQ AGKEF AGSYK AHBTC AHXPO AI. AIJHB AITYG AIURR AIWBW AJBDE AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALUQN ALVPJ AMYDB ASAOO ASPBG ATDFG AUFTA AVWKF AXUDD AZFZN BFHJK BMNLL BMXJE BQUQU CAG CHEAL COF CS3 CXTWN CZ4 DCZOG DFGAJ DILTD DRFUL DRSTM D~K E.L EBS EE~ EJD ESX F9B FEDTE FSPIC H13 H5~ HAR HGLYW HVGLF HW0 H~9 IOX J21 KOP KSI L7B L98 LATKE LEEKS LOXES LUTES LYRES M-Z M49 MBTAY MEWTI MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N9A NGC NHB NU- O0~ O9- OHT O~Y P2P P2W PALCI PB- Q1. Q5Y RCA RD5 RJQFR ROL ROX ROZ RW1 RXO S10 SAMSI SUPJJ TCN TJP TN5 UPT UQL VH1 VOH WH7 WIH WIK WOHZO WXSBR X7H XJT XKC XOL XSW XXG Y6R YQT YYP ZCG ZKB ZY4 ZZTAW ~91 AAGQS AAYXX ABGDZ ABGNP ACUKT ADXHL AETEA AEYWJ AGHNM AGQPQ AGYGG AIQQE AMVHM CITATION LH4 1XC VOOES |
| ID | FETCH-LOGICAL-c2665-be97194965cc75b55215de15c8a6fbefebdce3e5e5a66c1d17cdb8f0e092e55d3 |
| ISSN | 0024-6107 |
| IngestDate | Tue Oct 14 20:45:55 EDT 2025 Wed Oct 01 04:54:14 EDT 2025 Wed Jan 22 16:25:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | orbifold discrete subgroup of Lie group moduli space 57M50 57N16 57S30 real projective structure reflection group Coxeter group 20F55 2010 Mathematics Subject Classification. 22E40 |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c2665-be97194965cc75b55215de15c8a6fbefebdce3e5e5a66c1d17cdb8f0e092e55d3 |
| ORCID | 0000-0002-7899-6659 |
| OpenAccessLink | https://hal.science/hal-03326703 |
| PageCount | 43 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03326703v2 crossref_primary_10_1112_jlms_12675 wiley_primary_10_1112_jlms_12675_JLMS12675 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of the London Mathematical Society |
| PublicationYear | 2022 |
| Publisher | London Mathematical Society ; Wiley |
| Publisher_xml | – name: London Mathematical Society ; Wiley |
| References | 1982; 79 1990; 31 2015; 19 2010; 14 1970; 81 1968; 1 2021; 103 2010; 147 1997; 1 35 2022; 26 2020; 14 2020; 13 2008; 32 1985; 40 2004 1983; 91 1988; 74 2018; 22 1968; 1337 2007; 11 1976; 27 2019; 100 1977 2015; 174 1987; 67 1968; 18 1960; 88 1950; 11 1963; 12 2020; 53 1983; 90 1973; 46 1969; 3 1999; 1710 2015; 277 2000; 10 2017; 11 1971; 35 2015; 65 2018 2006; 164 1970; 83 2013 2006; 122 2009; 18 1967 e_1_2_17_5_1 e_1_2_17_4_1 e_1_2_17_30_1 e_1_2_17_9_1 Benoist Y. (e_1_2_17_11_1) 2004 e_1_2_17_8_1 e_1_2_17_10_1 e_1_2_17_31_1 e_1_2_17_7_1 e_1_2_17_34_1 e_1_2_17_6_1 e_1_2_17_12_1 Davis M. W. (e_1_2_17_26_1) 2008 e_1_2_17_33_1 e_1_2_17_13_1 Benoist Y. (e_1_2_17_14_1) 2009 e_1_2_17_35_1 Makarov V. S. (e_1_2_17_39_1) 1968 Vinberg È. (e_1_2_17_47_1) 1963; 12 e_1_2_17_15_1 e_1_2_17_16_1 Bourbaki N. (e_1_2_17_17_1) 1968 e_1_2_17_37_1 Vinberg È. B. (e_1_2_17_49_1) 1985; 40 e_1_2_17_18_1 e_1_2_17_19_1 Goldman W. M. (e_1_2_17_28_1) 1988 Johnson D. (e_1_2_17_32_1) 1987 Koszul J.‐L. (e_1_2_17_36_1) 1967 Choi S. (e_1_2_17_22_1) 2018 e_1_2_17_41_1 Lannér F. (e_1_2_17_38_1) 1950; 11 e_1_2_17_20_1 e_1_2_17_43_1 e_1_2_17_21_1 e_1_2_17_42_1 e_1_2_17_45_1 e_1_2_17_23_1 e_1_2_17_44_1 e_1_2_17_24_1 e_1_2_17_25_1 e_1_2_17_46_1 e_1_2_17_27_1 e_1_2_17_29_1 Vinberg È. B. (e_1_2_17_48_1) 1971; 35 Andreev E. M. (e_1_2_17_2_1) 1970; 81 Andreev E. M. (e_1_2_17_3_1) 1970; 83 Margulis G. A. (e_1_2_17_40_1) 2000; 10 |
| References_xml | – volume: 27 start-page: 663 issue: 6 year: 1976 end-page: 667 article-title: Eine graphentheoretische Kennzeichnung der Stapelpolytope publication-title: Arch. Math. (Basel) – volume: 10 start-page: 171 issue: 1 year: 2000 end-page: 180 article-title: Some linear groups virtually having a free quotient publication-title: J. Lie Theory – start-page: 339 year: 2004 end-page: 374 – volume: 67 start-page: 48 year: 1987 end-page: 106 – volume: 1 35 year: 1997 – volume: 81 start-page: 445 issue: 123 year: 1970 end-page: 478 article-title: Convex polyhedra in Lobačevskiĭspaces publication-title: Mat. Sb. (N.S.) – volume: 11 start-page: 1777 year: 2007 end-page: 1830 article-title: Convex projective structures on Gromov‐Thurston manifolds publication-title: Geom. Topol. – volume: 3 start-page: 3 year: 1969 end-page: 16 article-title: Recherche des graphes des matrices de Coxeter hyperboliques d'ordre – volume: 91 year: 1983 – volume: 11 start-page: 819 issue: 3 year: 2017 end-page: 877 article-title: Coxeter group in Hilbert geometry publication-title: Groups Geom. Dyn. – volume: 19 start-page: 1777 issue: 4 year: 2015 end-page: 1828 article-title: Projective deformations of weakly orderable hyperbolic Coxeter orbifolds publication-title: Geom. Topol. – volume: 22 start-page: 1349 issue: 3 year: 2018 end-page: 1404 article-title: Deforming convex projective manifolds publication-title: Geom. Topol. – volume: 35 start-page: 1072 year: 1971 end-page: 1112 article-title: Discrete linear groups that are generated by reflections publication-title: Izv. Akad. Nauk SSSR Ser. Mat. – volume: 13 start-page: 1455 issue: 4 year: 2020 end-page: 1496 article-title: Generalized cusps in real projective manifolds: classification publication-title: J. Topol. – volume: 11 start-page: 71 year: 1950 article-title: On complexes with transitive groups of automorphisms publication-title: Comm. Sém., Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] – volume: 174 start-page: 43 year: 2015 end-page: 73 article-title: Lorentzian Coxeter systems and Boyd‐Maxwell ball packings publication-title: Geom. Dedicata – volume: 12 start-page: 303 year: 1963 end-page: 358 article-title: The theory of homogeneous convex cones publication-title: Trudy Moskov. Mat. Obv č. – volume: 26 start-page: 111 year: 2022 end-page: 164 article-title: The moduli space of marked generalized cusps in real projective manifolds publication-title: Conform. Geom. Dyn. – volume: 74 start-page: 169 year: 1988 end-page: 198 – volume: 32 year: 2008 – volume: 1 start-page: 120 year: 1968 end-page: 129 – volume: 53 start-page: 217 issue: 1 year: 2020 end-page: 266 article-title: Convex projective generalized Dehn filling publication-title: Ann. Sci. Éc. Norm. Supér. (4) – volume: 88 start-page: 229 year: 1960 end-page: 332 article-title: Sur les variétés localement affines et localement projectives publication-title: Bull. Soc. Math. France – volume: 31 start-page: 791 issue: 3 year: 1990 end-page: 845 article-title: Convex real projective structures on compact surfaces publication-title: J. Differential Geom. – year: 1977 – volume: 147 start-page: 47 year: 2010 end-page: 86 article-title: Espace des modules de certains polyèdres projectifs miroirs publication-title: Geom. Dedicata – volume: 65 start-page: 1005 issue: 3 year: 2015 end-page: 1030 article-title: On the Hilbert geometry of simplicial Tits sets publication-title: Ann. Inst. Fourier (Grenoble) – volume: 103 start-page: 1276 issue: 4 year: 2021 end-page: 1313 article-title: Constructing convex projective 3‐manifolds with generalized cusps publication-title: J. Lond. Math. Soc. (2) – volume: 14 start-page: 2103 issue: 4 year: 2010 end-page: 2149 article-title: Espace des modules marqués des surfaces projectives convexes de volume fini publication-title: Geom. Topol. – year: 1967 – volume: 46 start-page: 349 year: 1973 end-page: 354 article-title: A proof of the lower bound conjecture for convex polytopes publication-title: Pacific J. Math. – volume: 164 start-page: 249 issue: 2 year: 2006 end-page: 278 article-title: Convexes divisibles. IV. Structure du bord en dimension 3 publication-title: Invent. Math. – volume: 90 year: 1983 – volume: 40 start-page: 29 issue: 1 year: 1985 end-page: 66 article-title: Hyperbolic groups of reflections publication-title: Uspekhi Mat. Nauk – volume: 83 start-page: 256 issue: 125 year: 1970 end-page: 260 article-title: Convex polyhedra of finite volume in Lobačevskiĭspace publication-title: Mat. Sb. (N.S.) – start-page: 263 year: 2018 end-page: 310 – volume: 277 start-page: 181 year: 2015 end-page: 251 article-title: On convex projective manifolds and cusps publication-title: Adv. Math. – volume: 22 start-page: 1593 issue: 3 year: 2018 end-page: 1646 article-title: Convex projective structures on nonhyperbolic three‐manifolds publication-title: Geom. Topol. – volume: 18 start-page: 117 year: 2009 end-page: 176 – volume: 100 start-page: 183 issue: 1 year: 2019 end-page: 202 article-title: Convex projective manifolds with a cusp of any non‐diagonalizable type publication-title: J. Lond. Math. Soc. (2) – volume: 1337 year: 1968 – volume: 1710 year: 1999 – volume: 18 start-page: 103 year: 1968 end-page: 114 article-title: Déformations de connexions localement plates publication-title: Ann. Inst. Fourier (Grenoble) – volume: 79 start-page: 78 issue: 1 year: 1982 end-page: 97 article-title: Sphere packings and hyperbolic reflection groups publication-title: J. Algebra – volume: 14 start-page: 653 issue: 2 year: 2020 end-page: 688 article-title: Properly convex bending of hyperbolic manifolds publication-title: Groups Geom. Dyn. – volume: 122 start-page: 109 year: 2006 end-page: 134 article-title: Convexes hyperboliques et quasiisométries publication-title: Geom. Dedicata – year: 2013 – ident: e_1_2_17_4_1 doi: 10.1112/jlms.12407 – start-page: 117 volume-title: Géométries à courbure négative ou nulle, groupes discrets et rigidités year: 2009 ident: e_1_2_17_14_1 – ident: e_1_2_17_15_1 doi: 10.24033/bsmf.1551 – ident: e_1_2_17_8_1 doi: 10.4171/GGD/558 – ident: e_1_2_17_16_1 doi: 10.1112/jlms.12208 – volume-title: Lectures on hyperbolic Coxeter groups year: 1967 ident: e_1_2_17_36_1 – ident: e_1_2_17_42_1 doi: 10.2140/gt.2010.14.2103 – ident: e_1_2_17_12_1 doi: 10.1007/s00222-005-0478-4 – volume-title: The geometry and topology of Coxeter groups year: 2008 ident: e_1_2_17_26_1 – volume: 40 start-page: 29 issue: 1 year: 1985 ident: e_1_2_17_49_1 article-title: Hyperbolic groups of reflections publication-title: Uspekhi Mat. Nauk – ident: e_1_2_17_10_1 doi: 10.1007/978-1-4612-1146-4 – ident: e_1_2_17_5_1 doi: 10.1112/topo.12161 – ident: e_1_2_17_41_1 doi: 10.1007/s10711-009-9438-2 – volume: 35 start-page: 1072 year: 1971 ident: e_1_2_17_48_1 article-title: Discrete linear groups that are generated by reflections publication-title: Izv. Akad. Nauk SSSR Ser. Mat. – ident: e_1_2_17_21_1 doi: 10.2140/gt.2015.19.1777 – volume-title: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines year: 1968 ident: e_1_2_17_17_1 – ident: e_1_2_17_43_1 doi: 10.4171/GGD/416 – ident: e_1_2_17_33_1 doi: 10.2140/gt.2007.11.1777 – ident: e_1_2_17_45_1 doi: 10.5802/aif.2950 – ident: e_1_2_17_18_1 doi: 10.1007/978-1-4612-1148-8 – start-page: 48 volume-title: Deformation spaces associated to compact hyperbolic manifolds year: 1987 ident: e_1_2_17_32_1 – ident: e_1_2_17_44_1 doi: 10.1016/0021-8693(82)90318-0 – volume: 11 start-page: 71 year: 1950 ident: e_1_2_17_38_1 article-title: On complexes with transitive groups of automorphisms publication-title: Comm. Sém., Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.] – ident: e_1_2_17_7_1 doi: 10.2140/gt.2018.22.1593 – ident: e_1_2_17_13_1 doi: 10.1007/s10711-006-9066-z – ident: e_1_2_17_19_1 doi: 10.1051/m2an/196903R300031 – start-page: 263 volume-title: Deformations of convex real projective manifolds and orbifolds year: 2018 ident: e_1_2_17_22_1 – ident: e_1_2_17_30_1 – volume: 10 start-page: 171 issue: 1 year: 2000 ident: e_1_2_17_40_1 article-title: Some linear groups virtually having a free quotient publication-title: J. Lie Theory – ident: e_1_2_17_46_1 doi: 10.1515/9781400865321 – ident: e_1_2_17_24_1 doi: 10.1016/j.aim.2015.02.009 – ident: e_1_2_17_35_1 doi: 10.1007/BFb0096285 – ident: e_1_2_17_34_1 doi: 10.1007/BF01224736 – ident: e_1_2_17_20_1 doi: 10.1007/s10711-014-0004-1 – ident: e_1_2_17_6_1 doi: 10.1090/ecgd/367 – ident: e_1_2_17_29_1 doi: 10.4310/jdg/1214444635 – volume: 12 start-page: 303 year: 1963 ident: e_1_2_17_47_1 article-title: The theory of homogeneous convex cones publication-title: Trudy Moskov. Mat. Obv č. – start-page: 120 volume-title: The Fedorov groups of four‐dimensional and five‐dimensional Lobačevskiĭspace year: 1968 ident: e_1_2_17_39_1 – volume: 81 start-page: 445 issue: 123 year: 1970 ident: e_1_2_17_2_1 article-title: Convex polyhedra in Lobačevskiĭspaces publication-title: Mat. Sb. (N.S.) – ident: e_1_2_17_23_1 doi: 10.24033/asens.2421 – volume: 83 start-page: 256 issue: 125 year: 1970 ident: e_1_2_17_3_1 article-title: Convex polyhedra of finite volume in Lobačevskiĭspace publication-title: Mat. Sb. (N.S.) – ident: e_1_2_17_27_1 – start-page: 169 volume-title: Geometric structures on manifolds and varieties of representations year: 1988 ident: e_1_2_17_28_1 – ident: e_1_2_17_31_1 – ident: e_1_2_17_9_1 doi: 10.2140/pjm.1973.46.349 – start-page: 339 volume-title: Algebraic groups and arithmetic year: 2004 ident: e_1_2_17_11_1 – ident: e_1_2_17_37_1 doi: 10.5802/aif.279 – ident: e_1_2_17_25_1 doi: 10.2140/gt.2018.22.1349 |
| SSID | ssj0013102 |
| Score | 2.3401296 |
| Snippet | A convex polytope P$P$ in the real projective space with reflections in the facets of P$P$ is a Coxeter polytope if the reflections generate a subgroup... A convex polytope P in the real projective space with reflections in the facets of P is a Coxeter polytope if the reflections generate a subgroup Γ of the... |
| SourceID | hal crossref wiley |
| SourceType | Open Access Repository Index Database Publisher |
| StartPage | 3822 |
| SubjectTerms | Geometric Topology Group Theory Mathematics |
| Title | Deformation spaces of Coxeter truncation polytopes |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fjlms.12675 https://hal.science/hal-03326703 |
| Volume | 106 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1469-7750 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0013102 issn: 0024-6107 databaseCode: AMVHM dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gIHxFMsL0XAiVWW2LHj5Lgqj1W14dIW9RbF9lgtgk1pdyuWX884Tp0UCqJcosixLGW-0XicfPMNIa-klCbXWsVFJlTMba5jRXUaS81NLsFaWrja4fJjNj_gu4fisOeqttUlKzXVP66sK_kfVHEMcXVVstdANiyKA3iP-OIVEcbrP2H8FkLt4QQjg_YCsjvNd8dxmaxO10v_Qc61YtismpOOL_h7LuqyT9_YY1IGHVenE9IEoRDPAWiOPZXnaOOixC9sng8bCNyJPej_75f16be11zJYrE1zfqyH3xoYG_A2Lrj_HA-bvk_tFHzIxAM25uhePjbE1CQbOA8fRMg093XI3W6b5l7E_IpI7pRhP3_5ejalLPPdVS7LZYdZ4s_z2o16d1Hutc-2yDbD4J-MyPas_DQv-99NNOlk5f3rdTq2uPqbfuVLmcvWkePNDs8zbUKyf4fc7tCLZt4t7pIbsLxHbvXwnd0nbOAgkXeQqLFR5yBR7yBRcJAH5OD9u_2dedw1yYg15lYiVlBIWjjVf62lUALTMWGACp3XmVVgQRkNKQgQdZZpaqjURuU2gaRgIIRJH5LRslnCIxJxsFktVCETMBzvaq4Zr63rKIdZeE7H5OWFAaoTr4VS-TMkq5yZqtZMY_ICbRMmOPny-WxRubEkxcMCbjHnbExet6b7yzpVgO3xdSY_ITd7z31KRmhKeIZ540o971D_CRyjbCk |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+spaces+of+Coxeter+truncation+polytopes&rft.jtitle=Journal+of+the+London+Mathematical+Society&rft.au=Choi%2C+Suhyoung&rft.au=Lee%2C+Gye%E2%80%90Seon&rft.au=Marquis%2C+Ludovic&rft.date=2022-12-01&rft.issn=0024-6107&rft.eissn=1469-7750&rft.volume=106&rft.issue=4&rft.spage=3822&rft.epage=3864&rft_id=info:doi/10.1112%2Fjlms.12675&rft.externalDBID=10.1112%252Fjlms.12675&rft.externalDocID=JLMS12675 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6107&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6107&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6107&client=summon |