Deformation spaces of Coxeter truncation polytopes

A convex polytope P$P$ in the real projective space with reflections in the facets of P$P$ is a Coxeter polytope if the reflections generate a subgroup Γ$\Gamma$ of the group of projective transformations so that the Γ$\Gamma$‐translates of the interior of P$P$ are mutually disjoint. It follows from...

Full description

Saved in:
Bibliographic Details
Published inJournal of the London Mathematical Society Vol. 106; no. 4; pp. 3822 - 3864
Main Authors Choi, Suhyoung, Lee, Gye‐Seon, Marquis, Ludovic
Format Journal Article
LanguageEnglish
Published London Mathematical Society ; Wiley 01.12.2022
Subjects
Online AccessGet full text
ISSN0024-6107
1469-7750
DOI10.1112/jlms.12675

Cover

Abstract A convex polytope P$P$ in the real projective space with reflections in the facets of P$P$ is a Coxeter polytope if the reflections generate a subgroup Γ$\Gamma$ of the group of projective transformations so that the Γ$\Gamma$‐translates of the interior of P$P$ are mutually disjoint. It follows from work of Vinberg that if P$P$ is a Coxeter polytope, then the interior Ω$\Omega$ of the Γ$\Gamma$‐orbit of P$P$ is convex and Γ$\Gamma$ acts properly discontinuously on Ω$\Omega$. A Coxeter polytope P$P$ is 2$\hskip.001pt 2$‐perfect if P∖Ω$P \smallsetminus \Omega$ consists of only some vertices of P$P$. In this paper, we describe the deformation spaces of 2$\hskip.001pt 2$‐perfect Coxeter polytopes P$P$ of dimensions d⩾4$d \geqslant 4$ with the same dihedral angles when the underlying polytope of P$P$ is a truncation polytope, that is, a polytope obtained from a simplex by successively truncating vertices. The deformation spaces of Coxeter truncation polytopes of dimensions d=2$d = 2$ and d=3$d = 3$ were studied, respectively, by Goldman and the third author.
AbstractList A convex polytope P in the real projective space with reflections in the facets of P is a Coxeter polytope if the reflections generate a subgroup Γ of the group of projective transformations so that the Γ-translates of the interior of P are mutually disjoint. It follows from work of Vinberg that if P is a Coxeter polytope, then the interior Ω of the Γ-orbit of P is convex and Γ acts properly discontinuously on Ω. A Coxeter polytope P is 2-perfect if P ∖ Ω consists of only some vertices of P. In this paper, we describe the deformation spaces of 2-perfect Coxeter polytopes P of dimension d ⩾ 4 with the same dihedral angles when the underlying polytope of P is a truncation polytope, i.e. a polytope obtained from a simplex by successively truncating vertices. The deformation spaces of Coxeter truncation polytopes of dimension d = 2 and d = 3 were studied respectively by Goldman and the third author.
A convex polytope P$P$ in the real projective space with reflections in the facets of P$P$ is a Coxeter polytope if the reflections generate a subgroup Γ$\Gamma$ of the group of projective transformations so that the Γ$\Gamma$‐translates of the interior of P$P$ are mutually disjoint. It follows from work of Vinberg that if P$P$ is a Coxeter polytope, then the interior Ω$\Omega$ of the Γ$\Gamma$‐orbit of P$P$ is convex and Γ$\Gamma$ acts properly discontinuously on Ω$\Omega$. A Coxeter polytope P$P$ is 2$\hskip.001pt 2$‐perfect if P∖Ω$P \smallsetminus \Omega$ consists of only some vertices of P$P$. In this paper, we describe the deformation spaces of 2$\hskip.001pt 2$‐perfect Coxeter polytopes P$P$ of dimensions d⩾4$d \geqslant 4$ with the same dihedral angles when the underlying polytope of P$P$ is a truncation polytope, that is, a polytope obtained from a simplex by successively truncating vertices. The deformation spaces of Coxeter truncation polytopes of dimensions d=2$d = 2$ and d=3$d = 3$ were studied, respectively, by Goldman and the third author.
Author Lee, Gye‐Seon
Choi, Suhyoung
Marquis, Ludovic
Author_xml – sequence: 1
  givenname: Suhyoung
  surname: Choi
  fullname: Choi, Suhyoung
  organization: KAIST
– sequence: 2
  givenname: Gye‐Seon
  surname: Lee
  fullname: Lee, Gye‐Seon
  email: gyeseonlee@snu.ac.kr
  organization: Seoul National University
– sequence: 3
  givenname: Ludovic
  surname: Marquis
  fullname: Marquis, Ludovic
  organization: IRMAR ‐ UMR 6625
BackLink https://hal.science/hal-03326703$$DView record in HAL
BookMark eNp9kMtOwzAQRS1UJNrChi_IFqSUGae2m2VVHgUFsQDWluOMRao0juzw6N_TEsSS1Uh3zh1pzoSNWt8SY-cIM0TkV5tmG2fIpRJHbIxzmadKCRixMQCfpxJBnbBJjBsAzBD4mPFrcj5sTV_7NomdsRQT75KV_6KeQtKH99YOy843u953FE_ZsTNNpLPfOWWvtzcvq3VaPN3dr5ZFarmUIi0pV5jPcymsVaIUgqOoCIVdGOlKclRWljISJIyUFitUtioXDghyTkJU2ZRdDHffTKO7UG9N2Glvar1eFvqQQZbtP4Xsg-_Zy4G1wccYyP0VEPTBjD6Y0T9m9jAO8Gfd0O4fUj8Uj89D5xu4l2hB
Cites_doi 10.1112/jlms.12407
10.24033/bsmf.1551
10.4171/GGD/558
10.1112/jlms.12208
10.2140/gt.2010.14.2103
10.1007/s00222-005-0478-4
10.1007/978-1-4612-1146-4
10.1112/topo.12161
10.1007/s10711-009-9438-2
10.2140/gt.2015.19.1777
10.4171/GGD/416
10.2140/gt.2007.11.1777
10.5802/aif.2950
10.1007/978-1-4612-1148-8
10.1016/0021-8693(82)90318-0
10.2140/gt.2018.22.1593
10.1007/s10711-006-9066-z
10.1051/m2an/196903R300031
10.1515/9781400865321
10.1016/j.aim.2015.02.009
10.1007/BFb0096285
10.1007/BF01224736
10.1007/s10711-014-0004-1
10.1090/ecgd/367
10.4310/jdg/1214444635
10.24033/asens.2421
10.2140/pjm.1973.46.349
10.5802/aif.279
10.2140/gt.2018.22.1349
ContentType Journal Article
Copyright 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2022 The Authors. The publishing rights in this article are licensed to the London Mathematical Society under an exclusive licence.
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
1XC
VOOES
DOI 10.1112/jlms.12675
DatabaseName CrossRef
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1469-7750
EndPage 3864
ExternalDocumentID oai:HAL:hal-03326703v2
10_1112_jlms_12675
JLMS12675
Genre article
GrantInformation_xml – fundername: Centre Henri Lebesgue
  funderid: ANR‐11‐LABX‐0020 LEBESGUE
– fundername: National Science Foundation
  funderid: DMS 1107452; 1107263; 1107367
– fundername: Deutsche Forschungsgemeinschaft
  funderid: 237100532
– fundername: European Research Council
  funderid: 614733
– fundername: National Research Foundation of Korea
  funderid: 2019R1A2C108454413; 2020R1C1C1A01013667
GroupedDBID --Z
-DZ
-~X
.2P
.I3
0R~
1OB
1OC
1TH
33P
4.4
5GY
5VS
6OB
6TJ
70D
AAHHS
AAHQN
AAIJN
AAJKP
AAMNL
AAMVS
AANLZ
AAOGV
AASGY
AASVR
AAUQX
AAXRX
AAYCA
AAYJJ
AAZKR
ABCUV
ABEFU
ABEJV
ABEUO
ABFSI
ABITZ
ABIXL
ABJNI
ABLJU
ABNGD
ABNKS
ABQLI
ABQTQ
ABSAR
ABSMQ
ABTAH
ABVKB
ABXVV
ABZBJ
ACAHQ
ACCFJ
ACCZN
ACGFS
ACNCT
ACPOU
ACQPF
ACUFI
ACXBN
ACXQS
ADBBV
ADEOM
ADEYI
ADHZD
ADKYN
ADMGS
ADOCK
ADOZA
ADRIX
ADXAS
ADZMN
ADZXQ
AECKG
AEEZP
AEGPL
AEIGN
AEJOX
AEPUE
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFIYH
AFKSM
AFPWT
AFWVQ
AFZJQ
AGKEF
AGSYK
AHBTC
AHXPO
AI.
AIJHB
AITYG
AIURR
AIWBW
AJBDE
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALUQN
ALVPJ
AMYDB
ASAOO
ASPBG
ATDFG
AUFTA
AVWKF
AXUDD
AZFZN
BFHJK
BMNLL
BMXJE
BQUQU
CAG
CHEAL
COF
CS3
CXTWN
CZ4
DCZOG
DFGAJ
DILTD
DRFUL
DRSTM
D~K
E.L
EBS
EE~
EJD
ESX
F9B
FEDTE
FSPIC
H13
H5~
HAR
HGLYW
HVGLF
HW0
H~9
IOX
J21
KOP
KSI
L7B
L98
LATKE
LEEKS
LOXES
LUTES
LYRES
M-Z
M49
MBTAY
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N9A
NGC
NHB
NU-
O0~
O9-
OHT
O~Y
P2P
P2W
PALCI
PB-
Q1.
Q5Y
RCA
RD5
RJQFR
ROL
ROX
ROZ
RW1
RXO
S10
SAMSI
SUPJJ
TCN
TJP
TN5
UPT
UQL
VH1
VOH
WH7
WIH
WIK
WOHZO
WXSBR
X7H
XJT
XKC
XOL
XSW
XXG
Y6R
YQT
YYP
ZCG
ZKB
ZY4
ZZTAW
~91
AAGQS
AAYXX
ABGDZ
ABGNP
ACUKT
ADXHL
AETEA
AEYWJ
AGHNM
AGQPQ
AGYGG
AIQQE
AMVHM
CITATION
LH4
1XC
VOOES
ID FETCH-LOGICAL-c2665-be97194965cc75b55215de15c8a6fbefebdce3e5e5a66c1d17cdb8f0e092e55d3
ISSN 0024-6107
IngestDate Tue Oct 14 20:45:55 EDT 2025
Wed Oct 01 04:54:14 EDT 2025
Wed Jan 22 16:25:26 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords orbifold
discrete subgroup of Lie group
moduli space
57M50
57N16
57S30 real projective structure
reflection group
Coxeter group
20F55
2010 Mathematics Subject Classification. 22E40
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2665-be97194965cc75b55215de15c8a6fbefebdce3e5e5a66c1d17cdb8f0e092e55d3
ORCID 0000-0002-7899-6659
OpenAccessLink https://hal.science/hal-03326703
PageCount 43
ParticipantIDs hal_primary_oai_HAL_hal_03326703v2
crossref_primary_10_1112_jlms_12675
wiley_primary_10_1112_jlms_12675_JLMS12675
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Journal of the London Mathematical Society
PublicationYear 2022
Publisher London Mathematical Society ; Wiley
Publisher_xml – name: London Mathematical Society ; Wiley
References 1982; 79
1990; 31
2015; 19
2010; 14
1970; 81
1968; 1
2021; 103
2010; 147
1997; 1 35
2022; 26
2020; 14
2020; 13
2008; 32
1985; 40
2004
1983; 91
1988; 74
2018; 22
1968; 1337
2007; 11
1976; 27
2019; 100
1977
2015; 174
1987; 67
1968; 18
1960; 88
1950; 11
1963; 12
2020; 53
1983; 90
1973; 46
1969; 3
1999; 1710
2015; 277
2000; 10
2017; 11
1971; 35
2015; 65
2018
2006; 164
1970; 83
2013
2006; 122
2009; 18
1967
e_1_2_17_5_1
e_1_2_17_4_1
e_1_2_17_30_1
e_1_2_17_9_1
Benoist Y. (e_1_2_17_11_1) 2004
e_1_2_17_8_1
e_1_2_17_10_1
e_1_2_17_31_1
e_1_2_17_7_1
e_1_2_17_34_1
e_1_2_17_6_1
e_1_2_17_12_1
Davis M. W. (e_1_2_17_26_1) 2008
e_1_2_17_33_1
e_1_2_17_13_1
Benoist Y. (e_1_2_17_14_1) 2009
e_1_2_17_35_1
Makarov V. S. (e_1_2_17_39_1) 1968
Vinberg È. (e_1_2_17_47_1) 1963; 12
e_1_2_17_15_1
e_1_2_17_16_1
Bourbaki N. (e_1_2_17_17_1) 1968
e_1_2_17_37_1
Vinberg È. B. (e_1_2_17_49_1) 1985; 40
e_1_2_17_18_1
e_1_2_17_19_1
Goldman W. M. (e_1_2_17_28_1) 1988
Johnson D. (e_1_2_17_32_1) 1987
Koszul J.‐L. (e_1_2_17_36_1) 1967
Choi S. (e_1_2_17_22_1) 2018
e_1_2_17_41_1
Lannér F. (e_1_2_17_38_1) 1950; 11
e_1_2_17_20_1
e_1_2_17_43_1
e_1_2_17_21_1
e_1_2_17_42_1
e_1_2_17_45_1
e_1_2_17_23_1
e_1_2_17_44_1
e_1_2_17_24_1
e_1_2_17_25_1
e_1_2_17_46_1
e_1_2_17_27_1
e_1_2_17_29_1
Vinberg È. B. (e_1_2_17_48_1) 1971; 35
Andreev E. M. (e_1_2_17_2_1) 1970; 81
Andreev E. M. (e_1_2_17_3_1) 1970; 83
Margulis G. A. (e_1_2_17_40_1) 2000; 10
References_xml – volume: 27
  start-page: 663
  issue: 6
  year: 1976
  end-page: 667
  article-title: Eine graphentheoretische Kennzeichnung der Stapelpolytope
  publication-title: Arch. Math. (Basel)
– volume: 10
  start-page: 171
  issue: 1
  year: 2000
  end-page: 180
  article-title: Some linear groups virtually having a free quotient
  publication-title: J. Lie Theory
– start-page: 339
  year: 2004
  end-page: 374
– volume: 67
  start-page: 48
  year: 1987
  end-page: 106
– volume: 1 35
  year: 1997
– volume: 81
  start-page: 445
  issue: 123
  year: 1970
  end-page: 478
  article-title: Convex polyhedra in Lobačevskiĭspaces
  publication-title: Mat. Sb. (N.S.)
– volume: 11
  start-page: 1777
  year: 2007
  end-page: 1830
  article-title: Convex projective structures on Gromov‐Thurston manifolds
  publication-title: Geom. Topol.
– volume: 3
  start-page: 3
  year: 1969
  end-page: 16
  article-title: Recherche des graphes des matrices de Coxeter hyperboliques d'ordre
– volume: 91
  year: 1983
– volume: 11
  start-page: 819
  issue: 3
  year: 2017
  end-page: 877
  article-title: Coxeter group in Hilbert geometry
  publication-title: Groups Geom. Dyn.
– volume: 19
  start-page: 1777
  issue: 4
  year: 2015
  end-page: 1828
  article-title: Projective deformations of weakly orderable hyperbolic Coxeter orbifolds
  publication-title: Geom. Topol.
– volume: 22
  start-page: 1349
  issue: 3
  year: 2018
  end-page: 1404
  article-title: Deforming convex projective manifolds
  publication-title: Geom. Topol.
– volume: 35
  start-page: 1072
  year: 1971
  end-page: 1112
  article-title: Discrete linear groups that are generated by reflections
  publication-title: Izv. Akad. Nauk SSSR Ser. Mat.
– volume: 13
  start-page: 1455
  issue: 4
  year: 2020
  end-page: 1496
  article-title: Generalized cusps in real projective manifolds: classification
  publication-title: J. Topol.
– volume: 11
  start-page: 71
  year: 1950
  article-title: On complexes with transitive groups of automorphisms
  publication-title: Comm. Sém., Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]
– volume: 174
  start-page: 43
  year: 2015
  end-page: 73
  article-title: Lorentzian Coxeter systems and Boyd‐Maxwell ball packings
  publication-title: Geom. Dedicata
– volume: 12
  start-page: 303
  year: 1963
  end-page: 358
  article-title: The theory of homogeneous convex cones
  publication-title: Trudy Moskov. Mat. Obv č.
– volume: 26
  start-page: 111
  year: 2022
  end-page: 164
  article-title: The moduli space of marked generalized cusps in real projective manifolds
  publication-title: Conform. Geom. Dyn.
– volume: 74
  start-page: 169
  year: 1988
  end-page: 198
– volume: 32
  year: 2008
– volume: 1
  start-page: 120
  year: 1968
  end-page: 129
– volume: 53
  start-page: 217
  issue: 1
  year: 2020
  end-page: 266
  article-title: Convex projective generalized Dehn filling
  publication-title: Ann. Sci. Éc. Norm. Supér. (4)
– volume: 88
  start-page: 229
  year: 1960
  end-page: 332
  article-title: Sur les variétés localement affines et localement projectives
  publication-title: Bull. Soc. Math. France
– volume: 31
  start-page: 791
  issue: 3
  year: 1990
  end-page: 845
  article-title: Convex real projective structures on compact surfaces
  publication-title: J. Differential Geom.
– year: 1977
– volume: 147
  start-page: 47
  year: 2010
  end-page: 86
  article-title: Espace des modules de certains polyèdres projectifs miroirs
  publication-title: Geom. Dedicata
– volume: 65
  start-page: 1005
  issue: 3
  year: 2015
  end-page: 1030
  article-title: On the Hilbert geometry of simplicial Tits sets
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 103
  start-page: 1276
  issue: 4
  year: 2021
  end-page: 1313
  article-title: Constructing convex projective 3‐manifolds with generalized cusps
  publication-title: J. Lond. Math. Soc. (2)
– volume: 14
  start-page: 2103
  issue: 4
  year: 2010
  end-page: 2149
  article-title: Espace des modules marqués des surfaces projectives convexes de volume fini
  publication-title: Geom. Topol.
– year: 1967
– volume: 46
  start-page: 349
  year: 1973
  end-page: 354
  article-title: A proof of the lower bound conjecture for convex polytopes
  publication-title: Pacific J. Math.
– volume: 164
  start-page: 249
  issue: 2
  year: 2006
  end-page: 278
  article-title: Convexes divisibles. IV. Structure du bord en dimension 3
  publication-title: Invent. Math.
– volume: 90
  year: 1983
– volume: 40
  start-page: 29
  issue: 1
  year: 1985
  end-page: 66
  article-title: Hyperbolic groups of reflections
  publication-title: Uspekhi Mat. Nauk
– volume: 83
  start-page: 256
  issue: 125
  year: 1970
  end-page: 260
  article-title: Convex polyhedra of finite volume in Lobačevskiĭspace
  publication-title: Mat. Sb. (N.S.)
– start-page: 263
  year: 2018
  end-page: 310
– volume: 277
  start-page: 181
  year: 2015
  end-page: 251
  article-title: On convex projective manifolds and cusps
  publication-title: Adv. Math.
– volume: 22
  start-page: 1593
  issue: 3
  year: 2018
  end-page: 1646
  article-title: Convex projective structures on nonhyperbolic three‐manifolds
  publication-title: Geom. Topol.
– volume: 18
  start-page: 117
  year: 2009
  end-page: 176
– volume: 100
  start-page: 183
  issue: 1
  year: 2019
  end-page: 202
  article-title: Convex projective manifolds with a cusp of any non‐diagonalizable type
  publication-title: J. Lond. Math. Soc. (2)
– volume: 1337
  year: 1968
– volume: 1710
  year: 1999
– volume: 18
  start-page: 103
  year: 1968
  end-page: 114
  article-title: Déformations de connexions localement plates
  publication-title: Ann. Inst. Fourier (Grenoble)
– volume: 79
  start-page: 78
  issue: 1
  year: 1982
  end-page: 97
  article-title: Sphere packings and hyperbolic reflection groups
  publication-title: J. Algebra
– volume: 14
  start-page: 653
  issue: 2
  year: 2020
  end-page: 688
  article-title: Properly convex bending of hyperbolic manifolds
  publication-title: Groups Geom. Dyn.
– volume: 122
  start-page: 109
  year: 2006
  end-page: 134
  article-title: Convexes hyperboliques et quasiisométries
  publication-title: Geom. Dedicata
– year: 2013
– ident: e_1_2_17_4_1
  doi: 10.1112/jlms.12407
– start-page: 117
  volume-title: Géométries à courbure négative ou nulle, groupes discrets et rigidités
  year: 2009
  ident: e_1_2_17_14_1
– ident: e_1_2_17_15_1
  doi: 10.24033/bsmf.1551
– ident: e_1_2_17_8_1
  doi: 10.4171/GGD/558
– ident: e_1_2_17_16_1
  doi: 10.1112/jlms.12208
– volume-title: Lectures on hyperbolic Coxeter groups
  year: 1967
  ident: e_1_2_17_36_1
– ident: e_1_2_17_42_1
  doi: 10.2140/gt.2010.14.2103
– ident: e_1_2_17_12_1
  doi: 10.1007/s00222-005-0478-4
– volume-title: The geometry and topology of Coxeter groups
  year: 2008
  ident: e_1_2_17_26_1
– volume: 40
  start-page: 29
  issue: 1
  year: 1985
  ident: e_1_2_17_49_1
  article-title: Hyperbolic groups of reflections
  publication-title: Uspekhi Mat. Nauk
– ident: e_1_2_17_10_1
  doi: 10.1007/978-1-4612-1146-4
– ident: e_1_2_17_5_1
  doi: 10.1112/topo.12161
– ident: e_1_2_17_41_1
  doi: 10.1007/s10711-009-9438-2
– volume: 35
  start-page: 1072
  year: 1971
  ident: e_1_2_17_48_1
  article-title: Discrete linear groups that are generated by reflections
  publication-title: Izv. Akad. Nauk SSSR Ser. Mat.
– ident: e_1_2_17_21_1
  doi: 10.2140/gt.2015.19.1777
– volume-title: Éléments de mathématique. Fasc. XXXIV. Groupes et algèbres de Lie. Chapitre IV: Groupes de Coxeter et systèmes de Tits. Chapitre V: Groupes engendrés par des réflexions. Chapitre VI: systèmes de racines
  year: 1968
  ident: e_1_2_17_17_1
– ident: e_1_2_17_43_1
  doi: 10.4171/GGD/416
– ident: e_1_2_17_33_1
  doi: 10.2140/gt.2007.11.1777
– ident: e_1_2_17_45_1
  doi: 10.5802/aif.2950
– ident: e_1_2_17_18_1
  doi: 10.1007/978-1-4612-1148-8
– start-page: 48
  volume-title: Deformation spaces associated to compact hyperbolic manifolds
  year: 1987
  ident: e_1_2_17_32_1
– ident: e_1_2_17_44_1
  doi: 10.1016/0021-8693(82)90318-0
– volume: 11
  start-page: 71
  year: 1950
  ident: e_1_2_17_38_1
  article-title: On complexes with transitive groups of automorphisms
  publication-title: Comm. Sém., Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.]
– ident: e_1_2_17_7_1
  doi: 10.2140/gt.2018.22.1593
– ident: e_1_2_17_13_1
  doi: 10.1007/s10711-006-9066-z
– ident: e_1_2_17_19_1
  doi: 10.1051/m2an/196903R300031
– start-page: 263
  volume-title: Deformations of convex real projective manifolds and orbifolds
  year: 2018
  ident: e_1_2_17_22_1
– ident: e_1_2_17_30_1
– volume: 10
  start-page: 171
  issue: 1
  year: 2000
  ident: e_1_2_17_40_1
  article-title: Some linear groups virtually having a free quotient
  publication-title: J. Lie Theory
– ident: e_1_2_17_46_1
  doi: 10.1515/9781400865321
– ident: e_1_2_17_24_1
  doi: 10.1016/j.aim.2015.02.009
– ident: e_1_2_17_35_1
  doi: 10.1007/BFb0096285
– ident: e_1_2_17_34_1
  doi: 10.1007/BF01224736
– ident: e_1_2_17_20_1
  doi: 10.1007/s10711-014-0004-1
– ident: e_1_2_17_6_1
  doi: 10.1090/ecgd/367
– ident: e_1_2_17_29_1
  doi: 10.4310/jdg/1214444635
– volume: 12
  start-page: 303
  year: 1963
  ident: e_1_2_17_47_1
  article-title: The theory of homogeneous convex cones
  publication-title: Trudy Moskov. Mat. Obv č.
– start-page: 120
  volume-title: The Fedorov groups of four‐dimensional and five‐dimensional Lobačevskiĭspace
  year: 1968
  ident: e_1_2_17_39_1
– volume: 81
  start-page: 445
  issue: 123
  year: 1970
  ident: e_1_2_17_2_1
  article-title: Convex polyhedra in Lobačevskiĭspaces
  publication-title: Mat. Sb. (N.S.)
– ident: e_1_2_17_23_1
  doi: 10.24033/asens.2421
– volume: 83
  start-page: 256
  issue: 125
  year: 1970
  ident: e_1_2_17_3_1
  article-title: Convex polyhedra of finite volume in Lobačevskiĭspace
  publication-title: Mat. Sb. (N.S.)
– ident: e_1_2_17_27_1
– start-page: 169
  volume-title: Geometric structures on manifolds and varieties of representations
  year: 1988
  ident: e_1_2_17_28_1
– ident: e_1_2_17_31_1
– ident: e_1_2_17_9_1
  doi: 10.2140/pjm.1973.46.349
– start-page: 339
  volume-title: Algebraic groups and arithmetic
  year: 2004
  ident: e_1_2_17_11_1
– ident: e_1_2_17_37_1
  doi: 10.5802/aif.279
– ident: e_1_2_17_25_1
  doi: 10.2140/gt.2018.22.1349
SSID ssj0013102
Score 2.3401296
Snippet A convex polytope P$P$ in the real projective space with reflections in the facets of P$P$ is a Coxeter polytope if the reflections generate a subgroup...
A convex polytope P in the real projective space with reflections in the facets of P is a Coxeter polytope if the reflections generate a subgroup Γ of the...
SourceID hal
crossref
wiley
SourceType Open Access Repository
Index Database
Publisher
StartPage 3822
SubjectTerms Geometric Topology
Group Theory
Mathematics
Title Deformation spaces of Coxeter truncation polytopes
URI https://onlinelibrary.wiley.com/doi/abs/10.1112%2Fjlms.12675
https://hal.science/hal-03326703
Volume 106
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1469-7750
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0013102
  issn: 0024-6107
  databaseCode: AMVHM
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELbo9gIHxFMsL0XAiVWW2LHj5Lgqj1W14dIW9RbF9lgtgk1pdyuWX884Tp0UCqJcosixLGW-0XicfPMNIa-klCbXWsVFJlTMba5jRXUaS81NLsFaWrja4fJjNj_gu4fisOeqttUlKzXVP66sK_kfVHEMcXVVstdANiyKA3iP-OIVEcbrP2H8FkLt4QQjg_YCsjvNd8dxmaxO10v_Qc61YtismpOOL_h7LuqyT9_YY1IGHVenE9IEoRDPAWiOPZXnaOOixC9sng8bCNyJPej_75f16be11zJYrE1zfqyH3xoYG_A2Lrj_HA-bvk_tFHzIxAM25uhePjbE1CQbOA8fRMg093XI3W6b5l7E_IpI7pRhP3_5ejalLPPdVS7LZYdZ4s_z2o16d1Hutc-2yDbD4J-MyPas_DQv-99NNOlk5f3rdTq2uPqbfuVLmcvWkePNDs8zbUKyf4fc7tCLZt4t7pIbsLxHbvXwnd0nbOAgkXeQqLFR5yBR7yBRcJAH5OD9u_2dedw1yYg15lYiVlBIWjjVf62lUALTMWGACp3XmVVgQRkNKQgQdZZpaqjURuU2gaRgIIRJH5LRslnCIxJxsFktVCETMBzvaq4Zr63rKIdZeE7H5OWFAaoTr4VS-TMkq5yZqtZMY_ICbRMmOPny-WxRubEkxcMCbjHnbExet6b7yzpVgO3xdSY_ITd7z31KRmhKeIZ540o971D_CRyjbCk
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deformation+spaces+of+Coxeter+truncation+polytopes&rft.jtitle=Journal+of+the+London+Mathematical+Society&rft.au=Choi%2C+Suhyoung&rft.au=Lee%2C+Gye%E2%80%90Seon&rft.au=Marquis%2C+Ludovic&rft.date=2022-12-01&rft.issn=0024-6107&rft.eissn=1469-7750&rft.volume=106&rft.issue=4&rft.spage=3822&rft.epage=3864&rft_id=info:doi/10.1112%2Fjlms.12675&rft.externalDBID=10.1112%252Fjlms.12675&rft.externalDocID=JLMS12675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0024-6107&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0024-6107&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0024-6107&client=summon