On the Best Predictive General Linear Model for Data Analysis: A Tolerance Region Algorithm for Prediction

There is a constant need for correct and meaningful statistical prediction. The General Linear Model (GLM) is a commonly used method to fit the data although most of the times the target is to construct a linear model in order to "predict" the value of the dependent variable; a goal for wh...

Full description

Saved in:
Bibliographic Details
Published inJournal of applied sciences (Asian Network for Scientific Information) Vol. 13; no. 4; pp. 513 - 524
Main Authors Kitsos, C.P., Zarikas, Vasilios
Format Journal Article
LanguageEnglish
Published 2013
Subjects
Online AccessGet full text
ISSN1812-5654
1812-5662
1812-5662
DOI10.3923/jas.2013.513.524

Cover

Abstract There is a constant need for correct and meaningful statistical prediction. The General Linear Model (GLM) is a commonly used method to fit the data although most of the times the target is to construct a linear model in order to "predict" the value of the dependent variable; a goal for which GLM has not been designed for. The aim of the present study is to work on best model for a future observation, adopting the tolerance regions concept. A new method is explained and demonstrated, which is an alternative approach for choosing the optimal order of a response polynomial. The present study proposes a novel algorithm, which selects the best response polynomial, as far as prediction is concerned. The beta expected tolerance region is applied. The proposed computational approach has been applied for several data sets. This analysis, confirms the utility and the advantage of the method which provides non trivial results.
AbstractList There is a constant need for correct and meaningful statistical prediction. The General Linear Model (GLM) is a commonly used method to fit the data although most of the times the target is to construct a linear model in order to "predict" the value of the dependent variable; a goal for which GLM has not been designed for. The aim of the present study is to work on best model for a future observation, adopting the tolerance regions concept. A new method is explained and demonstrated, which is an alternative approach for choosing the optimal order of a response polynomial. The present study proposes a novel algorithm, which selects the best response polynomial, as far as prediction is concerned. The beta expected tolerance region is applied. The proposed computational approach has been applied for several data sets. This analysis, confirms the utility and the advantage of the method which provides non trivial results.
Author Zarikas, Vasilios
Kitsos, C.P.
Author_xml – sequence: 1
  givenname: C.P.
  surname: Kitsos
  fullname: Kitsos, C.P.
– sequence: 2
  givenname: Vasilios
  surname: Zarikas
  fullname: Zarikas, Vasilios
BookMark eNqNkE1PAjEQhhuDiYDePfboBezXll1viIomGI3B86bbnYWS0mK7aPj37op6MDF6mMwcnvfN5OmhjvMOEDqlZMgzxs9XKg4ZoXyYtMPEAerSlLJBIiXrfN-JOEK9GFeECC6zURetHhyul4AvIdb4MUBpdG1eAU_BQVAWz4wDFfC9L8Hiygd8pWqFx07ZXTTxAo_x3NuGdBrwEyyMd3hsFz6Yern-4L86vTtGh5WyEU4-dx8931zPJ7eD2cP0bjKeDTSTUgxSlYliRIQsUqBlSqUuKIi0yKpSai6gSDgBUaWlqHjFedYAhDBW6gJUVqWK9xHd927dRu3elLX5Jpi1CruckryVlTey8lZWnrTDRJM522c2wb9sGxf52kQN1ioHfhtzOpKMcioa_k9U0FFGuaSkQcke1cHHGKD6zyPyR0SbWrX66qCM_T34DrF2nNM
CitedBy_id crossref_primary_10_26552_com_C_2015_1A_58_65
Cites_doi 10.1109/9.233172
10.1016/j.measurement.2010.08.006
10.1198/004017008000000398
10.1214/aos/1176345451
10.1080/00949655.2011.615839
10.1016/0165-1765(89)90209-7
10.1109/TITS.2011.2163186
10.1198/tast.2009.0003
ContentType Journal Article
DBID AAYXX
CITATION
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.3923/jas.2013.513.524
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Materials Research Database
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
METADEX
Computer and Information Systems Abstracts Professional
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Materials Research Database
Materials Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1812-5662
EndPage 524
ExternalDocumentID 10.3923/jas.2013.513.524
10_3923_jas_2013_513_524
GroupedDBID .DC
29J
2WC
5GY
AAYXX
ACGFO
ADBBV
ALMA_UNASSIGNED_HOLDINGS
BAWUL
CITATION
DIK
DU5
E3Z
EBS
EJD
GX1
HH5
LJA
OK1
OVT
RNS
TR2
XSB
7SC
7SP
7SR
7TB
7U5
8BQ
8FD
FR3
JG9
JQ2
KR7
L7M
L~C
L~D
ADTOC
C1A
UNPAY
ID FETCH-LOGICAL-c2664-8a94b7046b8e1d816cb1e48b9fd6c34eb530e4f8d4f3f33916c0022dcbea9f8a3
IEDL.DBID UNPAY
ISSN 1812-5654
1812-5662
IngestDate Tue Aug 19 17:35:01 EDT 2025
Fri Jul 11 11:27:31 EDT 2025
Fri Jul 11 14:21:05 EDT 2025
Thu Apr 24 23:02:26 EDT 2025
Tue Jul 01 02:02:20 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2664-8a94b7046b8e1d816cb1e48b9fd6c34eb530e4f8d4f3f33916c0022dcbea9f8a3
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
OpenAccessLink https://proxy.k.utb.cz/login?url=https://scialert.net/qredirect.php?doi=jas.2013.513.524&linkid=pdf
PQID 1417913610
PQPubID 23500
PageCount 12
ParticipantIDs unpaywall_primary_10_3923_jas_2013_513_524
proquest_miscellaneous_1762131451
proquest_miscellaneous_1417913610
crossref_primary_10_3923_jas_2013_513_524
crossref_citationtrail_10_3923_jas_2013_513_524
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-00-00
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – year: 2013
  text: 2013-00-00
PublicationDecade 2010
PublicationTitle Journal of applied sciences (Asian Network for Scientific Information)
PublicationYear 2013
References ref8
ref7
ref4
ref3
ref6
ref5
ref2
ref1
References_xml – ident: ref2
  doi: 10.1109/9.233172
– ident: ref8
  doi: 10.1016/j.measurement.2010.08.006
– ident: ref1
  doi: 10.1198/004017008000000398
– ident: ref5
  doi: 10.1214/aos/1176345451
– ident: ref4
  doi: 10.1080/00949655.2011.615839
– ident: ref6
  doi: 10.1016/0165-1765(89)90209-7
– ident: ref3
  doi: 10.1109/TITS.2011.2163186
– ident: ref7
  doi: 10.1198/tast.2009.0003
SSID ssj0043697
Score 1.9237335
Snippet There is a constant need for correct and meaningful statistical prediction. The General Linear Model (GLM) is a commonly used method to fit the data although...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 513
SubjectTerms Algorithms
Beta
Data processing
Dependent variables
Mathematical models
Optimization
Tolerances
Utilities
Title On the Best Predictive General Linear Model for Data Analysis: A Tolerance Region Algorithm for Prediction
URI https://www.proquest.com/docview/1417913610
https://www.proquest.com/docview/1762131451
https://scialert.net/qredirect.php?doi=jas.2013.513.524&linkid=pdf
UnpaywallVersion publishedVersion
Volume 13
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1812-5662
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043697
  issn: 1812-5654
  databaseCode: HH5
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVBFR
  databaseName: Free Medical Journals
  customDbUrl:
  eissn: 1812-5662
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043697
  issn: 1812-5654
  databaseCode: DIK
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.freemedicaljournals.com
  providerName: Flying Publisher
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1812-5662
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0043697
  issn: 1812-5654
  databaseCode: GX1
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R7QEuQHmIhVIZCSGKlG0T22lSqYflUSokSoW60nKKxo8AJSTb3awQ_fXM5FFKD0WIg6UcJo5jz3i-8eMbgKdh4lNtUhfYHeUCpdEEJkWKUrSRNopCtBHfHX5_GB9M1Lupnl64C7PghWI_r5vA_HTu24m9YYogG987QabYDuVIc4nUsybDgNubuXwFVmNNeHwAq5PDo_EnjrQSJvqPm1Ro3XMctXuVBAvk1uXa_vRNvwHn9WU5w58_sCgu-J79W2D7VrdHTr6NlrUZ2bNLhI7_91u34WYHTcW41aU1uObLO7DWGf9CPO8YqjfvwsmHUhBwFC-p3eKIv9PMmqKTEBTgkgEJzrNWCELF4jXWKHr-k10xFscVtZMVTnz0fCJajIvP1fxr_eV7I9_XWZX3YLL_5vjVQdAlbQgs-XoVJJgqs0NRt0l86JIwtib0KjFp7mIrlTdabnuVJ07lMpd87dcyjnDWeEzzBOV9GJRV6R-AQIUmdygTVLwHJI1MjYp1js5ownU4hK1-uDLbMZpzYo0io8iGBzijfs24XzPNJVJD2Dx_Y9ayeVwh-6TXgIxMjvdRsPTVckHREnO6SgKeV8iQkwklp0Eewotz9fnrRx_-i_AjuBE1yTl4QWgdBvV86R8TRKrNBqy8nYYbnSX8Anh8D0Y
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gCXQnmI5SUjIUSRsiWxnTpIPSyPqkKiVKgrlVM0fgRaQrLsZoXg1zOTRyk9FCEOlnKYOI494_nGj28AHscmZNpmPnLbykdKo41shhSlaCtdksToEr47_G4_3Zupt0f66MxdmCUvFIdF0wbm3xahm9hbpgiy8Z0TZIrtWE40l0Q9aTMM-J25Ly7DWqoJj49gbbZ_MP3IkZZhov-0TYXWP6dJt1dJsEBuna_tT9_0G3BeWVVz_PEdy_KM79m9Bm5odXfk5Mtk1diJ-3mO0PH_fus6rPfQVEw7XdqAS6G6ARu98S_F056hevMmnLyvBAFH8ZLaLQ74O-2sKXoJQQEuGZDgPGulIFQsXmODYuA_eSGm4rCmdrLCiQ-BT0SLafmpXhw3n7-28kOddXULZrtvDl_tRX3ShsiRr1eRwUzZbYq6rQmxN3HqbByUsVnhUydVsFo-D6owXhWykHzt1zGO8M4GzAqD8jaMqroKd0CgQlt4lAYV7wFJKzOrUl2gt5pwHY5haxiu3PWM5pxYo8wpsuEBzqlfc-7XXHNJ1Bg2T9-Yd2weF8g-GjQgJ5PjfRSsQr1aUrTEnK6SgOcFMuRkYslpkMfw7FR9_vrRu_8ifA-uJm1yDl4Qug-jZrEKDwgiNfZhbwO_ACKgDlU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Best+Predictive+General+Linear+Model+for+Data+Analysis%3A+A+Tolerance+Region+Algorithm+for+Prediction&rft.jtitle=Journal+of+applied+sciences+%28Asian+Network+for+Scientific+Information%29&rft.au=Kitsos%2C+C+P&rft.au=Zarikas%2C+Vasilios&rft.date=2013&rft.issn=1812-5654&rft.eissn=1812-5662&rft.volume=13&rft.issue=4&rft.spage=513&rft.epage=513&rft_id=info:doi/10.3923%2Fjas.2013.513.524&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1812-5654&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1812-5654&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1812-5654&client=summon