Two new analytical models for heat transport in ground-coupled heat pump system with heat loss at ground surface: A new meshless treatment of ground heat exchanger for reflecting heat capacity effect

•Two new models for heat transport in ground-coupled heat pump system are built.•One model applies an equation to heat transport in a ground heat exchanger (GHE).•The other model modifies the equation as a new meshless GHE treatment.•The analytical and numerical solutions of both models are presente...

Full description

Saved in:
Bibliographic Details
Published inGeothermics Vol. 127; p. 103258
Main Authors Tang, Chenyang, Yeh, Hund-Der, Huang, Ching-Sheng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.03.2025
Subjects
Online AccessGet full text
ISSN0375-6505
DOI10.1016/j.geothermics.2025.103258

Cover

Abstract •Two new models for heat transport in ground-coupled heat pump system are built.•One model applies an equation to heat transport in a ground heat exchanger (GHE).•The other model modifies the equation as a new meshless GHE treatment.•The analytical and numerical solutions of both models are presented.•A closed-form expression for a coefficient in the GHE treatment is derived. Existing boundary conditions or source terms specified at cylindrical ground heat exchangers (GHEs) in ground-coupled heat pump (GCHP) systems neglect the effect of GHE heat capacity. This study modifies a governing equation as a new meshless GHE treatment reflecting the effect by the product of a coefficient and temperature time derivative. Two new analytical models are developed for depicting heat transport in a GCHP system with heat loss at the ground surface. The two-zone model adopts two coupled governing equations describing heat transport in the GHE and soil formation zones. The single-zone model applies the new GHE treatment for the GHE zone with the governing equation for the formation zone. Analytical solutions of the models are derived; finite element solutions are built to release analytical solutions’ assumption of the same thermal property of the GHE and formation below the GHE. Results suggest the coefficient equals the half product of the GHE density, specific heat, and square of its radius divided by its thermal conductivity. Both analytical solutions agree to temperature within 6.2 % relative difference and 5 % for most time of a heating or cooling season, applicable to most GHEs. One finite element solution with the new meshless GHE treatment takes about 1 % of the computing time of acquiring the other finite element solution based on the governing equation and fine GHE discretization. The assumption causes 10.6 % relative error in temperature at the GHE bottom, but the error dramatically decreases below 5 % elsewhere. The present solution applies to a field GCHP experiment. In conclusion, this study may provide a better understanding of GCHP systems and useful approach for field applications.
AbstractList •Two new models for heat transport in ground-coupled heat pump system are built.•One model applies an equation to heat transport in a ground heat exchanger (GHE).•The other model modifies the equation as a new meshless GHE treatment.•The analytical and numerical solutions of both models are presented.•A closed-form expression for a coefficient in the GHE treatment is derived. Existing boundary conditions or source terms specified at cylindrical ground heat exchangers (GHEs) in ground-coupled heat pump (GCHP) systems neglect the effect of GHE heat capacity. This study modifies a governing equation as a new meshless GHE treatment reflecting the effect by the product of a coefficient and temperature time derivative. Two new analytical models are developed for depicting heat transport in a GCHP system with heat loss at the ground surface. The two-zone model adopts two coupled governing equations describing heat transport in the GHE and soil formation zones. The single-zone model applies the new GHE treatment for the GHE zone with the governing equation for the formation zone. Analytical solutions of the models are derived; finite element solutions are built to release analytical solutions’ assumption of the same thermal property of the GHE and formation below the GHE. Results suggest the coefficient equals the half product of the GHE density, specific heat, and square of its radius divided by its thermal conductivity. Both analytical solutions agree to temperature within 6.2 % relative difference and 5 % for most time of a heating or cooling season, applicable to most GHEs. One finite element solution with the new meshless GHE treatment takes about 1 % of the computing time of acquiring the other finite element solution based on the governing equation and fine GHE discretization. The assumption causes 10.6 % relative error in temperature at the GHE bottom, but the error dramatically decreases below 5 % elsewhere. The present solution applies to a field GCHP experiment. In conclusion, this study may provide a better understanding of GCHP systems and useful approach for field applications.
ArticleNumber 103258
Author Tang, Chenyang
Yeh, Hund-Der
Huang, Ching-Sheng
Author_xml – sequence: 1
  givenname: Chenyang
  surname: Tang
  fullname: Tang, Chenyang
  organization: College of Hydrology and Water Resources, Hohai University, Nanjing, China
– sequence: 2
  givenname: Hund-Der
  surname: Yeh
  fullname: Yeh, Hund-Der
  organization: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan
– sequence: 3
  givenname: Ching-Sheng
  orcidid: 0000-0002-9129-1768
  surname: Huang
  fullname: Huang, Ching-Sheng
  email: cshuang617@gs.ncku.edu.tw
  organization: Department of Resources Engineering, National Cheng Kung University, Tainan, Taiwan
BookMark eNqNUctOwzAQ9AEkoPAP5gNSnKS2W25VxUuqxKWcLWezaVwldmS7lH4hv4VpQOLIaaXZmd3ZnStyZp1FQm5zNs1ZLu520y262KLvDYRpwQqe8LLg8zNyyUrJM8EZvyBXIewYY5JLdkk-NwdHLR6otro7RgO6o72rsQu0cZ62qCONXtswOB-psXTr3d7WGbj90GE9EoZ9P9BwDBF7ejCxHdHOhUBTHRU07H2jAe_p8rSvx9B2mBjRJ3KPNlLX_HJPevyAVtst-pMTj02HEI3djl3QgwYTjxSbJuHX5LzRXcCbnzohb48Pm9Vztn59elkt1xkUgscMWJ4XAKWs57LCsuIzYCiqopYSdK4FSphVC4kiAYxhpcVM5LwUAiTMF7UsJ2QxzgWfzkum1OBNr_1R5Ux9p6B26k8K6jsFNaaQtKtRm76L7wa9CmDQAtbGpxNU7cw_pnwBjKqg2A
Cites_doi 10.1016/j.applthermaleng.2017.07.099
10.1016/j.renene.2018.03.082
10.1016/j.enconman.2021.114871
10.1016/j.enbuild.2010.03.008
10.1016/j.jhydrol.2022.128273
10.1016/j.geothermics.2023.102888
10.1016/j.apenergy.2015.04.070
10.1016/j.renene.2009.09.015
10.1016/j.apenergy.2016.02.085
10.1145/361953.361969
10.1002/htj.10057
10.1016/j.advwatres.2023.104506
10.1016/j.geothermics.2024.103148
10.1080/19401493.2011.652175
10.1016/j.apenergy.2012.03.047
10.1016/j.ijheatmasstransfer.2020.119559
10.1016/j.est.2023.107503
10.1016/j.enbuild.2016.09.055
10.1016/j.enconman.2018.10.042
10.1016/j.ijheatmasstransfer.2010.03.001
10.1016/j.geothermics.2009.07.002
10.1016/j.egyr.2023.10.086
10.1016/j.enbuild.2013.08.023
10.1016/j.geothermics.2024.103134
10.1016/j.renene.2018.12.114
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.geothermics.2025.103258
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Geography
ExternalDocumentID 10_1016_j_geothermics_2025_103258
S0375650525000100
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
ABJNI
ABMAC
ABQEM
ABQYD
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLVX
ACRLP
ACRPL
ACSBN
ADBBV
ADEZE
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFRAH
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AI.
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
ATOGT
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMA
HVGLF
HZ~
IHE
IMUCA
J1W
JARJE
KOM
LY3
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SEP
SES
SET
SEW
SPC
SPCBC
SSE
SSH
SSR
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~02
~G-
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AIIUN
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c265t-c0112cc37d87be3b54c0e6b2d77ca1a6e7c4b97e6d7700eba64615366c7c89d73
IEDL.DBID .~1
ISSN 0375-6505
IngestDate Wed Oct 01 06:30:59 EDT 2025
Sat May 03 15:55:50 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Finite element solution
Ground heat exchanger
Heat capacity effect
Ground-coupled heat pump system
Meshless treatment
Analytical solution
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-c0112cc37d87be3b54c0e6b2d77ca1a6e7c4b97e6d7700eba64615366c7c89d73
ORCID 0000-0002-9129-1768
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0375650525000100
ParticipantIDs crossref_primary_10_1016_j_geothermics_2025_103258
elsevier_sciencedirect_doi_10_1016_j_geothermics_2025_103258
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2025
2025-03-00
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: March 2025
PublicationDecade 2020
PublicationTitle Geothermics
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kwon, Bae, Chae, Nam (bib0010) 2023; 10
Philippe, Bernier, Marchio (bib0018) 2009; 38
Brown, Kolo, Banks, Falcone (bib0004) 2024; 117
Li, Shu, Xiao, Tao, Niu, Wang (bib0012) 2021; 249
Man, Yang, Diao, Liu, Fang (bib0015) 2010; 53
Magraner, Montero, Quilis, Urchueguia (bib0014) 2010; 42
News, Report for 508 Ground Heat Exchangers (GHEs) used in Wangjiapu Village, Yanqing, Beijing, China.
Yang, Yan, Li, Zhang, Zeng (bib0025) 2020; 152
Li, Lai (bib0011) 2015; 151
Zeng, Diao, Fang (bib0026) 2002; 31
Wang, Huang, Tong, Xiong, Lee (bib0023) 2022; 612
Marcotte, Pasquier, Sheriff, Bernier (bib0016) 2010; 35
2018 (accessed 27 December 2018). (In Chinese).
Ingersoll, Zobel, Ingersoll (bib0009) 1954
Shirazi, Bernier (bib0020) 2013; 67
(bib0001) 2015
Wang, Huang, Tong, Lee (bib0022) 2023; 179
Liu, Ren, Ye, Ren, Wang, Huai, Qi (bib0013) 2021; 40
Pokhrel, Amiri, Poncet, Ghoreishi-Madiseh (bib0019) 2023; 66
Zhao, Chen, Liu (bib0028) 2016; 133
Cui, Zhu, Meng (bib0006) 2018; 178
Wang, Zhou, Wu, Zhuo, Xu, Liu (bib0024) 2024; 124
Stehfest (bib0021) 1970; 13
Bertagnolio, Bernier, Kummert (bib0003) 2012; 5
Baralis, Barla (bib0002) 2024; 124
Zhang, Huang, Zhang, Wang (bib0027) 2018; 126
Zhao, Liu, Liu, Tian, Chen (bib0029) 2017; 125
Eslami-Nejad, Bernier (bib0007) 2012; 98
Han, Yu (bib0008) 2016; 170
Chen, Pan, Zhang, Du (bib0005) 2019; 136
10.1016/j.geothermics.2025.103258_bib0017
Zeng (10.1016/j.geothermics.2025.103258_bib0026) 2002; 31
Li (10.1016/j.geothermics.2025.103258_bib0012) 2021; 249
Wang (10.1016/j.geothermics.2025.103258_bib0023) 2022; 612
Eslami-Nejad (10.1016/j.geothermics.2025.103258_bib0007) 2012; 98
Wang (10.1016/j.geothermics.2025.103258_bib0022) 2023; 179
Chen (10.1016/j.geothermics.2025.103258_bib0005) 2019; 136
Han (10.1016/j.geothermics.2025.103258_bib0008) 2016; 170
Brown (10.1016/j.geothermics.2025.103258_bib0004) 2024; 117
Stehfest (10.1016/j.geothermics.2025.103258_bib0021) 1970; 13
Kwon (10.1016/j.geothermics.2025.103258_bib0010) 2023; 10
Baralis (10.1016/j.geothermics.2025.103258_bib0002) 2024; 124
Pokhrel (10.1016/j.geothermics.2025.103258_bib0019) 2023; 66
Zhao (10.1016/j.geothermics.2025.103258_bib0028) 2016; 133
Philippe (10.1016/j.geothermics.2025.103258_bib0018) 2009; 38
Ingersoll (10.1016/j.geothermics.2025.103258_bib0009) 1954
Liu (10.1016/j.geothermics.2025.103258_bib0013) 2021; 40
Zhang (10.1016/j.geothermics.2025.103258_bib0027) 2018; 126
Zhao (10.1016/j.geothermics.2025.103258_bib0029) 2017; 125
Yang (10.1016/j.geothermics.2025.103258_bib0025) 2020; 152
Shirazi (10.1016/j.geothermics.2025.103258_bib0020) 2013; 67
Wang (10.1016/j.geothermics.2025.103258_bib0024) 2024; 124
(10.1016/j.geothermics.2025.103258_bib0001) 2015
Bertagnolio (10.1016/j.geothermics.2025.103258_bib0003) 2012; 5
Magraner (10.1016/j.geothermics.2025.103258_bib0014) 2010; 42
Man (10.1016/j.geothermics.2025.103258_bib0015) 2010; 53
Marcotte (10.1016/j.geothermics.2025.103258_bib0016) 2010; 35
Cui (10.1016/j.geothermics.2025.103258_bib0006) 2018; 178
Li (10.1016/j.geothermics.2025.103258_bib0011) 2015; 151
References_xml – year: 1954
  ident: bib0009
  article-title: Heat Conduction With Engineering, Geological, and Other Applications
– volume: 170
  start-page: 148
  year: 2016
  end-page: 160
  ident: bib0008
  article-title: Sensitivity analysis of a vertical geothermal heat pump system
  publication-title: Appl. Energy
– volume: 124
  year: 2024
  ident: bib0002
  article-title: rOGER: a method for determining the geothermal potential in urban areas
  publication-title: Geothermics
– volume: 136
  start-page: 793
  year: 2019
  end-page: 804
  ident: bib0005
  article-title: Thermal response factors for fast parameterized design and long-term performance simulation of vertical GCHP systems
  publication-title: Renew. Energy
– volume: 35
  start-page: 763
  year: 2010
  end-page: 770
  ident: bib0016
  article-title: The importance of axis effects for borehole design of geothermal heat-pump systems
  publication-title: Renew. Energy
– volume: 612
  year: 2022
  ident: bib0023
  article-title: A low-cost model for slug tests in a confined ground with skin-zone effect
  publication-title: J. Hydrol.
– volume: 126
  start-page: 495
  year: 2018
  end-page: 508
  ident: bib0027
  article-title: An hourly simulation method for the energy performance of an office building served by a ground-coupled heat pump system
  publication-title: Renew. Energy
– volume: 42
  start-page: 1349
  year: 2010
  end-page: 1401
  ident: bib0014
  article-title: Comparison between design and actual energy performance of a HVAC-ground coupled heat pump system in cooling and heating operation
  publication-title: Energy Build.
– volume: 98
  start-page: 333
  year: 2012
  end-page: 345
  ident: bib0007
  article-title: Freezing of geothermal borehole surroundings: a numerical and experimental assessment with applications
  publication-title: Appl. Energy
– volume: 124
  year: 2024
  ident: bib0024
  article-title: Hydrogeochemistry of trace elements in geothermal waters from the Rehai geothermal system in Yunnan of China, a magma-indirectly related geothermal system
  publication-title: Geothermics
– volume: 53
  start-page: 2593
  year: 2010
  end-page: 2601
  ident: bib0015
  article-title: A new model and analytical solutions for borehole and pile ground heat exchangers
  publication-title: Int. J. Heat Mass Transf.
– reference: News, Report for 508 Ground Heat Exchangers (GHEs) used in Wangjiapu Village, Yanqing, Beijing, China.
– volume: 31
  start-page: 558
  year: 2002
  end-page: 567
  ident: bib0026
  article-title: A finite line-source model for boreholes in geothermal heat exchangers
  publication-title: Heat Transf. Asian Res.
– volume: 133
  start-page: 335
  year: 2016
  end-page: 344
  ident: bib0028
  article-title: Study on the thermal performance of several types of energy pile ground heat exchangers: u-shaped, W-shaped and spiral-shaped
  publication-title: Energy Build.
– volume: 178
  start-page: 200
  year: 2018
  end-page: 216
  ident: bib0006
  article-title: Techno-economic evaluation of multiple energy piles for a ground-coupled heat pump system
  publication-title: Energy Convers. Manag.
– volume: 117
  year: 2024
  ident: bib0004
  article-title: Comparison of the thermal and hydraulic performance of single U-tube, double U-tube and coaxial medium-to-deep borehole heat exchangers
  publication-title: Geothermics
– volume: 179
  year: 2023
  ident: bib0022
  article-title: Parameter correlation study on two new analytical solutions for radially divergent tracer tests in two-zone confined aquifers with vertical dispersion effect
  publication-title: Adv. Water Resour.
– volume: 10
  start-page: 4359
  year: 2023
  end-page: 4373
  ident: bib0010
  article-title: Economic and performance analysis of ground source heat pump system for high-rise residential buildings considering practical applications
  publication-title: Energy Rep.
– volume: 67
  start-page: 352
  year: 2013
  end-page: 364
  ident: bib0020
  article-title: Thermal capacity effects in borehole ground heat exchangers
  publication-title: Energy Build.
– volume: 5
  start-page: 369
  year: 2012
  end-page: 383
  ident: bib0003
  article-title: Comparing vertical ground heat exchanger models
  publication-title: J. Build. Perform. Simul.
– volume: 151
  start-page: 178
  year: 2015
  end-page: 191
  ident: bib0011
  article-title: Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales
  publication-title: Appl. Energy
– volume: 249
  year: 2021
  ident: bib0012
  article-title: Effect of pumping-recharge well structures on heat transfer characteristics of double-well groundwater heat pump systems considering hydrothermal coupling
  publication-title: Energy Convers. Manag.
– volume: 66
  year: 2023
  ident: bib0019
  article-title: Reduced order 1 + 3D numerical model for evaluating the performance of solar borehole thermal energy storage systems
  publication-title: J. Energy Storage
– year: 2015
  ident: bib0001
  article-title: Refrigerating and Air-Conditioning Engineers (ASHRAE). 2015 ASHRAE Handbook: HVAC Applications
– volume: 40
  start-page: 565
  year: 2021
  end-page: 576
  ident: bib0013
  article-title: Potential evaluation of geothermal resources:exemplifying some municipalities and key strata in Ordos Basin as a study case
  publication-title: Geol. Bull. China
– volume: 38
  start-page: 407
  year: 2009
  end-page: 413
  ident: bib0018
  article-title: Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes
  publication-title: Geothermics
– volume: 152
  year: 2020
  ident: bib0025
  article-title: A unified model and analytical solution for borehole and pile ground heat exchangers
  publication-title: Int. J. Heat Mass Transf.
– reference: , 2018 (accessed 27 December 2018). (In Chinese).
– volume: 13
  start-page: 47
  year: 1970
  end-page: 49
  ident: bib0021
  article-title: Numerical inversion of Laplace transforms
  publication-title: Commun. ACM
– volume: 125
  start-page: 1280
  year: 2017
  end-page: 1290
  ident: bib0029
  article-title: Influence of spiral pitch on the thermal behaviors of energy piles with spiral-tube heat exchanger
  publication-title: Appl. Therm. Eng.
– volume: 125
  start-page: 1280
  year: 2017
  ident: 10.1016/j.geothermics.2025.103258_bib0029
  article-title: Influence of spiral pitch on the thermal behaviors of energy piles with spiral-tube heat exchanger
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.07.099
– volume: 126
  start-page: 495
  year: 2018
  ident: 10.1016/j.geothermics.2025.103258_bib0027
  article-title: An hourly simulation method for the energy performance of an office building served by a ground-coupled heat pump system
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.03.082
– volume: 249
  year: 2021
  ident: 10.1016/j.geothermics.2025.103258_bib0012
  article-title: Effect of pumping-recharge well structures on heat transfer characteristics of double-well groundwater heat pump systems considering hydrothermal coupling
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2021.114871
– volume: 42
  start-page: 1349
  year: 2010
  ident: 10.1016/j.geothermics.2025.103258_bib0014
  article-title: Comparison between design and actual energy performance of a HVAC-ground coupled heat pump system in cooling and heating operation
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2010.03.008
– ident: 10.1016/j.geothermics.2025.103258_bib0017
– volume: 612
  year: 2022
  ident: 10.1016/j.geothermics.2025.103258_bib0023
  article-title: A low-cost model for slug tests in a confined ground with skin-zone effect
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2022.128273
– volume: 117
  year: 2024
  ident: 10.1016/j.geothermics.2025.103258_bib0004
  article-title: Comparison of the thermal and hydraulic performance of single U-tube, double U-tube and coaxial medium-to-deep borehole heat exchangers
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2023.102888
– volume: 151
  start-page: 178
  year: 2015
  ident: 10.1016/j.geothermics.2025.103258_bib0011
  article-title: Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.070
– volume: 35
  start-page: 763
  year: 2010
  ident: 10.1016/j.geothermics.2025.103258_bib0016
  article-title: The importance of axis effects for borehole design of geothermal heat-pump systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2009.09.015
– year: 2015
  ident: 10.1016/j.geothermics.2025.103258_bib0001
– volume: 170
  start-page: 148
  year: 2016
  ident: 10.1016/j.geothermics.2025.103258_bib0008
  article-title: Sensitivity analysis of a vertical geothermal heat pump system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.02.085
– volume: 13
  start-page: 47
  year: 1970
  ident: 10.1016/j.geothermics.2025.103258_bib0021
  article-title: Numerical inversion of Laplace transforms
  publication-title: Commun. ACM
  doi: 10.1145/361953.361969
– volume: 31
  start-page: 558
  year: 2002
  ident: 10.1016/j.geothermics.2025.103258_bib0026
  article-title: A finite line-source model for boreholes in geothermal heat exchangers
  publication-title: Heat Transf. Asian Res.
  doi: 10.1002/htj.10057
– volume: 179
  year: 2023
  ident: 10.1016/j.geothermics.2025.103258_bib0022
  article-title: Parameter correlation study on two new analytical solutions for radially divergent tracer tests in two-zone confined aquifers with vertical dispersion effect
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2023.104506
– year: 1954
  ident: 10.1016/j.geothermics.2025.103258_bib0009
– volume: 124
  year: 2024
  ident: 10.1016/j.geothermics.2025.103258_bib0002
  article-title: rOGER: a method for determining the geothermal potential in urban areas
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2024.103148
– volume: 40
  start-page: 565
  year: 2021
  ident: 10.1016/j.geothermics.2025.103258_bib0013
  article-title: Potential evaluation of geothermal resources:exemplifying some municipalities and key strata in Ordos Basin as a study case
  publication-title: Geol. Bull. China
– volume: 5
  start-page: 369
  year: 2012
  ident: 10.1016/j.geothermics.2025.103258_bib0003
  article-title: Comparing vertical ground heat exchanger models
  publication-title: J. Build. Perform. Simul.
  doi: 10.1080/19401493.2011.652175
– volume: 98
  start-page: 333
  year: 2012
  ident: 10.1016/j.geothermics.2025.103258_bib0007
  article-title: Freezing of geothermal borehole surroundings: a numerical and experimental assessment with applications
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2012.03.047
– volume: 152
  year: 2020
  ident: 10.1016/j.geothermics.2025.103258_bib0025
  article-title: A unified model and analytical solution for borehole and pile ground heat exchangers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2020.119559
– volume: 66
  year: 2023
  ident: 10.1016/j.geothermics.2025.103258_bib0019
  article-title: Reduced order 1 + 3D numerical model for evaluating the performance of solar borehole thermal energy storage systems
  publication-title: J. Energy Storage
  doi: 10.1016/j.est.2023.107503
– volume: 133
  start-page: 335
  year: 2016
  ident: 10.1016/j.geothermics.2025.103258_bib0028
  article-title: Study on the thermal performance of several types of energy pile ground heat exchangers: u-shaped, W-shaped and spiral-shaped
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2016.09.055
– volume: 178
  start-page: 200
  year: 2018
  ident: 10.1016/j.geothermics.2025.103258_bib0006
  article-title: Techno-economic evaluation of multiple energy piles for a ground-coupled heat pump system
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.10.042
– volume: 53
  start-page: 2593
  year: 2010
  ident: 10.1016/j.geothermics.2025.103258_bib0015
  article-title: A new model and analytical solutions for borehole and pile ground heat exchangers
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.03.001
– volume: 38
  start-page: 407
  year: 2009
  ident: 10.1016/j.geothermics.2025.103258_bib0018
  article-title: Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2009.07.002
– volume: 10
  start-page: 4359
  year: 2023
  ident: 10.1016/j.geothermics.2025.103258_bib0010
  article-title: Economic and performance analysis of ground source heat pump system for high-rise residential buildings considering practical applications
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.10.086
– volume: 67
  start-page: 352
  year: 2013
  ident: 10.1016/j.geothermics.2025.103258_bib0020
  article-title: Thermal capacity effects in borehole ground heat exchangers
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2013.08.023
– volume: 124
  year: 2024
  ident: 10.1016/j.geothermics.2025.103258_bib0024
  article-title: Hydrogeochemistry of trace elements in geothermal waters from the Rehai geothermal system in Yunnan of China, a magma-indirectly related geothermal system
  publication-title: Geothermics
  doi: 10.1016/j.geothermics.2024.103134
– volume: 136
  start-page: 793
  year: 2019
  ident: 10.1016/j.geothermics.2025.103258_bib0005
  article-title: Thermal response factors for fast parameterized design and long-term performance simulation of vertical GCHP systems
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.12.114
SSID ssj0007570
Score 2.384972
Snippet •Two new models for heat transport in ground-coupled heat pump system are built.•One model applies an equation to heat transport in a ground heat exchanger...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 103258
SubjectTerms Analytical solution
Finite element solution
Ground heat exchanger
Ground-coupled heat pump system
Heat capacity effect
Meshless treatment
Title Two new analytical models for heat transport in ground-coupled heat pump system with heat loss at ground surface: A new meshless treatment of ground heat exchanger for reflecting heat capacity effect
URI https://dx.doi.org/10.1016/j.geothermics.2025.103258
Volume 127
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0375-6505
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007570
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0375-6505
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007570
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2013
  issn: 0375-6505
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007570
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0375-6505
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0007570
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0375-6505
  databaseCode: AKRWK
  dateStart: 19720301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0007570
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5Ewd2LqLuyPilhr3EymaQ7ES-DKKODHnYVvYV0p6IjM5lhHqgX_55_y6ruxAcIHjw16VSRTqqp-qpTDyH-El6TUZFpL8am9sIiiUkPFokn81ah0FeqqTl3-Oxcdi7D0-voek4c1rkwHFZZ6X6n0622rmYa1ddsjHq9xn_u3iptHzYGKj777Vz9i_b03tNbmIeKbMM4JvaYelHsvsV43aBNcxr0DFfuDiJOQQ-4-_tnNuqd3TleFksVYIS2W9OKmMNyVfyoepffPv4Szxf3QyBwDBnXF7FH02D720yAACmwsoVpXcIceiVwIkeZe2Y4G_UxdwQjkiq4qs7AR7Nutk-rAxodB0xm4yIzuA9t-7wBTm77pCjhNVgdhkVNa_nxocortiuh9-R_BGQr3V1DdtqQEwAupuS3uDw-ujjseFV7Bs8EMpp6hlRDYExL5bHS2NJRaHyUOsiVMlkzk6hMqBOFkiZ8H3UmQ0aXUhpl4iRXrTUxXw5L_COA3KQ4QiQ7SU6yVlFm8jjUJgl1wQX5s3UR1AJJR64KR1qHp92l76SYshRTJ8V1cVCLLv2wpVKyFl-zb3yPfVP85CsXrrYl5qfjGW4TfpnqHbtBd8RC-6TbOeex---q-wIhFvg3
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6CA00vJX3RtGk7hV6FZVm7K4VeTGhwmsSXOpCb0K5GjYMjm9imyS_M3-rMrpSmUOihJ8FqB600yzffrOYB8Jn5mlZ1aaOMBjZK6zxjHKzzSFfD2lBszMBK7vDZRI_P028X6mILDrtcGAmrbLE_YLpH63ak337N_nI263-X7q3a92ETohKz376dKsbkHmyPjk_GkwdANsr3jJP5kQg8gU-_w7x-kM90up45Kd6dKMlCT6QB_N_M1CPTc7QLz1rOiKOwrOewRc0L2Gnbl1_evYT76c8FMj_GUkqM-NNp9C1uVsicFAVvcd1VMcdZg5LL0VSRW2yWc6rChCUrFkNhZ5TT2TA659UhX4MErjY3denoAEf-ede0upwzVuJDvDou6m6ul6fbNrXYr4TfU34TsLkMdx2basd-AIawkldwfvR1ejiO2g4NkUu0WkeO0SFxbmiqzFgaWpW6mLRNKmNcOSg1GZfa3JDmgTgmW-pUCKbWzrgsr8zwNfSaRUNvANlTyhQRm0r2k61Rpauy1Lo8tbXU5C_3IOkUUixDIY6ii1C7Kh5psRAtFkGLe_ClU13xx64q2GD8W_zt_4l_hJ3x9Oy0OD2enLyDp3InRK_tQ299s6H3TGfW9kO7XX8BuEP5Pw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+new+analytical+models+for+heat+transport+in+ground-coupled+heat+pump+system+with+heat+loss+at+ground+surface%3A+A+new+meshless+treatment+of+ground+heat+exchanger+for+reflecting+heat+capacity+effect&rft.jtitle=Geothermics&rft.au=Tang%2C+Chenyang&rft.au=Yeh%2C+Hund-Der&rft.au=Huang%2C+Ching-Sheng&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0375-6505&rft.volume=127&rft_id=info:doi/10.1016%2Fj.geothermics.2025.103258&rft.externalDocID=S0375650525000100
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6505&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6505&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6505&client=summon