Group Scheduling with Two Competing Agents on a Single Machine

We consider the scheduling problem in which two agents, each with a set of jobs, compete to perform their respective jobs on a single machine under a group technology (GT) environment. The jobs of agents are classified into groups according to their production similarities in advance, all jobs of th...

Full description

Saved in:
Bibliographic Details
Published inAsia-Pacific journal of operational research Vol. 31; no. 6; p. 1450043
Main Authors Li, Shi-Sheng, Chen, Ren-Xia
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Co. & Operational Research Society of Singapore 01.12.2014
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0217-5959
1793-7019
0217-5959
DOI10.1142/S0217595914500432

Cover

Abstract We consider the scheduling problem in which two agents, each with a set of jobs, compete to perform their respective jobs on a single machine under a group technology (GT) environment. The jobs of agents are classified into groups according to their production similarities in advance, all jobs of the same group are required to be processed contiguously on the machine. A sequence-independent setup time precedes the processing of each group. We propose a polynomial time solution for the problem of minimizing the maximum regular cost of one agent, subject to an upper bound on the maximum regular cost of the second agent. We also show that the problem of minimizing the total completion time of the first agent, subject to an upper bound on the maximum lateness of the second agent is strongly $\mathcal {NP}$ -hard. The case where all groups of the first agent have the same number of jobs is shown to be polynomially solvable.
AbstractList We consider the scheduling problem in which two agents, each with a set of jobs, compete to perform their respective jobs on a single machine under a group technology (GT) environment. The jobs of agents are classified into groups according to their production similarities in advance, all jobs of the same group are required to be processed contiguously on the machine. A sequence-independent setup time precedes the processing of each group. We propose a polynomial time solution for the problem of minimizing the maximum regular cost of one agent, subject to an upper bound on the maximum regular cost of the second agent. We also show that the problem of minimizing the total completion time of the first agent, subject to an upper bound on the maximum lateness of the second agent is strongly $\mathcal {NP}$ -hard. The case where all groups of the first agent have the same number of jobs is shown to be polynomially solvable.
We consider the scheduling problem in which two agents, each with a set of jobs, compete to perform their respective jobs on a single machine under a group technology (GT) environment. The jobs of agents are classified into groups according to their production similarities in advance, all jobs of the same group are required to be processed contiguously on the machine. A sequence-independent setup time precedes the processing of each group. We propose a polynomial time solution for the problem of minimizing the maximum regular cost of one agent, subject to an upper bound on the maximum regular cost of the second agent. We also show that the problem of minimizing the total completion time of the first agent, subject to an upper bound on the maximum lateness of the second agent is strongly [Formula: see text]-hard. The case where all groups of the first agent have the same number of jobs is shown to be polynomially solvable.
We consider the scheduling problem in which two agents, each with a set of jobs, compete to perform their respective jobs on a single machine under a group technology (GT) environment. The jobs of agents are classified into groups according to their production similarities in advance, all jobs of the same group are required to be processed contiguously on the machine. A sequence-independent setup time precedes the processing of each group. We propose a polynomial time solution for the problem of minimizing the maximum regular cost of one agent, subject to an upper bound on the maximum regular cost of the second agent. We also show that the problem of minimizing the total completion time of the first agent, subject to an upper bound on the maximum lateness of the second agent is strongly $\mathcal {NP}$-hard. The case where all groups of the first agent have the same number of jobs is shown to be polynomially solvable.
Author Chen, Ren-Xia
Li, Shi-Sheng
Author_xml – sequence: 1
  givenname: Shi-Sheng
  surname: Li
  fullname: Li, Shi-Sheng
  email: shishengli96@163.com
  organization: College of Science, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
– sequence: 2
  givenname: Ren-Xia
  surname: Chen
  fullname: Chen, Ren-Xia
  email: chenperfect@yeah.net
  organization: College of Science, Zhongyuan University of Technology, Zhengzhou 450007, P. R. China
BookMark eNplkFFLwzAUhYNMcJv-AN8CPldzkzZZXoQxdAoTHzafS5qkW0eX1KSl-O9tmfiypwvnnO9e7pmhifPOInQP5BEgpU9bQkFkMpOQZoSkjF6hKQjJEkFATtB0tJPRv0GzGI-EEMgonaLndfBdg7f6YE1XV26P-6o94F3v8cqfGtuO0nJvXRuxd1jh7SDUFn8ofaicvUXXpaqjvfubc_T1-rJbvSWbz_X7arlJNOWcJsC5Ypk1VmWFYQUXoiBSlrDQIGyhjTGKUmOoEamikC5SkRWCKUaYULoEwebo4by3Cf67s7HNj74LbjiZUwDOpOSSDSk4p3TwMQZb5k2oTir85EDysab8oqaBIWem96E2UVfDq1VZ6X_0EvkFp2hqGA
Cites_doi 10.1016/j.tcs.2006.07.011
10.1016/j.ejor.2010.01.005
10.1016/j.ijpe.2010.12.023
10.1023/A:1022231419049
10.1007/s10479-006-0164-y
10.1016/j.ejor.2010.03.003
10.1007/s10951-012-0274-0
10.1007/s10951-011-0253-x
10.1016/j.cor.2010.03.012
10.1007/978-94-009-4976-8
10.1016/j.ejor.2006.06.060
10.1016/j.ejor.2011.05.041
10.1287/opre.1030.0092
10.1287/opre.1090.0744
10.1007/s00170-009-2259-5
10.1287/opre.43.4.692
10.1287/mnsc.19.5.544
10.1016/j.ejor.2011.06.037
10.1007/s10878-006-9001-0
ContentType Journal Article
Copyright 2014, World Scientific Publishing Co. & Operational Research Society of Singapore
2014. World Scientific Publishing Co. & Operational Research Society of Singapore
Copyright_xml – notice: 2014, World Scientific Publishing Co. & Operational Research Society of Singapore
– notice: 2014. World Scientific Publishing Co. & Operational Research Society of Singapore
DBID AAYXX
CITATION
4T-
JQ2
DOI 10.1142/S0217595914500432
DatabaseName CrossRef
Docstoc
ProQuest Computer Science Collection
DatabaseTitle CrossRef
Docstoc
ProQuest Computer Science Collection
DatabaseTitleList
CrossRef
Docstoc
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Business
EISSN 1793-7019
0217-5959
ExternalDocumentID 10_1142_S0217595914500432
S0217595914500432
GroupedDBID 0R~
23N
3V.
4.4
5GY
7RO
7WY
8AI
8AO
8FE
8FG
8FL
8R4
8R5
8VB
ABPPZ
ABTAH
ABUWG
ADSJI
AENEX
AFKRA
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AXJJW
AZQEC
BENPR
BEZIV
BGLVJ
BKOMP
BPHCQ
CAG
CCPQU
COF
CS3
DWQXO
EBS
EBU
EJD
FAL
FJD
FJW
FRNLG
GNUQQ
GROUPED_ABI_INFORM_COMPLETE
HCIFZ
HZ~
K1G
K60
K6V
K6~
K7-
M0C
M0N
O9-
P2P
P62
P71
PQBIZ
PQBZA
PQQKQ
PROAC
Q2X
QWB
RWJ
RWL
RXW
S0X
TAE
TN5
ZL0
ZY4
~02
AAYXX
AHQJS
AMVHM
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
4T-
JQ2
ID FETCH-LOGICAL-c2662-166a35edea5bd3b677b099f18c17ebcddda22dd2d74a2148475b73a3037acf173
ISSN 0217-5959
IngestDate Mon Jun 30 06:05:11 EDT 2025
Wed Oct 01 02:58:18 EDT 2025
Fri Aug 23 08:20:02 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords agent scheduling
group technology
Single-machine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c2662-166a35edea5bd3b677b099f18c17ebcddda22dd2d74a2148475b73a3037acf173
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116399693
PQPubID 30752
ParticipantIDs proquest_journals_2116399693
crossref_primary_10_1142_S0217595914500432
worldscientific_primary_S0217595914500432
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20141200
PublicationDateYYYYMMDD 2014-12-01
PublicationDate_xml – month: 12
  year: 2014
  text: 20141200
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Asia-Pacific journal of operational research
PublicationYear 2014
Publisher World Scientific Publishing Co. & Operational Research Society of Singapore
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Co. & Operational Research Society of Singapore
– name: World Scientific Publishing Co. Pte., Ltd
References rf5
rf12
rf4
rf11
rf14
rf6
rf13
rf9
rf8
rf10
rf20
rf19
rf16
Garey M. R. (rf7) 1979
rf15
rf18
rf17
rf1
rf3
rf2
References_xml – ident: rf5
  doi: 10.1016/j.tcs.2006.07.011
– ident: rf19
  doi: 10.1016/j.ejor.2010.01.005
– ident: rf11
  doi: 10.1016/j.ijpe.2010.12.023
– ident: rf4
  doi: 10.1023/A:1022231419049
– ident: rf2
  doi: 10.1007/s10479-006-0164-y
– ident: rf14
  doi: 10.1016/j.ejor.2010.03.003
– ident: rf6
  doi: 10.1007/s10951-012-0274-0
– ident: rf12
  doi: 10.1007/s10951-011-0253-x
– ident: rf18
  doi: 10.1016/j.cor.2010.03.012
– ident: rf8
  doi: 10.1007/978-94-009-4976-8
– ident: rf3
  doi: 10.1016/j.ejor.2006.06.060
– ident: rf17
  doi: 10.1016/j.ejor.2011.05.041
– ident: rf1
  doi: 10.1287/opre.1030.0092
– ident: rf10
  doi: 10.1287/opre.1090.0744
– ident: rf13
  doi: 10.1007/s00170-009-2259-5
– ident: rf20
  doi: 10.1287/opre.43.4.692
– ident: rf9
  doi: 10.1287/mnsc.19.5.544
– volume-title: Computers and Intractability: A Guide to the theory of NP-Completeness
  year: 1979
  ident: rf7
– ident: rf15
  doi: 10.1016/j.ejor.2011.06.037
– ident: rf16
  doi: 10.1007/s10878-006-9001-0
SSID ssj0001522
ssib019635130
Score 1.9660615
Snippet We consider the scheduling problem in which two agents, each with a set of jobs, compete to perform their respective jobs on a single machine under a group...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Index Database
Publisher
StartPage 1450043
SubjectTerms Completion time
Group technology
Job shops
Lateness
Operations research
Production scheduling
Scheduling
Upper bounds
Title Group Scheduling with Two Competing Agents on a Single Machine
URI http://www.worldscientific.com/doi/abs/10.1142/S0217595914500432
https://www.proquest.com/docview/2116399693
Volume 31
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1793-7019
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0001522
  issn: 0217-5959
  databaseCode: AMVHM
  dateStart: 19971101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELegkxAvAwaIjg35gReYPGbHdtqXSdUEqhADiXaob5Edu7TSlExrp0n89Zw_4oSFB8ZL1FjJNbr7-Xx3vjsj9NYwJZjQGTmxI004s5yMjHbt7gwgRFtKM1c7fP5VTi_454VYdHZMXXXJVh-Xv_5aV_I_UoUxkKurkr2HZBNRGIDfIF-4goTh-k8yDpGkGfDd3FymqOr8tvbT3BczH01--ho2l3R8NIOBS3_Y0KrZTm8a0G7WisQEvW43ifrKXjfhwtgXKMWPv_hEgNlqTWYrGxdAnygQNNl3W5HFWnXDCpTfSdEIqTxev_icpW5U7Kw-9rj81vmEJk8wJZu6kht3qDd4Ebaj08ADImIcm4DboHNBRRDXFb6rlOPSsG41bF_Xc-Z3m4Gko0i58P0F24UtpRv2nnmIdhisAicDtDM5_zFN8R2njoR3qOJaTmO_-eaz4744_PWHHtE_LZvWXdn1vW83iZUd-2X-FO1GxwNPAoqeoQe22kOPmrqHPfSkOd8DR3X_HJ16fOEWX9jhCwO-cMIXDvjCdYUVDvjCEV8v0MWnj_OzKYnnbZASzDRGqJQqE9ZYJbTJtMxzDf7Dko5KmltdGmMUY8Ywk3PFwI3mudB5psAIylW5pHn2Eg2qurKvEKaqhBczuZTLkks6GoPdXWaKGsHhXtIhet_wqrgKbVWKUCLPih5jh-ig4WYRZ8CmYJQ641qOsyF6d4fDiWSP1P49nn2NHrcT4wANttc39hAs0K1-E2HzG3zygIY
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+Scheduling+with+Two+Competing+Agents+on+a+Single+Machine&rft.jtitle=Asia-Pacific+journal+of+operational+research&rft.au=Li%2C+Shi-Sheng&rft.au=Chen%2C+Ren-Xia&rft.date=2014-12-01&rft.pub=World+Scientific+Publishing+Co.+%26+Operational+Research+Society+of+Singapore&rft.issn=0217-5959&rft.eissn=1793-7019&rft.volume=31&rft.issue=6&rft_id=info:doi/10.1142%2FS0217595914500432&rft.externalDocID=S0217595914500432
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0217-5959&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0217-5959&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0217-5959&client=summon