Distributed Optimal Control of Sensor Networks for Dynamic Target Tracking

This paper presents a distributed optimal control approach for managing omnidirectional sensor networks deployed to cooperatively track moving targets in a region of interest. Several authors have shown that under proper assumptions, the performance of mobile sensors is a function of the sensor dist...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on control of network systems Vol. 5; no. 1; pp. 142 - 153
Main Authors Foderaro, Greg, Pingping Zhu, Hongchuan Wei, Wettergren, Thomas A., Ferrari, Silvia
Format Journal Article
LanguageEnglish
Published IEEE 01.03.2018
Subjects
Online AccessGet full text
ISSN2325-5870
2372-2533
DOI10.1109/TCNS.2016.2583070

Cover

Abstract This paper presents a distributed optimal control approach for managing omnidirectional sensor networks deployed to cooperatively track moving targets in a region of interest. Several authors have shown that under proper assumptions, the performance of mobile sensors is a function of the sensor distribution. In particular, the probability of cooperative track detection, also known as track coverage, can be shown to be an integral function of a probability density function representing the macroscopic sensor network state. Thus, a mobile sensor network deployed to detect moving targets can be viewed as a multiscale dynamical system in which a time-varying probability density function can be identified as a restriction operator, and optimized subject to macroscopic dynamics represented by the advection equation. Simulation results show that the distributed control approach is capable of planning the motion of hundreds of cooperative sensors, such that their effectiveness is significantly increased compared to that of existing uniform, grid, random, and stochastic gradient methods.
AbstractList This paper presents a distributed optimal control approach for managing omnidirectional sensor networks deployed to cooperatively track moving targets in a region of interest. Several authors have shown that under proper assumptions, the performance of mobile sensors is a function of the sensor distribution. In particular, the probability of cooperative track detection, also known as track coverage, can be shown to be an integral function of a probability density function representing the macroscopic sensor network state. Thus, a mobile sensor network deployed to detect moving targets can be viewed as a multiscale dynamical system in which a time-varying probability density function can be identified as a restriction operator, and optimized subject to macroscopic dynamics represented by the advection equation. Simulation results show that the distributed control approach is capable of planning the motion of hundreds of cooperative sensors, such that their effectiveness is significantly increased compared to that of existing uniform, grid, random, and stochastic gradient methods.
Author Hongchuan Wei
Pingping Zhu
Wettergren, Thomas A.
Ferrari, Silvia
Foderaro, Greg
Author_xml – sequence: 1
  givenname: Greg
  surname: Foderaro
  fullname: Foderaro, Greg
  email: greg.foderaro@duke.edu
  organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA
– sequence: 2
  surname: Pingping Zhu
  fullname: Pingping Zhu
  email: pingping.zhu@cornell.edu
  organization: Sibley Sch. of Mech. & Aerosp. Eng., Cornell Univ., Ithaca, NY, USA
– sequence: 3
  surname: Hongchuan Wei
  fullname: Hongchuan Wei
  email: hongchuan.wei@duke.edu
  organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA
– sequence: 4
  givenname: Thomas A.
  surname: Wettergren
  fullname: Wettergren, Thomas A.
  email: t.a.wettergren@ieee.org
  organization: Naval Undersea Warfare Center, Newport, RI, USA
– sequence: 5
  givenname: Silvia
  surname: Ferrari
  fullname: Ferrari, Silvia
  email: ferrari@cornell.edu
  organization: Sibley Sch. of Mech. & Aerosp. Eng., Cornell Univ., Ithaca, NY, USA
BookMark eNp9kMtOAjEUhhuDiYg8gHHTFxg8bee6NIOihsCCcT3plB5SGaakrTG8vTOBuHDh6px_8Z3Ld0tGne00IfcMZoxB8ViVq82MA0tnPMkFZHBFxlxkPOKJEKOh50mU5BnckKn3nwDAeNJnMSbvc-ODM81X0Fu6PgZzkC0tbRecbalFutGdt46udPi2bu8p9mF-6uTBKFpJt9OBVk6qvel2d-QaZev19FIn5OPluSpfo-V68VY-LSPF0yREqFmRIhZNmguELC-wgTxG2TRCoWgUII8hSTVylUuJqBuUsd6iYMDyVIKYEHaeq5z13mmsj64_251qBvXgox581IOP-uKjZ7I_jDJBBjM8Kk37L_lwJo3W-ndTFhdpIYT4AS-QcSc
CODEN ITCNAY
CitedBy_id crossref_primary_10_1016_j_neucom_2018_07_046
crossref_primary_10_1109_TAC_2018_2879946
crossref_primary_10_1109_TIE_2020_2967739
crossref_primary_10_1109_TCNS_2020_2975228
crossref_primary_10_1109_TETCI_2024_3386837
crossref_primary_10_1109_TCNS_2021_3059794
crossref_primary_10_1109_TCNS_2021_3059793
crossref_primary_10_1109_LCSYS_2020_3004417
crossref_primary_10_1002_rnc_6090
crossref_primary_10_1109_TNSE_2023_3329832
crossref_primary_10_1049_iet_rsn_2019_0178
crossref_primary_10_2514_1_G004861
crossref_primary_10_1109_JIOT_2021_3125530
crossref_primary_10_1007_s12555_022_0558_x
crossref_primary_10_1109_ACCESS_2019_2902518
crossref_primary_10_1109_TCYB_2019_2901515
crossref_primary_10_1109_TCYB_2023_3302288
crossref_primary_10_1007_s41870_021_00616_y
crossref_primary_10_3390_math10244656
crossref_primary_10_1016_j_aej_2020_05_012
crossref_primary_10_1109_TCYB_2022_3190323
crossref_primary_10_1109_TAC_2018_2849584
crossref_primary_10_1109_TCNS_2022_3181550
crossref_primary_10_3390_s19071524
crossref_primary_10_1016_j_jfranklin_2020_04_046
crossref_primary_10_1109_TCNS_2021_3087621
crossref_primary_10_1109_ACCESS_2022_3175425
crossref_primary_10_1109_TCNS_2019_2913619
crossref_primary_10_1016_j_buildenv_2021_108725
crossref_primary_10_1109_TCYB_2023_3238170
Cites_doi 10.1023/A:1016639210559
10.1007/s10846-009-9318-x
10.1109/TAES.2004.1386888
10.1109/JOE.2009.2025643
10.1007/BFb0067703
10.1109/ROBOT.2010.5509534
10.1109/TRA.2004.824698
10.1103/PhysRevE.77.026309
10.1002/0471721182
10.1109/CDC.2009.5400166
10.1109/CDC.2013.6760478
10.1109/MCS.2015.2512034
10.1109/MCS.2007.384124
10.1109/OCEANS.2007.4449130
10.1016/j.automatica.2013.09.014
10.1109/TRO.2009.2024997
10.3390/robotics2010001
10.1145/1525856.1525864
10.1109/JSEN.2009.2025836
10.1137/07067934X
10.1016/0960-0779(94)90130-9
10.2514/2.4231
10.1002/0471221279
10.1109/TC.2002.1146711
10.1109/TSMCB.2010.2041449
10.1109/CDC.2008.4739482
10.1007/978-1-4615-4022-9
10.1109/TAC.2015.2405292
10.1109/CDC.2010.5718021
10.1017/CBO9780511840531
10.1109/ACC.2007.4282852
10.1109/TC.2013.43
10.1109/ACC.2007.4282825
10.1023/A:1024596016427
10.1177/1548512911414599
10.1109/TC.2008.56
10.1109/TAES.2008.4517006
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TCNS.2016.2583070
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2372-2533
EndPage 153
ExternalDocumentID 10_1109_TCNS_2016_2583070
7496933
Genre orig-research
GrantInformation_xml – fundername: ONR
  grantid: 321
GroupedDBID 0R~
4.4
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABJNI
ABQJQ
ABVLG
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
OCL
PQQKQ
RIA
RIE
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-fe196ff9b683f0789fb084fabb3cf3bc0f24056ef2c8aaffebfa4edf310186a03
IEDL.DBID RIE
ISSN 2325-5870
IngestDate Thu Apr 24 23:11:20 EDT 2025
Wed Oct 01 04:44:46 EDT 2025
Wed Aug 27 03:08:05 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-fe196ff9b683f0789fb084fabb3cf3bc0f24056ef2c8aaffebfa4edf310186a03
PageCount 12
ParticipantIDs crossref_primary_10_1109_TCNS_2016_2583070
crossref_citationtrail_10_1109_TCNS_2016_2583070
ieee_primary_7496933
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-March
2018-3-00
PublicationDateYYYYMMDD 2018-03-01
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-March
PublicationDecade 2010
PublicationTitle IEEE transactions on control of network systems
PublicationTitleAbbrev TCNS
PublicationYear 2018
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ny (ref34) 0
ref11
ref10
(ref48) 2004
foderaro (ref19) 0
ref17
ref16
ref18
gelfand (ref42) 1963
bar-shalom (ref37) 1993; 393
ref46
ref45
ref47
ref44
ref49
ref8
ref7
cai (ref14) 2009; 39
ref4
ref3
ref6
ref5
bar-shalom (ref38) 2000; iii
ref35
ref36
ref31
ref30
ref33
ref32
ref2
boyd (ref40) 2001
ref1
kirk (ref43) 1970
ref39
bernard (ref9) 0
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
tannehille (ref41) 1997
References_xml – volume: 393
  year: 1993
  ident: ref37
  publication-title: Estimation and Tracking Principles Techniques and Software
– ident: ref1
  doi: 10.1023/A:1016639210559
– ident: ref12
  doi: 10.1007/s10846-009-9318-x
– year: 2004
  ident: ref48
  publication-title: Fmincon Function
– ident: ref31
  doi: 10.1109/TAES.2004.1386888
– volume: 39
  year: 2009
  ident: ref14
  article-title: Information-driven sensor path planning by approximate cell decomposition
  publication-title: IEEE Trans Syst Man Cybern B Cybern
– ident: ref8
  doi: 10.1109/JOE.2009.2025643
– ident: ref47
  doi: 10.1007/BFb0067703
– ident: ref16
  doi: 10.1109/JOE.2009.2025643
– year: 0
  ident: ref19
  article-title: A decentralized kernel density estimation approach to distributed robot path planning
  publication-title: Proc Neural Inf Process Syst Conf
– ident: ref28
  doi: 10.1109/ROBOT.2010.5509534
– ident: ref26
  doi: 10.1109/TRA.2004.824698
– ident: ref44
  doi: 10.1103/PhysRevE.77.026309
– ident: ref33
  doi: 10.1002/0471721182
– year: 1970
  ident: ref43
  publication-title: Optimal Control Theory An Introduction
– ident: ref7
  doi: 10.1109/CDC.2009.5400166
– ident: ref17
  doi: 10.1109/CDC.2013.6760478
– ident: ref46
  doi: 10.1109/MCS.2015.2512034
– ident: ref27
  doi: 10.1109/MCS.2007.384124
– ident: ref32
  doi: 10.1109/OCEANS.2007.4449130
– ident: ref18
  doi: 10.1016/j.automatica.2013.09.014
– ident: ref24
  doi: 10.1109/TRO.2009.2024997
– ident: ref23
  doi: 10.3390/robotics2010001
– ident: ref25
  doi: 10.1145/1525856.1525864
– start-page: 1243
  year: 0
  ident: ref9
  article-title: A geometric transversals approach to track coverage of maneuvering targets
  publication-title: Proc IEEE Conf Dec Control
– ident: ref4
  doi: 10.1109/JSEN.2009.2025836
– ident: ref13
  doi: 10.1137/07067934X
– ident: ref45
  doi: 10.1016/0960-0779(94)90130-9
– year: 1997
  ident: ref41
  publication-title: Computational Fluid Mechanics and Heat Transfer
– ident: ref49
  doi: 10.2514/2.4231
– ident: ref36
  doi: 10.1002/0471221279
– ident: ref3
  doi: 10.1109/TC.2002.1146711
– ident: ref21
  doi: 10.1109/TSMCB.2010.2041449
– ident: ref22
  doi: 10.1109/CDC.2008.4739482
– ident: ref39
  doi: 10.1007/978-1-4615-4022-9
– ident: ref29
  doi: 10.1109/TAC.2015.2405292
– volume: iii
  year: 2000
  ident: ref38
  publication-title: Multitarget-Multisensor Tracking Applications and Advances
– ident: ref20
  doi: 10.1109/CDC.2010.5718021
– ident: ref35
  doi: 10.1017/CBO9780511840531
– ident: ref15
  doi: 10.1109/ACC.2007.4282852
– ident: ref10
  doi: 10.1109/TC.2013.43
– year: 1963
  ident: ref42
  publication-title: Calculus of Variations
– ident: ref6
  doi: 10.1109/ACC.2007.4282825
– year: 2001
  ident: ref40
  publication-title: Chebyshev and Fourier Spectral Methods
– start-page: 5486
  year: 0
  ident: ref34
  article-title: Sensor-based robot deployment algorithms
  publication-title: Proc IEEE Conf Dec Control
– ident: ref2
  doi: 10.1023/A:1024596016427
– ident: ref11
  doi: 10.1177/1548512911414599
– ident: ref5
  doi: 10.1109/TC.2008.56
– ident: ref30
  doi: 10.1109/TAES.2008.4517006
SSID ssj0001255873
Score 2.3268423
Snippet This paper presents a distributed optimal control approach for managing omnidirectional sensor networks deployed to cooperatively track moving targets in a...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms Distributed control
Mobile communication
mobile sensor networks
multiscale dynamical systems
Optimal control
Probability density function
Robot sensing systems
Target tracking
track coverage
Vehicles
Title Distributed Optimal Control of Sensor Networks for Dynamic Target Tracking
URI https://ieeexplore.ieee.org/document/7496933
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library (IEL)
  customDbUrl:
  eissn: 2372-2533
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001255873
  issn: 2325-5870
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTjDwKojykgcmRFI38SsjKlRVpZahrdQtip3zAjSopAu_HjtOq4IQYosiW7LubN_D332H0C3NuYRckKAnMggoZPZIgSFBEmkBEWUSqiKx8YQP53S0YIsGut_WwgBABT6D0H1Wb_l5odcuVdYVNOE2AG-ippDc12rt5FMYkyKuHy57JOnO-pOpw27xMGLSbe1vpmenl0plSgaHaLxZhEeQvITrUoX68wc_439XeYQOap8SP_hNcIwasDxB-ztMg200enQEua63FeT42V4Tb3ZC38PUcWHw1EazxQpPPCj8A1tXFj_6ZvV4VoHFsbVq2uXVT9F88DTrD4O6jUKgI87KwIA9ZcYkisvYOHZ5o4ikJlMq1iZWmhhr1RkHE2mZZcaAMhmF3MSOzItnJD5DrWWxhHOEhQ2ONEskiaW2noeSkclASG0DOcoE6XUQ2Ug41TXHuGt18ZpWsQZJUqeU1CklrZXSQXfbKe-eYOOvwW0n7-3AWtQXv_--RHt2svSIsSvUKldruLYuRKluqr3zBUzbxJc
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgHv9CInz14Mg7K1m7d0aAEEeYBSLgta_d6UcHguPjX226DoDHG27K0S9P3uvfR3_s9gGuW-gLTgDqtIEGHYWKOFGrqhK4K0GVcYF4kNoj87pj1JnxSgdtVLQwi5uAzbNjH_C4_namFTZU1Axb6JgDfgE3OGONFtdZaRoVzEXjl1WWLhs1ROxpa9JbfcLmwyv3N-Kx1U8mNSWcPBstlFBiSl8Yikw31-YOh8b_r3Ifd0qskd4UaHEAFp4ews8Y1WIPevaXItd2tMCXP5kfxZia0C6A6mWkyNPHsbE6iAhb-QYwzS-6LdvVklMPFibFrymbWj2DceRi1u07ZSMFRrs8zR6M5Z1qH0heetvzyWlLBdCKlp7QnFdXGrnMftatEkmiNUicMU-1ZOi8_od4xVKezKZ4ACUx4pHgoqCeU8T2kcHWCgVAmlGM8oK060OUOx6pkGbfNLl7jPNqgYWyFEluhxKVQ6nCzmvJeUGz8Nbhm93s1sNzq099fX8FWdzTox_3H6OkMts2HRIEfO4dqNl_ghXEoMnmZ69EXw4rH5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimal+Control+of+Sensor+Networks+for+Dynamic+Target+Tracking&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Foderaro%2C+Greg&rft.au=Pingping+Zhu&rft.au=Hongchuan+Wei&rft.au=Wettergren%2C+Thomas+A.&rft.date=2018-03-01&rft.pub=IEEE&rft.eissn=2372-2533&rft.volume=5&rft.issue=1&rft.spage=142&rft.epage=153&rft_id=info:doi/10.1109%2FTCNS.2016.2583070&rft.externalDocID=7496933
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon