On the Best Predictive General Linear Model for Data Analysis: A Tolerance Region Algorithm for Prediction
There is a constant need for correct and meaningful statistical prediction. The General Linear Model (GLM) is a commonly used method to fit the data although most of the times the target is to construct a linear model in order to "predict" the value of the dependent variable; a goal for wh...
Saved in:
| Published in | Journal of applied sciences (Asian Network for Scientific Information) Vol. 13; no. 4; pp. 513 - 524 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
2013
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1812-5654 1812-5662 1812-5662 |
| DOI | 10.3923/jas.2013.513.524 |
Cover
| Abstract | There is a constant need for correct and meaningful statistical prediction. The General Linear Model (GLM) is a commonly used method to fit the data although most of the times the target is to construct a linear model in order to "predict" the value of the dependent variable; a goal for which GLM has not been designed for. The aim of the present study is to work on best model for a future observation, adopting the tolerance regions concept. A new method is explained and demonstrated, which is an alternative approach for choosing the optimal order of a response polynomial. The present study proposes a novel algorithm, which selects the best response polynomial, as far as prediction is concerned. The beta expected tolerance region is applied. The proposed computational approach has been applied for several data sets. This analysis, confirms the utility and the advantage of the method which provides non trivial results. |
|---|---|
| AbstractList | There is a constant need for correct and meaningful statistical prediction. The General Linear Model (GLM) is a commonly used method to fit the data although most of the times the target is to construct a linear model in order to "predict" the value of the dependent variable; a goal for which GLM has not been designed for. The aim of the present study is to work on best model for a future observation, adopting the tolerance regions concept. A new method is explained and demonstrated, which is an alternative approach for choosing the optimal order of a response polynomial. The present study proposes a novel algorithm, which selects the best response polynomial, as far as prediction is concerned. The beta expected tolerance region is applied. The proposed computational approach has been applied for several data sets. This analysis, confirms the utility and the advantage of the method which provides non trivial results. |
| Author | Zarikas, Vasilios Kitsos, C.P. |
| Author_xml | – sequence: 1 givenname: C.P. surname: Kitsos fullname: Kitsos, C.P. – sequence: 2 givenname: Vasilios surname: Zarikas fullname: Zarikas, Vasilios |
| BookMark | eNqNkE1PAjEQhhuDiYDePfboBezXll1viIomGI3B86bbnYWS0mK7aPj37op6MDF6mMwcnvfN5OmhjvMOEDqlZMgzxs9XKg4ZoXyYtMPEAerSlLJBIiXrfN-JOEK9GFeECC6zURetHhyul4AvIdb4MUBpdG1eAU_BQVAWz4wDFfC9L8Hiygd8pWqFx07ZXTTxAo_x3NuGdBrwEyyMd3hsFz6Yern-4L86vTtGh5WyEU4-dx8931zPJ7eD2cP0bjKeDTSTUgxSlYliRIQsUqBlSqUuKIi0yKpSai6gSDgBUaWlqHjFedYAhDBW6gJUVqWK9xHd927dRu3elLX5Jpi1CruckryVlTey8lZWnrTDRJM522c2wb9sGxf52kQN1ioHfhtzOpKMcioa_k9U0FFGuaSkQcke1cHHGKD6zyPyR0SbWrX66qCM_T34DrF2nNM |
| CitedBy_id | crossref_primary_10_26552_com_C_2015_1A_58_65 |
| Cites_doi | 10.1109/9.233172 10.1016/j.measurement.2010.08.006 10.1198/004017008000000398 10.1214/aos/1176345451 10.1080/00949655.2011.615839 10.1016/0165-1765(89)90209-7 10.1109/TITS.2011.2163186 10.1198/tast.2009.0003 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.3923/jas.2013.513.524 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts METADEX Computer and Information Systems Abstracts Professional Engineered Materials Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Materials Research Database Materials Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 1812-5662 |
| EndPage | 524 |
| ExternalDocumentID | 10.3923/jas.2013.513.524 10_3923_jas_2013_513_524 |
| GroupedDBID | .DC 29J 2WC 5GY AAYXX ACGFO ADBBV ALMA_UNASSIGNED_HOLDINGS BAWUL CITATION DIK DU5 E3Z EBS EJD GX1 HH5 LJA OK1 OVT RNS TR2 XSB 7SC 7SP 7SR 7TB 7U5 8BQ 8FD FR3 JG9 JQ2 KR7 L7M L~C L~D ADTOC C1A UNPAY |
| ID | FETCH-LOGICAL-c2664-8a94b7046b8e1d816cb1e48b9fd6c34eb530e4f8d4f3f33916c0022dcbea9f8a3 |
| IEDL.DBID | UNPAY |
| ISSN | 1812-5654 1812-5662 |
| IngestDate | Tue Aug 19 17:35:01 EDT 2025 Fri Jul 11 11:27:31 EDT 2025 Fri Jul 11 14:21:05 EDT 2025 Thu Apr 24 23:02:26 EDT 2025 Tue Jul 01 02:02:20 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2664-8a94b7046b8e1d816cb1e48b9fd6c34eb530e4f8d4f3f33916c0022dcbea9f8a3 |
| Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://scialert.net/qredirect.php?doi=jas.2013.513.524&linkid=pdf |
| PQID | 1417913610 |
| PQPubID | 23500 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_3923_jas_2013_513_524 proquest_miscellaneous_1762131451 proquest_miscellaneous_1417913610 crossref_primary_10_3923_jas_2013_513_524 crossref_citationtrail_10_3923_jas_2013_513_524 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2013-00-00 |
| PublicationDateYYYYMMDD | 2013-01-01 |
| PublicationDate_xml | – year: 2013 text: 2013-00-00 |
| PublicationDecade | 2010 |
| PublicationTitle | Journal of applied sciences (Asian Network for Scientific Information) |
| PublicationYear | 2013 |
| References | ref8 ref7 ref4 ref3 ref6 ref5 ref2 ref1 |
| References_xml | – ident: ref2 doi: 10.1109/9.233172 – ident: ref8 doi: 10.1016/j.measurement.2010.08.006 – ident: ref1 doi: 10.1198/004017008000000398 – ident: ref5 doi: 10.1214/aos/1176345451 – ident: ref4 doi: 10.1080/00949655.2011.615839 – ident: ref6 doi: 10.1016/0165-1765(89)90209-7 – ident: ref3 doi: 10.1109/TITS.2011.2163186 – ident: ref7 doi: 10.1198/tast.2009.0003 |
| SSID | ssj0043697 |
| Score | 1.9237335 |
| Snippet | There is a constant need for correct and meaningful statistical prediction. The General Linear Model (GLM) is a commonly used method to fit the data although... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database |
| StartPage | 513 |
| SubjectTerms | Algorithms Beta Data processing Dependent variables Mathematical models Optimization Tolerances Utilities |
| Title | On the Best Predictive General Linear Model for Data Analysis: A Tolerance Region Algorithm for Prediction |
| URI | https://www.proquest.com/docview/1417913610 https://www.proquest.com/docview/1762131451 https://scialert.net/qredirect.php?doi=jas.2013.513.524&linkid=pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1812-5662 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043697 issn: 1812-5654 databaseCode: HH5 dateStart: 20010101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1812-5662 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043697 issn: 1812-5654 databaseCode: DIK dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1812-5662 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0043697 issn: 1812-5654 databaseCode: GX1 dateStart: 20010101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7R7QEuQHmIhVIZCSGKlG0T22lSqYflUSokSoW60nKKxo8AJSTb3awQ_fXM5FFKD0WIg6UcJo5jz3i-8eMbgKdh4lNtUhfYHeUCpdEEJkWKUrSRNopCtBHfHX5_GB9M1Lupnl64C7PghWI_r5vA_HTu24m9YYogG987QabYDuVIc4nUsybDgNubuXwFVmNNeHwAq5PDo_EnjrQSJvqPm1Ro3XMctXuVBAvk1uXa_vRNvwHn9WU5w58_sCgu-J79W2D7VrdHTr6NlrUZ2bNLhI7_91u34WYHTcW41aU1uObLO7DWGf9CPO8YqjfvwsmHUhBwFC-p3eKIv9PMmqKTEBTgkgEJzrNWCELF4jXWKHr-k10xFscVtZMVTnz0fCJajIvP1fxr_eV7I9_XWZX3YLL_5vjVQdAlbQgs-XoVJJgqs0NRt0l86JIwtib0KjFp7mIrlTdabnuVJ07lMpd87dcyjnDWeEzzBOV9GJRV6R-AQIUmdygTVLwHJI1MjYp1js5ownU4hK1-uDLbMZpzYo0io8iGBzijfs24XzPNJVJD2Dx_Y9ayeVwh-6TXgIxMjvdRsPTVckHREnO6SgKeV8iQkwklp0Eewotz9fnrRx_-i_AjuBE1yTl4QWgdBvV86R8TRKrNBqy8nYYbnSX8Anh8D0Y |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7B9gCXQnmI5SUjIUSRsiWxnTpIPSyPqkKiVKgrlVM0fgRaQrLsZoXg1zOTRyk9FCEOlnKYOI494_nGj28AHscmZNpmPnLbykdKo41shhSlaCtdksToEr47_G4_3Zupt0f66MxdmCUvFIdF0wbm3xahm9hbpgiy8Z0TZIrtWE40l0Q9aTMM-J25Ly7DWqoJj49gbbZ_MP3IkZZhov-0TYXWP6dJt1dJsEBuna_tT9_0G3BeWVVz_PEdy_KM79m9Bm5odXfk5Mtk1diJ-3mO0PH_fus6rPfQVEw7XdqAS6G6ARu98S_F056hevMmnLyvBAFH8ZLaLQ74O-2sKXoJQQEuGZDgPGulIFQsXmODYuA_eSGm4rCmdrLCiQ-BT0SLafmpXhw3n7-28kOddXULZrtvDl_tRX3ShsiRr1eRwUzZbYq6rQmxN3HqbByUsVnhUydVsFo-D6owXhWykHzt1zGO8M4GzAqD8jaMqroKd0CgQlt4lAYV7wFJKzOrUl2gt5pwHY5haxiu3PWM5pxYo8wpsuEBzqlfc-7XXHNJ1Bg2T9-Yd2weF8g-GjQgJ5PjfRSsQr1aUrTEnK6SgOcFMuRkYslpkMfw7FR9_vrRu_8ifA-uJm1yDl4Qug-jZrEKDwgiNfZhbwO_ACKgDlU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+Best+Predictive+General+Linear+Model+for+Data+Analysis%3A+A+Tolerance+Region+Algorithm+for+Prediction&rft.jtitle=Journal+of+applied+sciences+%28Asian+Network+for+Scientific+Information%29&rft.au=Kitsos%2C+C+P&rft.au=Zarikas%2C+Vasilios&rft.date=2013&rft.issn=1812-5654&rft.eissn=1812-5662&rft.volume=13&rft.issue=4&rft.spage=513&rft.epage=513&rft_id=info:doi/10.3923%2Fjas.2013.513.524&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1812-5654&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1812-5654&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1812-5654&client=summon |