Distributed Optimal Control of Sensor Networks for Dynamic Target Tracking
This paper presents a distributed optimal control approach for managing omnidirectional sensor networks deployed to cooperatively track moving targets in a region of interest. Several authors have shown that under proper assumptions, the performance of mobile sensors is a function of the sensor dist...
        Saved in:
      
    
          | Published in | IEEE transactions on control of network systems Vol. 5; no. 1; pp. 142 - 153 | 
|---|---|
| Main Authors | , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        01.03.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2325-5870 2372-2533  | 
| DOI | 10.1109/TCNS.2016.2583070 | 
Cover
| Abstract | This paper presents a distributed optimal control approach for managing omnidirectional sensor networks deployed to cooperatively track moving targets in a region of interest. Several authors have shown that under proper assumptions, the performance of mobile sensors is a function of the sensor distribution. In particular, the probability of cooperative track detection, also known as track coverage, can be shown to be an integral function of a probability density function representing the macroscopic sensor network state. Thus, a mobile sensor network deployed to detect moving targets can be viewed as a multiscale dynamical system in which a time-varying probability density function can be identified as a restriction operator, and optimized subject to macroscopic dynamics represented by the advection equation. Simulation results show that the distributed control approach is capable of planning the motion of hundreds of cooperative sensors, such that their effectiveness is significantly increased compared to that of existing uniform, grid, random, and stochastic gradient methods. | 
    
|---|---|
| AbstractList | This paper presents a distributed optimal control approach for managing omnidirectional sensor networks deployed to cooperatively track moving targets in a region of interest. Several authors have shown that under proper assumptions, the performance of mobile sensors is a function of the sensor distribution. In particular, the probability of cooperative track detection, also known as track coverage, can be shown to be an integral function of a probability density function representing the macroscopic sensor network state. Thus, a mobile sensor network deployed to detect moving targets can be viewed as a multiscale dynamical system in which a time-varying probability density function can be identified as a restriction operator, and optimized subject to macroscopic dynamics represented by the advection equation. Simulation results show that the distributed control approach is capable of planning the motion of hundreds of cooperative sensors, such that their effectiveness is significantly increased compared to that of existing uniform, grid, random, and stochastic gradient methods. | 
    
| Author | Hongchuan Wei Pingping Zhu Wettergren, Thomas A. Ferrari, Silvia Foderaro, Greg  | 
    
| Author_xml | – sequence: 1 givenname: Greg surname: Foderaro fullname: Foderaro, Greg email: greg.foderaro@duke.edu organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA – sequence: 2 surname: Pingping Zhu fullname: Pingping Zhu email: pingping.zhu@cornell.edu organization: Sibley Sch. of Mech. & Aerosp. Eng., Cornell Univ., Ithaca, NY, USA – sequence: 3 surname: Hongchuan Wei fullname: Hongchuan Wei email: hongchuan.wei@duke.edu organization: Dept. of Mech. Eng. & Mater. Sci., Duke Univ., Durham, NC, USA – sequence: 4 givenname: Thomas A. surname: Wettergren fullname: Wettergren, Thomas A. email: t.a.wettergren@ieee.org organization: Naval Undersea Warfare Center, Newport, RI, USA – sequence: 5 givenname: Silvia surname: Ferrari fullname: Ferrari, Silvia email: ferrari@cornell.edu organization: Sibley Sch. of Mech. & Aerosp. Eng., Cornell Univ., Ithaca, NY, USA  | 
    
| BookMark | eNp9kMtOAjEUhhuDiYg8gHHTFxg8bee6NIOihsCCcT3plB5SGaakrTG8vTOBuHDh6px_8Z3Ld0tGne00IfcMZoxB8ViVq82MA0tnPMkFZHBFxlxkPOKJEKOh50mU5BnckKn3nwDAeNJnMSbvc-ODM81X0Fu6PgZzkC0tbRecbalFutGdt46udPi2bu8p9mF-6uTBKFpJt9OBVk6qvel2d-QaZev19FIn5OPluSpfo-V68VY-LSPF0yREqFmRIhZNmguELC-wgTxG2TRCoWgUII8hSTVylUuJqBuUsd6iYMDyVIKYEHaeq5z13mmsj64_251qBvXgox581IOP-uKjZ7I_jDJBBjM8Kk37L_lwJo3W-ndTFhdpIYT4AS-QcSc | 
    
| CODEN | ITCNAY | 
    
| CitedBy_id | crossref_primary_10_1016_j_neucom_2018_07_046 crossref_primary_10_1109_TAC_2018_2879946 crossref_primary_10_1109_TIE_2020_2967739 crossref_primary_10_1109_TCNS_2020_2975228 crossref_primary_10_1109_TETCI_2024_3386837 crossref_primary_10_1109_TCNS_2021_3059794 crossref_primary_10_1109_TCNS_2021_3059793 crossref_primary_10_1109_LCSYS_2020_3004417 crossref_primary_10_1002_rnc_6090 crossref_primary_10_1109_TNSE_2023_3329832 crossref_primary_10_1049_iet_rsn_2019_0178 crossref_primary_10_2514_1_G004861 crossref_primary_10_1109_JIOT_2021_3125530 crossref_primary_10_1007_s12555_022_0558_x crossref_primary_10_1109_ACCESS_2019_2902518 crossref_primary_10_1109_TCYB_2019_2901515 crossref_primary_10_1109_TCYB_2023_3302288 crossref_primary_10_1007_s41870_021_00616_y crossref_primary_10_3390_math10244656 crossref_primary_10_1016_j_aej_2020_05_012 crossref_primary_10_1109_TCYB_2022_3190323 crossref_primary_10_1109_TAC_2018_2849584 crossref_primary_10_1109_TCNS_2022_3181550 crossref_primary_10_3390_s19071524 crossref_primary_10_1016_j_jfranklin_2020_04_046 crossref_primary_10_1109_TCNS_2021_3087621 crossref_primary_10_1109_ACCESS_2022_3175425 crossref_primary_10_1109_TCNS_2019_2913619 crossref_primary_10_1016_j_buildenv_2021_108725 crossref_primary_10_1109_TCYB_2023_3238170  | 
    
| Cites_doi | 10.1023/A:1016639210559 10.1007/s10846-009-9318-x 10.1109/TAES.2004.1386888 10.1109/JOE.2009.2025643 10.1007/BFb0067703 10.1109/ROBOT.2010.5509534 10.1109/TRA.2004.824698 10.1103/PhysRevE.77.026309 10.1002/0471721182 10.1109/CDC.2009.5400166 10.1109/CDC.2013.6760478 10.1109/MCS.2015.2512034 10.1109/MCS.2007.384124 10.1109/OCEANS.2007.4449130 10.1016/j.automatica.2013.09.014 10.1109/TRO.2009.2024997 10.3390/robotics2010001 10.1145/1525856.1525864 10.1109/JSEN.2009.2025836 10.1137/07067934X 10.1016/0960-0779(94)90130-9 10.2514/2.4231 10.1002/0471221279 10.1109/TC.2002.1146711 10.1109/TSMCB.2010.2041449 10.1109/CDC.2008.4739482 10.1007/978-1-4615-4022-9 10.1109/TAC.2015.2405292 10.1109/CDC.2010.5718021 10.1017/CBO9780511840531 10.1109/ACC.2007.4282852 10.1109/TC.2013.43 10.1109/ACC.2007.4282825 10.1023/A:1024596016427 10.1177/1548512911414599 10.1109/TC.2008.56 10.1109/TAES.2008.4517006  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/TCNS.2016.2583070 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 2372-2533 | 
    
| EndPage | 153 | 
    
| ExternalDocumentID | 10_1109_TCNS_2016_2583070 7496933  | 
    
| Genre | orig-research | 
    
| GrantInformation_xml | – fundername: ONR grantid: 321  | 
    
| GroupedDBID | 0R~ 4.4 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABJNI ABQJQ ABVLG AGQYO AGSQL AHBIQ AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ EBS EJD IFIPE IPLJI JAVBF M43 OCL PQQKQ RIA RIE AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c265t-fe196ff9b683f0789fb084fabb3cf3bc0f24056ef2c8aaffebfa4edf310186a03 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 2325-5870 | 
    
| IngestDate | Thu Apr 24 23:11:20 EDT 2025 Wed Oct 01 04:44:46 EDT 2025 Wed Aug 27 03:08:05 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 1 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c265t-fe196ff9b683f0789fb084fabb3cf3bc0f24056ef2c8aaffebfa4edf310186a03 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | crossref_primary_10_1109_TCNS_2016_2583070 crossref_citationtrail_10_1109_TCNS_2016_2583070 ieee_primary_7496933  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-March 2018-3-00  | 
    
| PublicationDateYYYYMMDD | 2018-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2018 text: 2018-March  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | IEEE transactions on control of network systems | 
    
| PublicationTitleAbbrev | TCNS | 
    
| PublicationYear | 2018 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref12 ref15 ny (ref34) 0 ref11 ref10 (ref48) 2004 foderaro (ref19) 0 ref17 ref16 ref18 gelfand (ref42) 1963 bar-shalom (ref37) 1993; 393 ref46 ref45 ref47 ref44 ref49 ref8 ref7 cai (ref14) 2009; 39 ref4 ref3 ref6 ref5 bar-shalom (ref38) 2000; iii ref35 ref36 ref31 ref30 ref33 ref32 ref2 boyd (ref40) 2001 ref1 kirk (ref43) 1970 ref39 bernard (ref9) 0 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 tannehille (ref41) 1997  | 
    
| References_xml | – volume: 393 year: 1993 ident: ref37 publication-title: Estimation and Tracking Principles Techniques and Software – ident: ref1 doi: 10.1023/A:1016639210559 – ident: ref12 doi: 10.1007/s10846-009-9318-x – year: 2004 ident: ref48 publication-title: Fmincon Function – ident: ref31 doi: 10.1109/TAES.2004.1386888 – volume: 39 year: 2009 ident: ref14 article-title: Information-driven sensor path planning by approximate cell decomposition publication-title: IEEE Trans Syst Man Cybern B Cybern – ident: ref8 doi: 10.1109/JOE.2009.2025643 – ident: ref47 doi: 10.1007/BFb0067703 – ident: ref16 doi: 10.1109/JOE.2009.2025643 – year: 0 ident: ref19 article-title: A decentralized kernel density estimation approach to distributed robot path planning publication-title: Proc Neural Inf Process Syst Conf – ident: ref28 doi: 10.1109/ROBOT.2010.5509534 – ident: ref26 doi: 10.1109/TRA.2004.824698 – ident: ref44 doi: 10.1103/PhysRevE.77.026309 – ident: ref33 doi: 10.1002/0471721182 – year: 1970 ident: ref43 publication-title: Optimal Control Theory An Introduction – ident: ref7 doi: 10.1109/CDC.2009.5400166 – ident: ref17 doi: 10.1109/CDC.2013.6760478 – ident: ref46 doi: 10.1109/MCS.2015.2512034 – ident: ref27 doi: 10.1109/MCS.2007.384124 – ident: ref32 doi: 10.1109/OCEANS.2007.4449130 – ident: ref18 doi: 10.1016/j.automatica.2013.09.014 – ident: ref24 doi: 10.1109/TRO.2009.2024997 – ident: ref23 doi: 10.3390/robotics2010001 – ident: ref25 doi: 10.1145/1525856.1525864 – start-page: 1243 year: 0 ident: ref9 article-title: A geometric transversals approach to track coverage of maneuvering targets publication-title: Proc IEEE Conf Dec Control – ident: ref4 doi: 10.1109/JSEN.2009.2025836 – ident: ref13 doi: 10.1137/07067934X – ident: ref45 doi: 10.1016/0960-0779(94)90130-9 – year: 1997 ident: ref41 publication-title: Computational Fluid Mechanics and Heat Transfer – ident: ref49 doi: 10.2514/2.4231 – ident: ref36 doi: 10.1002/0471221279 – ident: ref3 doi: 10.1109/TC.2002.1146711 – ident: ref21 doi: 10.1109/TSMCB.2010.2041449 – ident: ref22 doi: 10.1109/CDC.2008.4739482 – ident: ref39 doi: 10.1007/978-1-4615-4022-9 – ident: ref29 doi: 10.1109/TAC.2015.2405292 – volume: iii year: 2000 ident: ref38 publication-title: Multitarget-Multisensor Tracking Applications and Advances – ident: ref20 doi: 10.1109/CDC.2010.5718021 – ident: ref35 doi: 10.1017/CBO9780511840531 – ident: ref15 doi: 10.1109/ACC.2007.4282852 – ident: ref10 doi: 10.1109/TC.2013.43 – year: 1963 ident: ref42 publication-title: Calculus of Variations – ident: ref6 doi: 10.1109/ACC.2007.4282825 – year: 2001 ident: ref40 publication-title: Chebyshev and Fourier Spectral Methods – start-page: 5486 year: 0 ident: ref34 article-title: Sensor-based robot deployment algorithms publication-title: Proc IEEE Conf Dec Control – ident: ref2 doi: 10.1023/A:1024596016427 – ident: ref11 doi: 10.1177/1548512911414599 – ident: ref5 doi: 10.1109/TC.2008.56 – ident: ref30 doi: 10.1109/TAES.2008.4517006  | 
    
| SSID | ssj0001255873 | 
    
| Score | 2.3268423 | 
    
| Snippet | This paper presents a distributed optimal control approach for managing omnidirectional sensor networks deployed to cooperatively track moving targets in a... | 
    
| SourceID | crossref ieee  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 142 | 
    
| SubjectTerms | Distributed control Mobile communication mobile sensor networks multiscale dynamical systems Optimal control Probability density function Robot sensing systems Target tracking track coverage Vehicles  | 
    
| Title | Distributed Optimal Control of Sensor Networks for Dynamic Target Tracking | 
    
| URI | https://ieeexplore.ieee.org/document/7496933 | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library (IEL) customDbUrl: eissn: 2372-2533 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001255873 issn: 2325-5870 databaseCode: RIE dateStart: 20140101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwELbaTjDwKojykgcmRFI38SsjKlRVpZahrdQtip3zAjSopAu_HjtOq4IQYosiW7LubN_D332H0C3NuYRckKAnMggoZPZIgSFBEmkBEWUSqiKx8YQP53S0YIsGut_WwgBABT6D0H1Wb_l5odcuVdYVNOE2AG-ippDc12rt5FMYkyKuHy57JOnO-pOpw27xMGLSbe1vpmenl0plSgaHaLxZhEeQvITrUoX68wc_439XeYQOap8SP_hNcIwasDxB-ztMg200enQEua63FeT42V4Tb3ZC38PUcWHw1EazxQpPPCj8A1tXFj_6ZvV4VoHFsbVq2uXVT9F88DTrD4O6jUKgI87KwIA9ZcYkisvYOHZ5o4ikJlMq1iZWmhhr1RkHE2mZZcaAMhmF3MSOzItnJD5DrWWxhHOEhQ2ONEskiaW2noeSkclASG0DOcoE6XUQ2Ug41TXHuGt18ZpWsQZJUqeU1CklrZXSQXfbKe-eYOOvwW0n7-3AWtQXv_--RHt2svSIsSvUKldruLYuRKluqr3zBUzbxJc | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgHv9CInz14Mg7K1m7d0aAEEeYBSLgta_d6UcHguPjX226DoDHG27K0S9P3uvfR3_s9gGuW-gLTgDqtIEGHYWKOFGrqhK4K0GVcYF4kNoj87pj1JnxSgdtVLQwi5uAzbNjH_C4_namFTZU1Axb6JgDfgE3OGONFtdZaRoVzEXjl1WWLhs1ROxpa9JbfcLmwyv3N-Kx1U8mNSWcPBstlFBiSl8Yikw31-YOh8b_r3Ifd0qskd4UaHEAFp4ews8Y1WIPevaXItd2tMCXP5kfxZia0C6A6mWkyNPHsbE6iAhb-QYwzS-6LdvVklMPFibFrymbWj2DceRi1u07ZSMFRrs8zR6M5Z1qH0heetvzyWlLBdCKlp7QnFdXGrnMftatEkmiNUicMU-1ZOi8_od4xVKezKZ4ACUx4pHgoqCeU8T2kcHWCgVAmlGM8oK060OUOx6pkGbfNLl7jPNqgYWyFEluhxKVQ6nCzmvJeUGz8Nbhm93s1sNzq099fX8FWdzTox_3H6OkMts2HRIEfO4dqNl_ghXEoMnmZ69EXw4rH5A | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+Optimal+Control+of+Sensor+Networks+for+Dynamic+Target+Tracking&rft.jtitle=IEEE+transactions+on+control+of+network+systems&rft.au=Foderaro%2C+Greg&rft.au=Pingping+Zhu&rft.au=Hongchuan+Wei&rft.au=Wettergren%2C+Thomas+A.&rft.date=2018-03-01&rft.pub=IEEE&rft.eissn=2372-2533&rft.volume=5&rft.issue=1&rft.spage=142&rft.epage=153&rft_id=info:doi/10.1109%2FTCNS.2016.2583070&rft.externalDocID=7496933 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2325-5870&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2325-5870&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2325-5870&client=summon |