Dynamic Crack Propagation Analysis Using Scaled Boundary Finite Element Method

The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly d...

Full description

Saved in:
Bibliographic Details
Published inTransactions of Tianjin University Vol. 19; no. 6; pp. 391 - 397
Main Author 林皋 朱朝磊 李建波 胡志强
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.12.2013
Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China%Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
Subjects
Online AccessGet full text
ISSN1006-4982
1995-8196
DOI10.1007/s12209-013-2114-5

Cover

Abstract The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
AbstractList The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method (SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor (DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor (SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
Author 林皋 朱朝磊 李建波 胡志强
AuthorAffiliation Faculty of Infrastructure Engineering,Dalian University of Technology;State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology
AuthorAffiliation_xml – name: Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China;State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China%Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
Author_xml – sequence: 1
  fullname: 林皋 朱朝磊 李建波 胡志强
BookMark eNp9kE1PwzAMhiMEEtvgB3ALdwpJmqbtcYwNkMaHBDtHaZJ2GV06kk5s_56MTiBx2MW2LD-237cPjm1jNQAXGF1jhNIbjwlBeYRwHBGMaZQcgR7O8yTKcM6OQ40Qi2iekVPQ936BEM1Rinvg-W5rxdJIOHJCfsBX16xEJVrTWDi0ot564-HMG1vBNylqreBts7ZKuC2cGGtaDce1Xmrbwifdzht1Bk5KUXt9vs8DMJuM30cP0fTl_nE0nEaSMIajosQllYxmRDKhcVIWRUqT0EQJU1oJndEQ40znMsc0RVJlqpCMlaQsmMI6HoCrbu-XsKWwFV80axf-9bw1wi7UZlNwTYIbiKEQByDtxqVrvHe65NK0PypbJ0zNMeI7F3nnIg8E37nIk0Dif-TKmWXQf5AhHePDrK20-_vuEHS5PzRvbPUZuN9LNENp0JLF3zdHkmU
CitedBy_id crossref_primary_10_2174_1874149501711010896
crossref_primary_10_4028_www_scientific_net_AMM_741_215
crossref_primary_10_1016_j_cma_2024_117014
crossref_primary_10_4028_www_scientific_net_MSF_961_137
crossref_primary_10_1016_j_tafmec_2018_09_015
Cites_doi 10.1007/s00466-002-0314-2
10.1115/1.3171868
10.1016/0168-874X(89)90008-5
10.1016/j.engfracmech.2006.06.018
10.1016/j.engfracmech.2006.02.004
10.1016/0045-7825(95)00781-U
10.1002/nme.1117
10.1007/BF00032384
10.1016/j.compstruc.2013.03.014
10.1016/0020-7683(72)90010-8
10.1115/1.3153734
10.1016/0020-7683(94)00282-2
10.1016/S0045-7825(97)00021-2
10.1002/nme.3177
10.1520/STP27383S
10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
10.1115/1.3153733
10.1016/j.matdes.2008.06.049
10.1061/(ASCE)0733-9399(1995)121:5(613)
10.1016/0022-5096(73)90029-X
10.1016/S0045-7949(01)00167-5
10.1017/CBO9780511546761
ContentType Journal Article
Copyright Tianjin University and Springer-Verlag Berlin Heidelberg 2013
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Tianjin University and Springer-Verlag Berlin Heidelberg 2013
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
~WA
AAYXX
CITATION
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s12209-013-2114-5
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
中文科技期刊数据库-7.0平台
中文科技期刊数据库- 镜像站点
CrossRef
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Engineering
DocumentTitleAlternate Dynamic Crack Propagation Analysis Using Scaled Boundary Finite Element Method
EISSN 1995-8196
EndPage 397
ExternalDocumentID tianjdxxb_e201306001
10_1007_s12209_013_2114_5
48072018
GrantInformation_xml – fundername: the Key Program of National Natural Science Foundation of China; the Science Fund for Creative Research Groups of National Natural Science Foundation of China; the Fundamental Research Funds for the Central Universities; the Young Scientists Fund of National Natural Science Foundation of China; China Postdoctoral Science Foundation
  funderid: (51138001); (51121005); (DUT13LK16); (51109134); (2011M500814)
GroupedDBID -03
-0C
-5B
-5G
-BR
-EM
-SC
-S~
-Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
29Q
29~
2B.
2C-
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
408
40D
40E
5VR
5VS
6NX
8TC
92D
92I
92L
92M
93E
93N
95-
95.
95~
96X
9D9
9DC
AAAVM
AABHQ
AAFGU
AAHNG
AAHTB
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABDZT
ABECU
ABFGW
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABMNI
ABMQK
ABNWP
ABPEJ
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFGCZ
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAG
CAJEC
CAJUS
CCEZO
CEKLB
CHBEP
COF
CQIGP
CS3
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HLICF
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9P
PF0
PT4
Q--
Q-2
QOS
R-C
R89
R9I
RIG
ROL
RPX
RSV
RT3
S16
S1Z
S27
S3B
SAP
SCL
SDH
SEG
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8S
TCJ
TGH
TSG
TSV
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
YLTOR
Z7R
ZMTXR
~A9
~WA
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ACDTI
ACPIV
AEFQL
AEMSY
AFBBN
AGQEE
AIGIU
H13
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
4A8
PSX
ID FETCH-LOGICAL-c2661-bf1f4c6482c6ae15fbb745f1f056dedae84eda38e9c91470cd8dbc66f2fb6d1e3
IEDL.DBID AGYKE
ISSN 1006-4982
IngestDate Thu May 29 04:11:18 EDT 2025
Wed Oct 01 02:59:15 EDT 2025
Thu Apr 24 23:03:27 EDT 2025
Fri Feb 21 02:33:39 EST 2025
Wed Feb 14 10:38:46 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords remeshing
scaled boundary finite element method
dynamic fracture
dynamic stress intensity factor
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2661-bf1f4c6482c6ae15fbb745f1f056dedae84eda38e9c91470cd8dbc66f2fb6d1e3
Notes 12-1248/T
scaled boundary finite element method dynamic stress intensity factor remeshing dynamic fracture
The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on scaled boundary finite element method(SBFEM) is extended to predict the dynamic crack propagation in brittle materials. The structure is firstly divided into a number of superelements, only the boundaries of which need to be discretized with line elements. In the SBFEM formulation, the stiffness and mass matrices of the super-elements can be coupled seamlessly with standard finite elements, thus the advantages of versatility and flexibility of the FEM are well maintained. The transient response of the structure can be calculated directly in the time domain using a standard time-integration scheme. Then the dynamic stress intensity factor(DSIF) during crack propagation can be solved analytically due to the semi-analytical nature of SBFEM. Only the fine mesh discretization for the crack-tip super-element is needed to ensure the required accuracy for the determination of stress intensity factor(SIF). According to the predicted crack-tip position, a simple remeshing algorithm with the minimum mesh changes is suggested to simulate the dynamic crack propagation. Numerical examples indicate that the proposed method can be effectively used to deal with the dynamic crack propagation in a finite sized rectangular plate including a central crack. Comparison is made with the results available in the literature, which shows good agreement between each other.
PageCount 7
ParticipantIDs wanfang_journals_tianjdxxb_e201306001
crossref_citationtrail_10_1007_s12209_013_2114_5
crossref_primary_10_1007_s12209_013_2114_5
springer_journals_10_1007_s12209_013_2114_5
chongqing_primary_48072018
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20131200
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 20131200
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Transactions of Tianjin University
PublicationTitleAbbrev Trans. Tianjin Univ
PublicationTitleAlternate Transactions of Tianjin University
PublicationTitle_FL Transactions of Tianjin University
PublicationYear 2013
Publisher Springer Berlin Heidelberg
Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China%Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
Publisher_xml – name: Springer Berlin Heidelberg
– name: State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China%Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
– name: Faculty of Infrastructure Engineering, Dalian University of Technology, Dalian 116024, China
References Yang, Deeks, Hao (CR19) 2007; 74
Aoki, Kishimoto, Kondo (CR26) 1978; 14
Belytschko, Lu, Gu (CR9) 1995; 32
Wolf (CR12) 2003
Song, Wolf (CR13) 1995; 121
Song, Wolf (CR15) 2002; 80
Deeks, Wolf (CR22) 2002; 28
Yagawa, Sakai, Ando (CR1) 1977; 627
Wolf, Song (CR14) 1995; 123
Zhang, Song, Wu (CR7) 2005; 11
Nishioka, Atluri (CR3) 1980; 47
Freund (CR25) 1973; 21
Koh, Haber (CR5) 1986; 53
Song (CR18) 2004; 61
Yang (CR16) 2006; 73
Belytschko, Tabbara (CR10) 1996; 39
Shahani, Amini Fasakhodi (CR8) 2009; 30
Wolf, Song (CR11) 1996
Ooi, Yang (CR20) 2011; 88
Sih, Embley, Ravera (CR24) 1972; 8
Freund (CR23) 1990
Kanninen (CR2) 1978
Song, Wolf (CR21) 1997; 147
Nishioka, Atluri (CR4) 1980; 47
Wawrzynek, Ingraffea (CR6) 1989; 5
Zhu, Lin, Li (CR17) 2013; 121
A R Shahani (2114_CR8) 2009; 30
Z J Yang (2114_CR19) 2007; 74
M F Kanninen (2114_CR2) 1978
G C Sih (2114_CR24) 1972; 8
C Song (2114_CR21) 1997; 147
J P Wolf (2114_CR11) 1996
T Belytschko (2114_CR9) 1995; 32
A J Deeks (2114_CR22) 2002; 28
C L Zhu (2114_CR17) 2013; 121
E T Ooi (2114_CR20) 2011; 88
C Song (2114_CR18) 2004; 61
L B Freund (2114_CR25) 1973; 21
T Nishioka (2114_CR4) 1980; 47
P A Wawrzynek (2114_CR6) 1989; 5
Z J Yang (2114_CR16) 2006; 73
L B Freund (2114_CR23) 1990
J P Wolf (2114_CR14) 1995; 123
S Aoki (2114_CR26) 1978; 14
G Yagawa (2114_CR1) 1977; 627
J P Wolf (2114_CR12) 2003
H M Koh (2114_CR5) 1986; 53
C Song (2114_CR15) 2002; 80
T Belytschko (2114_CR10) 1996; 39
X G Zhang (2114_CR7) 2005; 11
C Song (2114_CR13) 1995; 121
T Nishioka (2114_CR3) 1980; 47
References_xml – start-page: 612
  year: 1978
  end-page: 633
  ident: CR2
  publication-title: [M]
– year: 1996
  ident: CR11
  publication-title: [M]
– volume: 28
  start-page: 489
  issue: 6
  year: 2002
  end-page: 504
  ident: CR22
  article-title: A virtual work derivation of the scaled boundary finite-element method for elastostatics[J]
  publication-title: Computational Mechanics
  doi: 10.1007/s00466-002-0314-2
– volume: 53
  start-page: 839
  issue: 4
  year: 1986
  end-page: 844
  ident: CR5
  article-title: Elastodynamic formulation of the Eulerian-Lagrangian kinematic description[J]
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3171868
– volume: 5
  start-page: 87
  issue: 1
  year: 1989
  end-page: 96
  ident: CR6
  article-title: An interactive approach to local remeshing around a propagating crack[J]
  publication-title: Finite Elements in Analysis and Design
  doi: 10.1016/0168-874X(89)90008-5
– volume: 74
  start-page: 669
  issue: 5
  year: 2007
  end-page: 687
  ident: CR19
  article-title: Transient dynamic fracture analysis using scaled boundary finite element method: A frequency-domain approach[J]
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2006.06.018
– volume: 73
  start-page: 1711
  issue: 12
  year: 2006
  end-page: 1731
  ident: CR16
  article-title: Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method[J]
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2006.02.004
– volume: 123
  start-page: 355
  issue: 4
  year: 1995
  end-page: 370
  ident: CR14
  article-title: Consistent infinitesimal finite-element-cell method: In-plane motion[J]
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/0045-7825(95)00781-U
– volume: 61
  start-page: 1332
  issue: 8
  year: 2004
  end-page: 1357
  ident: CR18
  article-title: A super-element for crack analysis in the time domain[J]
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.1117
– volume: 14
  start-page: 59
  issue: 1
  year: 1978
  end-page: 68
  ident: CR26
  article-title: Elastodynamic analysis of crack by finite-element method using singular element[J]
  publication-title: International Journal of Fracture
  doi: 10.1007/BF00032384
– year: 2003
  ident: CR12
  publication-title: [M]
– volume: 121
  start-page: 76
  year: 2013
  end-page: 86
  ident: CR17
  article-title: Modelling cohesive crack growth in concrete beams using scaled boundary finite element method based on super-element remeshing technique[J]
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2013.03.014
– volume: 8
  start-page: 977
  issue: 7
  year: 1972
  end-page: 993
  ident: CR24
  article-title: Impact response of a finite crack in plane extension[J]
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/0020-7683(72)90010-8
– volume: 47
  start-page: 577
  issue: 3
  year: 1980
  end-page: 582
  ident: CR4
  article-title: Numerical modeling of dynamic crack propagation in finite bodies by moving singular elements (Part 2): Results[J]
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3153734
– volume: 32
  start-page: 2547
  issue: 17/18
  year: 1995
  end-page: 2570
  ident: CR9
  article-title: Element-free Galerkin methods for static and dynamic fracture[J]
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/0020-7683(94)00282-2
– volume: 147
  start-page: 329
  issue: 3/4
  year: 1997
  end-page: 355
  ident: CR21
  article-title: The scaled boundary finite-element method — alias consistent infinitesimal finite-element cell method — for elastodynamics[J]
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(97)00021-2
– volume: 88
  start-page: 329
  issue: 4
  year: 2011
  end-page: 349
  ident: CR20
  article-title: Modelling dynamic crack propagation using the scaled boundary finite element method[J]
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.3177
– volume: 627
  start-page: 109
  year: 1977
  end-page: 122
  ident: CR1
  article-title: Analysis of a rapidly propagating crack using finite elements[C]
  publication-title: Fast Fracture and Crack Arrest. ASTM STP. Chicago, USA
  doi: 10.1520/STP27383S
– year: 1990
  ident: CR23
  publication-title: [M]
– volume: 39
  start-page: 923
  issue: 6
  year: 1996
  end-page: 938
  ident: CR10
  article-title: Dynamic fracture using elementfree Galerkin methods[J]
  publication-title: International Journal for Numerical Methods Engineering
  doi: 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
– volume: 47
  start-page: 570
  issue: 3
  year: 1980
  end-page: 576
  ident: CR3
  article-title: Numerical modeling of dynamic crack propagation in finite bodies by moving singular elements (Part 1): Formulation[J]
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3153733
– volume: 30
  start-page: 1032
  issue: 4
  year: 2009
  end-page: 1041
  ident: CR8
  article-title: Finite element analysis of dynamic crack propagation using remeshing technique[J]
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2008.06.049
– volume: 11
  start-page: 59
  issue: 1
  year: 2005
  end-page: 65
  ident: CR7
  article-title: Calculation model of equivalent strength for induced crack based on double- fracture theory and its optimizing setting in RCC arch dam[J]
  publication-title: Transactions of Tianjin University
– volume: 121
  start-page: 613
  issue: 5
  year: 1995
  end-page: 619
  ident: CR13
  article-title: Consistent infinitesimal finite-elementcell method: Out-of-plane motion[J]
  publication-title: Journal of Engineering Mechanics (ASCE)
  doi: 10.1061/(ASCE)0733-9399(1995)121:5(613)
– volume: 21
  start-page: 47
  issue: 2
  year: 1973
  end-page: 61
  ident: CR25
  article-title: Crack propagation in an elastic solid subjected to general loading (III): Stress wave loading[J]
  publication-title: Journal of the Mechanics and Physics of Solids
  doi: 10.1016/0022-5096(73)90029-X
– volume: 80
  start-page: 183
  issue: 2
  year: 2002
  end-page: 197
  ident: CR15
  article-title: Semi-analytical representation of stress singularities as occurring in cracks in anisotropic multimaterials with the scaled boundary finite-element method[J]
  publication-title: Computers & Structures
  doi: 10.1016/S0045-7949(01)00167-5
– volume-title: Finite-element Modelling of Unbounded Media[M]
  year: 1996
  ident: 2114_CR11
– volume: 80
  start-page: 183
  issue: 2
  year: 2002
  ident: 2114_CR15
  publication-title: Computers & Structures
  doi: 10.1016/S0045-7949(01)00167-5
– volume: 73
  start-page: 1711
  issue: 12
  year: 2006
  ident: 2114_CR16
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2006.02.004
– volume: 21
  start-page: 47
  issue: 2
  year: 1973
  ident: 2114_CR25
  publication-title: Journal of the Mechanics and Physics of Solids
  doi: 10.1016/0022-5096(73)90029-X
– volume: 47
  start-page: 577
  issue: 3
  year: 1980
  ident: 2114_CR4
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3153734
– volume: 5
  start-page: 87
  issue: 1
  year: 1989
  ident: 2114_CR6
  publication-title: Finite Elements in Analysis and Design
  doi: 10.1016/0168-874X(89)90008-5
– volume: 61
  start-page: 1332
  issue: 8
  year: 2004
  ident: 2114_CR18
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.1117
– volume: 11
  start-page: 59
  issue: 1
  year: 2005
  ident: 2114_CR7
  publication-title: Transactions of Tianjin University
– volume: 88
  start-page: 329
  issue: 4
  year: 2011
  ident: 2114_CR20
  publication-title: International Journal for Numerical Methods in Engineering
  doi: 10.1002/nme.3177
– volume: 14
  start-page: 59
  issue: 1
  year: 1978
  ident: 2114_CR26
  publication-title: International Journal of Fracture
  doi: 10.1007/BF00032384
– volume: 121
  start-page: 613
  issue: 5
  year: 1995
  ident: 2114_CR13
  publication-title: Journal of Engineering Mechanics (ASCE)
  doi: 10.1061/(ASCE)0733-9399(1995)121:5(613)
– volume: 32
  start-page: 2547
  issue: 17/18
  year: 1995
  ident: 2114_CR9
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/0020-7683(94)00282-2
– volume-title: Dynamic Fracture Mechanics[M]
  year: 1990
  ident: 2114_CR23
  doi: 10.1017/CBO9780511546761
– volume: 30
  start-page: 1032
  issue: 4
  year: 2009
  ident: 2114_CR8
  publication-title: Materials & Design
  doi: 10.1016/j.matdes.2008.06.049
– volume: 47
  start-page: 570
  issue: 3
  year: 1980
  ident: 2114_CR3
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3153733
– volume: 53
  start-page: 839
  issue: 4
  year: 1986
  ident: 2114_CR5
  publication-title: Journal of Applied Mechanics
  doi: 10.1115/1.3171868
– volume: 28
  start-page: 489
  issue: 6
  year: 2002
  ident: 2114_CR22
  publication-title: Computational Mechanics
  doi: 10.1007/s00466-002-0314-2
– volume-title: The Scaled Boundary Finite Element Method [M]
  year: 2003
  ident: 2114_CR12
– volume: 147
  start-page: 329
  issue: 3/4
  year: 1997
  ident: 2114_CR21
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/S0045-7825(97)00021-2
– start-page: 612
  volume-title: Numerical Methods in Fracture Mechanics[M]
  year: 1978
  ident: 2114_CR2
– volume: 627
  start-page: 109
  year: 1977
  ident: 2114_CR1
  publication-title: Fast Fracture and Crack Arrest. ASTM STP. Chicago, USA
  doi: 10.1520/STP27383S
– volume: 121
  start-page: 76
  year: 2013
  ident: 2114_CR17
  publication-title: Computers & Structures
  doi: 10.1016/j.compstruc.2013.03.014
– volume: 74
  start-page: 669
  issue: 5
  year: 2007
  ident: 2114_CR19
  publication-title: Engineering Fracture Mechanics
  doi: 10.1016/j.engfracmech.2006.06.018
– volume: 39
  start-page: 923
  issue: 6
  year: 1996
  ident: 2114_CR10
  publication-title: International Journal for Numerical Methods Engineering
  doi: 10.1002/(SICI)1097-0207(19960330)39:6<923::AID-NME887>3.0.CO;2-W
– volume: 123
  start-page: 355
  issue: 4
  year: 1995
  ident: 2114_CR14
  publication-title: Computer Methods in Applied Mechanics and Engineering
  doi: 10.1016/0045-7825(95)00781-U
– volume: 8
  start-page: 977
  issue: 7
  year: 1972
  ident: 2114_CR24
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/0020-7683(72)90010-8
SSID ssj0049071
Score 1.9246058
Snippet The prediction of dynamic crack propagation in brittle materials is still an important issue in many engineering fields. The remeshing technique based on...
SourceID wanfang
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 391
SubjectTerms Engineering
Humanities and Social Sciences
Mechanical Engineering
multidisciplinary
Science
动态应力强度因子
动态裂纹扩展
应用
有限元耦合
比例边界有限元法
网格重划
脆性材料
裂纹尖端
Title Dynamic Crack Propagation Analysis Using Scaled Boundary Finite Element Method
URI http://lib.cqvip.com/qk/85460X/201306/48072018.html
https://link.springer.com/article/10.1007/s12209-013-2114-5
https://d.wanfangdata.com.cn/periodical/tianjdxxb-e201306001
Volume 19
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1995-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0049071
  issn: 1006-4982
  databaseCode: AFBBN
  dateStart: 20080201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1995-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0049071
  issn: 1006-4982
  databaseCode: AGYKE
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1995-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0049071
  issn: 1006-4982
  databaseCode: U2A
  dateStart: 20081001
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BcmkPpdBWLC_50ErQKmjjOF7vcUV5iKqcWImerIw93haq0O4uEvDrsRObpRVC4hZFtuN47PE3mplvAD6WVKINVIgqOAkFWcyQCvJPaHoiHyA1pRO-n8rjkTg5L89jHvc0Rbsnl2SjqefJbpw3sT1F5o0WkZWLsNTQbXVgaXj049tBUsDC23uNnRWMZTFQPDkznxokUCr8vKrHf_0H_72a0iSabJ7aVfX40cVzuAxnacptvMnl3vUM98zdf2yOL_ynt_AmAlE2bHfOCixQvQqvH9ETrsJKPPhTthPZqXffwenXtoY9M5PKXDI_La-SGvGyKhKcsBBMP2ZTL36yDJvCTZNb5n4FfMuoDVhnbe3q9zA6PDjbP85iUYbMhLs8Q5c7YaRQ3MiK8tIh9kXpX3okZclWpLzAq0LRwAxy0e8ZqywaKR13KG1OxQfo1Fc1rQHjTnp0Y_pcmFJgn9ApKclyLIQVqHgX1h9ko_-05Bs6pMB70KK60EvC0ibSmYeqGr_1nIg5LK72i6vD4uqyC58fuqThnmn8JYlMx2M9fa71p7hJ5o2Dhr6wNzeoiQf_cICW6y8adQNehZ5t9MwmdGaTa9ryGGiG23HPb8PiiA_vAUQf_Xs
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-N8QB7QNsA0cHADyDxoUiN47ju4wRMHWx9aqW-WTn7XGBTtrWdVP57fImzDglN4i2KnEvkX3wfurvfAbwtqUTPVIiGk4SKPGZIBcUrdH2VD5Ga0QlnYz2aqm-zcpb6uJddtXuXkmw09abZTcqmtqfIYtCisvIBPGT-KibMn8qjTv2qGO01URaHympoZJfK_JcIJlT4cVnPr-Pr_jZM3Sc0vTx1qOr5HbNzvAtPkr8ojlqA92CL6n3YucMiuA976XwuxftEIv3hKYy_tKPmhVtU7lxEPRk1R4OCqBIPieCa97lYRpTIC2zmKy1-i_CT3VBBbV25aEdMP4Pp8dfJ51GWZidkjk1uhiEPymllpNMV5WVAHKgy3owOjydfkYm4VIWhoRvmatB33nh0WgcZUPuciuewXV_W9AKEDDo6IW4glSsVDgiD0Zq8xEJ5hUb24OB2E-1Vy5FhuVM9-hamB_1uV61LrOM8_OLCbviSGRQbQbEMii178PH2kU7cPYs_dVDZdPqW961-l9DcLGZF-suv12hJchqXPcCD_5L6Bh6NJmen9vRk_P0lPGYpbcHLK9heLW7oMLotK3zd_KZ_AIYQ4rs
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3daxQxEB9qC6IPYqvi1Wrz0IIfLL3NZnO5x2I9Wm0PHzzoW9hJJmc_2Na7E-p_38xutldBCr4tSzK75JdMZpiZ3wDslFSiZypEw0FCRR4zpILiE7q-yodITeuEk7E-nKivp-Vp6nM677Ldu5BkW9PALE31Yu_ah71l4ZuUTZ5PkUUHRmXlI1hTzJMQN_RE7neqWEXPr_G42G1WQyO7sOa_RDC5ws-revorfvrvS6r7naaupw5VPb13BY2ew7NkO4r9Fux1WKF6A57eYxTcgPV0VufifSKU_vACxgdt23nhZpW7EFFnRi3SICKqxEkiOP99KuYRMfICm15Lsz8inLFJKqjNMRdtu-mXMBl9-fH5MEt9FDLH12-GIQ_KaWWk0xXlZUAcqDK-jMaPJ1-RiRhVhaGhG-Zq0HfeeHRaBxlQ-5yKV7BaX9X0GoQMOhokbiCVKxUOCIPRmrzEQnmFRvZg824R7XXLl2G5aj3aGaYH_W5VrUsM5NwI49IuuZMZFBtBsQyKLXvw8W5KJ-6BwZ86qGw6ifOHRu8mNJeDWame-5sbtCQ5pMvW4OZ_Sd2Gx98PRvb4aPztDTxhIW3uyxasLma_6W20YBb4rtmlt66W5vc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+crack+propagation+analysis+using+scaled+boundary+finite+element+method&rft.jtitle=Transactions+of+Tianjin+University&rft.au=Lin%2C+Gao&rft.au=Zhu%2C+Chaolei&rft.au=Li%2C+Jianbo&rft.au=Hu%2C+Zhiqiang&rft.date=2013-12-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1006-4982&rft.eissn=1995-8196&rft.volume=19&rft.issue=6&rft.spage=391&rft.epage=397&rft_id=info:doi/10.1007%2Fs12209-013-2114-5&rft.externalDocID=10_1007_s12209_013_2114_5
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85460X%2F85460X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Ftianjdxxb-e%2Ftianjdxxb-e.jpg