Two new analytical models for heat transport in ground-coupled heat pump system with heat loss at ground surface: A new meshless treatment of ground heat exchanger for reflecting heat capacity effect
•Two new models for heat transport in ground-coupled heat pump system are built.•One model applies an equation to heat transport in a ground heat exchanger (GHE).•The other model modifies the equation as a new meshless GHE treatment.•The analytical and numerical solutions of both models are presente...
Saved in:
Published in | Geothermics Vol. 127; p. 103258 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.03.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0375-6505 |
DOI | 10.1016/j.geothermics.2025.103258 |
Cover
Abstract | •Two new models for heat transport in ground-coupled heat pump system are built.•One model applies an equation to heat transport in a ground heat exchanger (GHE).•The other model modifies the equation as a new meshless GHE treatment.•The analytical and numerical solutions of both models are presented.•A closed-form expression for a coefficient in the GHE treatment is derived.
Existing boundary conditions or source terms specified at cylindrical ground heat exchangers (GHEs) in ground-coupled heat pump (GCHP) systems neglect the effect of GHE heat capacity. This study modifies a governing equation as a new meshless GHE treatment reflecting the effect by the product of a coefficient and temperature time derivative. Two new analytical models are developed for depicting heat transport in a GCHP system with heat loss at the ground surface. The two-zone model adopts two coupled governing equations describing heat transport in the GHE and soil formation zones. The single-zone model applies the new GHE treatment for the GHE zone with the governing equation for the formation zone. Analytical solutions of the models are derived; finite element solutions are built to release analytical solutions’ assumption of the same thermal property of the GHE and formation below the GHE. Results suggest the coefficient equals the half product of the GHE density, specific heat, and square of its radius divided by its thermal conductivity. Both analytical solutions agree to temperature within 6.2 % relative difference and 5 % for most time of a heating or cooling season, applicable to most GHEs. One finite element solution with the new meshless GHE treatment takes about 1 % of the computing time of acquiring the other finite element solution based on the governing equation and fine GHE discretization. The assumption causes 10.6 % relative error in temperature at the GHE bottom, but the error dramatically decreases below 5 % elsewhere. The present solution applies to a field GCHP experiment. In conclusion, this study may provide a better understanding of GCHP systems and useful approach for field applications. |
---|---|
AbstractList | •Two new models for heat transport in ground-coupled heat pump system are built.•One model applies an equation to heat transport in a ground heat exchanger (GHE).•The other model modifies the equation as a new meshless GHE treatment.•The analytical and numerical solutions of both models are presented.•A closed-form expression for a coefficient in the GHE treatment is derived.
Existing boundary conditions or source terms specified at cylindrical ground heat exchangers (GHEs) in ground-coupled heat pump (GCHP) systems neglect the effect of GHE heat capacity. This study modifies a governing equation as a new meshless GHE treatment reflecting the effect by the product of a coefficient and temperature time derivative. Two new analytical models are developed for depicting heat transport in a GCHP system with heat loss at the ground surface. The two-zone model adopts two coupled governing equations describing heat transport in the GHE and soil formation zones. The single-zone model applies the new GHE treatment for the GHE zone with the governing equation for the formation zone. Analytical solutions of the models are derived; finite element solutions are built to release analytical solutions’ assumption of the same thermal property of the GHE and formation below the GHE. Results suggest the coefficient equals the half product of the GHE density, specific heat, and square of its radius divided by its thermal conductivity. Both analytical solutions agree to temperature within 6.2 % relative difference and 5 % for most time of a heating or cooling season, applicable to most GHEs. One finite element solution with the new meshless GHE treatment takes about 1 % of the computing time of acquiring the other finite element solution based on the governing equation and fine GHE discretization. The assumption causes 10.6 % relative error in temperature at the GHE bottom, but the error dramatically decreases below 5 % elsewhere. The present solution applies to a field GCHP experiment. In conclusion, this study may provide a better understanding of GCHP systems and useful approach for field applications. |
ArticleNumber | 103258 |
Author | Tang, Chenyang Yeh, Hund-Der Huang, Ching-Sheng |
Author_xml | – sequence: 1 givenname: Chenyang surname: Tang fullname: Tang, Chenyang organization: College of Hydrology and Water Resources, Hohai University, Nanjing, China – sequence: 2 givenname: Hund-Der surname: Yeh fullname: Yeh, Hund-Der organization: Center of Excellence for Ocean Engineering, National Taiwan Ocean University, Keelung, Taiwan – sequence: 3 givenname: Ching-Sheng orcidid: 0000-0002-9129-1768 surname: Huang fullname: Huang, Ching-Sheng email: cshuang617@gs.ncku.edu.tw organization: Department of Resources Engineering, National Cheng Kung University, Tainan, Taiwan |
BookMark | eNqNUctOwzAQ9AEkoPAP5gNSnKS2W25VxUuqxKWcLWezaVwldmS7lH4hv4VpQOLIaaXZmd3ZnStyZp1FQm5zNs1ZLu520y262KLvDYRpwQqe8LLg8zNyyUrJM8EZvyBXIewYY5JLdkk-NwdHLR6otro7RgO6o72rsQu0cZ62qCONXtswOB-psXTr3d7WGbj90GE9EoZ9P9BwDBF7ejCxHdHOhUBTHRU07H2jAe_p8rSvx9B2mBjRJ3KPNlLX_HJPevyAVtst-pMTj02HEI3djl3QgwYTjxSbJuHX5LzRXcCbnzohb48Pm9Vztn59elkt1xkUgscMWJ4XAKWs57LCsuIzYCiqopYSdK4FSphVC4kiAYxhpcVM5LwUAiTMF7UsJ2QxzgWfzkum1OBNr_1R5Ux9p6B26k8K6jsFNaaQtKtRm76L7wa9CmDQAtbGpxNU7cw_pnwBjKqg2A |
Cites_doi | 10.1016/j.applthermaleng.2017.07.099 10.1016/j.renene.2018.03.082 10.1016/j.enconman.2021.114871 10.1016/j.enbuild.2010.03.008 10.1016/j.jhydrol.2022.128273 10.1016/j.geothermics.2023.102888 10.1016/j.apenergy.2015.04.070 10.1016/j.renene.2009.09.015 10.1016/j.apenergy.2016.02.085 10.1145/361953.361969 10.1002/htj.10057 10.1016/j.advwatres.2023.104506 10.1016/j.geothermics.2024.103148 10.1080/19401493.2011.652175 10.1016/j.apenergy.2012.03.047 10.1016/j.ijheatmasstransfer.2020.119559 10.1016/j.est.2023.107503 10.1016/j.enbuild.2016.09.055 10.1016/j.enconman.2018.10.042 10.1016/j.ijheatmasstransfer.2010.03.001 10.1016/j.geothermics.2009.07.002 10.1016/j.egyr.2023.10.086 10.1016/j.enbuild.2013.08.023 10.1016/j.geothermics.2024.103134 10.1016/j.renene.2018.12.114 |
ContentType | Journal Article |
Copyright | 2025 The Authors |
Copyright_xml | – notice: 2025 The Authors |
DBID | 6I. AAFTH AAYXX CITATION |
DOI | 10.1016/j.geothermics.2025.103258 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
ExternalDocumentID | 10_1016_j_geothermics_2025_103258 S0375650525000100 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO ABJNI ABMAC ABQEM ABQYD ABWVN ABXDB ACDAQ ACGFS ACIWK ACLVX ACRLP ACRPL ACSBN ADBBV ADEZE ADMUD ADNMO AEBSH AEIPS AEKER AENEX AFJKZ AFRAH AFTJW AFXIZ AGCQF AGHFR AGQPQ AGUBO AGYEJ AHHHB AHIDL AI. AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG ATOGT AVWKF AXJTR AZFZN BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMA HVGLF HZ~ IHE IMUCA J1W JARJE KOM LY3 LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SEP SES SET SEW SPC SPCBC SSE SSH SSR SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~02 ~G- AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AIIUN AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
ID | FETCH-LOGICAL-c265t-c0112cc37d87be3b54c0e6b2d77ca1a6e7c4b97e6d7700eba64615366c7c89d73 |
IEDL.DBID | .~1 |
ISSN | 0375-6505 |
IngestDate | Wed Oct 01 06:30:59 EDT 2025 Sat May 03 15:55:50 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Finite element solution Ground heat exchanger Heat capacity effect Ground-coupled heat pump system Meshless treatment Analytical solution |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-c0112cc37d87be3b54c0e6b2d77ca1a6e7c4b97e6d7700eba64615366c7c89d73 |
ORCID | 0000-0002-9129-1768 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0375650525000100 |
ParticipantIDs | crossref_primary_10_1016_j_geothermics_2025_103258 elsevier_sciencedirect_doi_10_1016_j_geothermics_2025_103258 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2025 2025-03-00 |
PublicationDateYYYYMMDD | 2025-03-01 |
PublicationDate_xml | – month: 03 year: 2025 text: March 2025 |
PublicationDecade | 2020 |
PublicationTitle | Geothermics |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kwon, Bae, Chae, Nam (bib0010) 2023; 10 Philippe, Bernier, Marchio (bib0018) 2009; 38 Brown, Kolo, Banks, Falcone (bib0004) 2024; 117 Li, Shu, Xiao, Tao, Niu, Wang (bib0012) 2021; 249 Man, Yang, Diao, Liu, Fang (bib0015) 2010; 53 Magraner, Montero, Quilis, Urchueguia (bib0014) 2010; 42 News, Report for 508 Ground Heat Exchangers (GHEs) used in Wangjiapu Village, Yanqing, Beijing, China. Yang, Yan, Li, Zhang, Zeng (bib0025) 2020; 152 Li, Lai (bib0011) 2015; 151 Zeng, Diao, Fang (bib0026) 2002; 31 Wang, Huang, Tong, Xiong, Lee (bib0023) 2022; 612 Marcotte, Pasquier, Sheriff, Bernier (bib0016) 2010; 35 2018 (accessed 27 December 2018). (In Chinese). Ingersoll, Zobel, Ingersoll (bib0009) 1954 Shirazi, Bernier (bib0020) 2013; 67 (bib0001) 2015 Wang, Huang, Tong, Lee (bib0022) 2023; 179 Liu, Ren, Ye, Ren, Wang, Huai, Qi (bib0013) 2021; 40 Pokhrel, Amiri, Poncet, Ghoreishi-Madiseh (bib0019) 2023; 66 Zhao, Chen, Liu (bib0028) 2016; 133 Cui, Zhu, Meng (bib0006) 2018; 178 Wang, Zhou, Wu, Zhuo, Xu, Liu (bib0024) 2024; 124 Stehfest (bib0021) 1970; 13 Bertagnolio, Bernier, Kummert (bib0003) 2012; 5 Baralis, Barla (bib0002) 2024; 124 Zhang, Huang, Zhang, Wang (bib0027) 2018; 126 Zhao, Liu, Liu, Tian, Chen (bib0029) 2017; 125 Eslami-Nejad, Bernier (bib0007) 2012; 98 Han, Yu (bib0008) 2016; 170 Chen, Pan, Zhang, Du (bib0005) 2019; 136 10.1016/j.geothermics.2025.103258_bib0017 Zeng (10.1016/j.geothermics.2025.103258_bib0026) 2002; 31 Li (10.1016/j.geothermics.2025.103258_bib0012) 2021; 249 Wang (10.1016/j.geothermics.2025.103258_bib0023) 2022; 612 Eslami-Nejad (10.1016/j.geothermics.2025.103258_bib0007) 2012; 98 Wang (10.1016/j.geothermics.2025.103258_bib0022) 2023; 179 Chen (10.1016/j.geothermics.2025.103258_bib0005) 2019; 136 Han (10.1016/j.geothermics.2025.103258_bib0008) 2016; 170 Brown (10.1016/j.geothermics.2025.103258_bib0004) 2024; 117 Stehfest (10.1016/j.geothermics.2025.103258_bib0021) 1970; 13 Kwon (10.1016/j.geothermics.2025.103258_bib0010) 2023; 10 Baralis (10.1016/j.geothermics.2025.103258_bib0002) 2024; 124 Pokhrel (10.1016/j.geothermics.2025.103258_bib0019) 2023; 66 Zhao (10.1016/j.geothermics.2025.103258_bib0028) 2016; 133 Philippe (10.1016/j.geothermics.2025.103258_bib0018) 2009; 38 Ingersoll (10.1016/j.geothermics.2025.103258_bib0009) 1954 Liu (10.1016/j.geothermics.2025.103258_bib0013) 2021; 40 Zhang (10.1016/j.geothermics.2025.103258_bib0027) 2018; 126 Zhao (10.1016/j.geothermics.2025.103258_bib0029) 2017; 125 Yang (10.1016/j.geothermics.2025.103258_bib0025) 2020; 152 Shirazi (10.1016/j.geothermics.2025.103258_bib0020) 2013; 67 Wang (10.1016/j.geothermics.2025.103258_bib0024) 2024; 124 (10.1016/j.geothermics.2025.103258_bib0001) 2015 Bertagnolio (10.1016/j.geothermics.2025.103258_bib0003) 2012; 5 Magraner (10.1016/j.geothermics.2025.103258_bib0014) 2010; 42 Man (10.1016/j.geothermics.2025.103258_bib0015) 2010; 53 Marcotte (10.1016/j.geothermics.2025.103258_bib0016) 2010; 35 Cui (10.1016/j.geothermics.2025.103258_bib0006) 2018; 178 Li (10.1016/j.geothermics.2025.103258_bib0011) 2015; 151 |
References_xml | – year: 1954 ident: bib0009 article-title: Heat Conduction With Engineering, Geological, and Other Applications – volume: 170 start-page: 148 year: 2016 end-page: 160 ident: bib0008 article-title: Sensitivity analysis of a vertical geothermal heat pump system publication-title: Appl. Energy – volume: 124 year: 2024 ident: bib0002 article-title: rOGER: a method for determining the geothermal potential in urban areas publication-title: Geothermics – volume: 136 start-page: 793 year: 2019 end-page: 804 ident: bib0005 article-title: Thermal response factors for fast parameterized design and long-term performance simulation of vertical GCHP systems publication-title: Renew. Energy – volume: 35 start-page: 763 year: 2010 end-page: 770 ident: bib0016 article-title: The importance of axis effects for borehole design of geothermal heat-pump systems publication-title: Renew. Energy – volume: 612 year: 2022 ident: bib0023 article-title: A low-cost model for slug tests in a confined ground with skin-zone effect publication-title: J. Hydrol. – volume: 126 start-page: 495 year: 2018 end-page: 508 ident: bib0027 article-title: An hourly simulation method for the energy performance of an office building served by a ground-coupled heat pump system publication-title: Renew. Energy – volume: 42 start-page: 1349 year: 2010 end-page: 1401 ident: bib0014 article-title: Comparison between design and actual energy performance of a HVAC-ground coupled heat pump system in cooling and heating operation publication-title: Energy Build. – volume: 98 start-page: 333 year: 2012 end-page: 345 ident: bib0007 article-title: Freezing of geothermal borehole surroundings: a numerical and experimental assessment with applications publication-title: Appl. Energy – volume: 124 year: 2024 ident: bib0024 article-title: Hydrogeochemistry of trace elements in geothermal waters from the Rehai geothermal system in Yunnan of China, a magma-indirectly related geothermal system publication-title: Geothermics – volume: 53 start-page: 2593 year: 2010 end-page: 2601 ident: bib0015 article-title: A new model and analytical solutions for borehole and pile ground heat exchangers publication-title: Int. J. Heat Mass Transf. – reference: News, Report for 508 Ground Heat Exchangers (GHEs) used in Wangjiapu Village, Yanqing, Beijing, China. – volume: 31 start-page: 558 year: 2002 end-page: 567 ident: bib0026 article-title: A finite line-source model for boreholes in geothermal heat exchangers publication-title: Heat Transf. Asian Res. – volume: 133 start-page: 335 year: 2016 end-page: 344 ident: bib0028 article-title: Study on the thermal performance of several types of energy pile ground heat exchangers: u-shaped, W-shaped and spiral-shaped publication-title: Energy Build. – volume: 178 start-page: 200 year: 2018 end-page: 216 ident: bib0006 article-title: Techno-economic evaluation of multiple energy piles for a ground-coupled heat pump system publication-title: Energy Convers. Manag. – volume: 117 year: 2024 ident: bib0004 article-title: Comparison of the thermal and hydraulic performance of single U-tube, double U-tube and coaxial medium-to-deep borehole heat exchangers publication-title: Geothermics – volume: 179 year: 2023 ident: bib0022 article-title: Parameter correlation study on two new analytical solutions for radially divergent tracer tests in two-zone confined aquifers with vertical dispersion effect publication-title: Adv. Water Resour. – volume: 10 start-page: 4359 year: 2023 end-page: 4373 ident: bib0010 article-title: Economic and performance analysis of ground source heat pump system for high-rise residential buildings considering practical applications publication-title: Energy Rep. – volume: 67 start-page: 352 year: 2013 end-page: 364 ident: bib0020 article-title: Thermal capacity effects in borehole ground heat exchangers publication-title: Energy Build. – volume: 5 start-page: 369 year: 2012 end-page: 383 ident: bib0003 article-title: Comparing vertical ground heat exchanger models publication-title: J. Build. Perform. Simul. – volume: 151 start-page: 178 year: 2015 end-page: 191 ident: bib0011 article-title: Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales publication-title: Appl. Energy – volume: 249 year: 2021 ident: bib0012 article-title: Effect of pumping-recharge well structures on heat transfer characteristics of double-well groundwater heat pump systems considering hydrothermal coupling publication-title: Energy Convers. Manag. – volume: 66 year: 2023 ident: bib0019 article-title: Reduced order 1 + 3D numerical model for evaluating the performance of solar borehole thermal energy storage systems publication-title: J. Energy Storage – year: 2015 ident: bib0001 article-title: Refrigerating and Air-Conditioning Engineers (ASHRAE). 2015 ASHRAE Handbook: HVAC Applications – volume: 40 start-page: 565 year: 2021 end-page: 576 ident: bib0013 article-title: Potential evaluation of geothermal resources:exemplifying some municipalities and key strata in Ordos Basin as a study case publication-title: Geol. Bull. China – volume: 38 start-page: 407 year: 2009 end-page: 413 ident: bib0018 article-title: Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes publication-title: Geothermics – volume: 152 year: 2020 ident: bib0025 article-title: A unified model and analytical solution for borehole and pile ground heat exchangers publication-title: Int. J. Heat Mass Transf. – reference: , 2018 (accessed 27 December 2018). (In Chinese). – volume: 13 start-page: 47 year: 1970 end-page: 49 ident: bib0021 article-title: Numerical inversion of Laplace transforms publication-title: Commun. ACM – volume: 125 start-page: 1280 year: 2017 end-page: 1290 ident: bib0029 article-title: Influence of spiral pitch on the thermal behaviors of energy piles with spiral-tube heat exchanger publication-title: Appl. Therm. Eng. – volume: 125 start-page: 1280 year: 2017 ident: 10.1016/j.geothermics.2025.103258_bib0029 article-title: Influence of spiral pitch on the thermal behaviors of energy piles with spiral-tube heat exchanger publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.07.099 – volume: 126 start-page: 495 year: 2018 ident: 10.1016/j.geothermics.2025.103258_bib0027 article-title: An hourly simulation method for the energy performance of an office building served by a ground-coupled heat pump system publication-title: Renew. Energy doi: 10.1016/j.renene.2018.03.082 – volume: 249 year: 2021 ident: 10.1016/j.geothermics.2025.103258_bib0012 article-title: Effect of pumping-recharge well structures on heat transfer characteristics of double-well groundwater heat pump systems considering hydrothermal coupling publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2021.114871 – volume: 42 start-page: 1349 year: 2010 ident: 10.1016/j.geothermics.2025.103258_bib0014 article-title: Comparison between design and actual energy performance of a HVAC-ground coupled heat pump system in cooling and heating operation publication-title: Energy Build. doi: 10.1016/j.enbuild.2010.03.008 – ident: 10.1016/j.geothermics.2025.103258_bib0017 – volume: 612 year: 2022 ident: 10.1016/j.geothermics.2025.103258_bib0023 article-title: A low-cost model for slug tests in a confined ground with skin-zone effect publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2022.128273 – volume: 117 year: 2024 ident: 10.1016/j.geothermics.2025.103258_bib0004 article-title: Comparison of the thermal and hydraulic performance of single U-tube, double U-tube and coaxial medium-to-deep borehole heat exchangers publication-title: Geothermics doi: 10.1016/j.geothermics.2023.102888 – volume: 151 start-page: 178 year: 2015 ident: 10.1016/j.geothermics.2025.103258_bib0011 article-title: Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): a perspective of time and space scales publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.070 – volume: 35 start-page: 763 year: 2010 ident: 10.1016/j.geothermics.2025.103258_bib0016 article-title: The importance of axis effects for borehole design of geothermal heat-pump systems publication-title: Renew. Energy doi: 10.1016/j.renene.2009.09.015 – year: 2015 ident: 10.1016/j.geothermics.2025.103258_bib0001 – volume: 170 start-page: 148 year: 2016 ident: 10.1016/j.geothermics.2025.103258_bib0008 article-title: Sensitivity analysis of a vertical geothermal heat pump system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.02.085 – volume: 13 start-page: 47 year: 1970 ident: 10.1016/j.geothermics.2025.103258_bib0021 article-title: Numerical inversion of Laplace transforms publication-title: Commun. ACM doi: 10.1145/361953.361969 – volume: 31 start-page: 558 year: 2002 ident: 10.1016/j.geothermics.2025.103258_bib0026 article-title: A finite line-source model for boreholes in geothermal heat exchangers publication-title: Heat Transf. Asian Res. doi: 10.1002/htj.10057 – volume: 179 year: 2023 ident: 10.1016/j.geothermics.2025.103258_bib0022 article-title: Parameter correlation study on two new analytical solutions for radially divergent tracer tests in two-zone confined aquifers with vertical dispersion effect publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2023.104506 – year: 1954 ident: 10.1016/j.geothermics.2025.103258_bib0009 – volume: 124 year: 2024 ident: 10.1016/j.geothermics.2025.103258_bib0002 article-title: rOGER: a method for determining the geothermal potential in urban areas publication-title: Geothermics doi: 10.1016/j.geothermics.2024.103148 – volume: 40 start-page: 565 year: 2021 ident: 10.1016/j.geothermics.2025.103258_bib0013 article-title: Potential evaluation of geothermal resources:exemplifying some municipalities and key strata in Ordos Basin as a study case publication-title: Geol. Bull. China – volume: 5 start-page: 369 year: 2012 ident: 10.1016/j.geothermics.2025.103258_bib0003 article-title: Comparing vertical ground heat exchanger models publication-title: J. Build. Perform. Simul. doi: 10.1080/19401493.2011.652175 – volume: 98 start-page: 333 year: 2012 ident: 10.1016/j.geothermics.2025.103258_bib0007 article-title: Freezing of geothermal borehole surroundings: a numerical and experimental assessment with applications publication-title: Appl. Energy doi: 10.1016/j.apenergy.2012.03.047 – volume: 152 year: 2020 ident: 10.1016/j.geothermics.2025.103258_bib0025 article-title: A unified model and analytical solution for borehole and pile ground heat exchangers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2020.119559 – volume: 66 year: 2023 ident: 10.1016/j.geothermics.2025.103258_bib0019 article-title: Reduced order 1 + 3D numerical model for evaluating the performance of solar borehole thermal energy storage systems publication-title: J. Energy Storage doi: 10.1016/j.est.2023.107503 – volume: 133 start-page: 335 year: 2016 ident: 10.1016/j.geothermics.2025.103258_bib0028 article-title: Study on the thermal performance of several types of energy pile ground heat exchangers: u-shaped, W-shaped and spiral-shaped publication-title: Energy Build. doi: 10.1016/j.enbuild.2016.09.055 – volume: 178 start-page: 200 year: 2018 ident: 10.1016/j.geothermics.2025.103258_bib0006 article-title: Techno-economic evaluation of multiple energy piles for a ground-coupled heat pump system publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.10.042 – volume: 53 start-page: 2593 year: 2010 ident: 10.1016/j.geothermics.2025.103258_bib0015 article-title: A new model and analytical solutions for borehole and pile ground heat exchangers publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.03.001 – volume: 38 start-page: 407 year: 2009 ident: 10.1016/j.geothermics.2025.103258_bib0018 article-title: Validity ranges of three analytical solutions to heat transfer in the vicinity of single boreholes publication-title: Geothermics doi: 10.1016/j.geothermics.2009.07.002 – volume: 10 start-page: 4359 year: 2023 ident: 10.1016/j.geothermics.2025.103258_bib0010 article-title: Economic and performance analysis of ground source heat pump system for high-rise residential buildings considering practical applications publication-title: Energy Rep. doi: 10.1016/j.egyr.2023.10.086 – volume: 67 start-page: 352 year: 2013 ident: 10.1016/j.geothermics.2025.103258_bib0020 article-title: Thermal capacity effects in borehole ground heat exchangers publication-title: Energy Build. doi: 10.1016/j.enbuild.2013.08.023 – volume: 124 year: 2024 ident: 10.1016/j.geothermics.2025.103258_bib0024 article-title: Hydrogeochemistry of trace elements in geothermal waters from the Rehai geothermal system in Yunnan of China, a magma-indirectly related geothermal system publication-title: Geothermics doi: 10.1016/j.geothermics.2024.103134 – volume: 136 start-page: 793 year: 2019 ident: 10.1016/j.geothermics.2025.103258_bib0005 article-title: Thermal response factors for fast parameterized design and long-term performance simulation of vertical GCHP systems publication-title: Renew. Energy doi: 10.1016/j.renene.2018.12.114 |
SSID | ssj0007570 |
Score | 2.384972 |
Snippet | •Two new models for heat transport in ground-coupled heat pump system are built.•One model applies an equation to heat transport in a ground heat exchanger... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 103258 |
SubjectTerms | Analytical solution Finite element solution Ground heat exchanger Ground-coupled heat pump system Heat capacity effect Meshless treatment |
Title | Two new analytical models for heat transport in ground-coupled heat pump system with heat loss at ground surface: A new meshless treatment of ground heat exchanger for reflecting heat capacity effect |
URI | https://dx.doi.org/10.1016/j.geothermics.2025.103258 |
Volume | 127 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0375-6505 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007570 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0375-6505 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007570 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection 2013 issn: 0375-6505 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007570 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0375-6505 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0007570 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0375-6505 databaseCode: AKRWK dateStart: 19720301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0007570 providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS-RAEG5Ewd2LqLuyPilhr3EymaQ7ES-DKKODHnYVvYV0p6IjM5lhHqgX_55_y6ruxAcIHjw16VSRTqqp-qpTDyH-El6TUZFpL8am9sIiiUkPFokn81ah0FeqqTl3-Oxcdi7D0-voek4c1rkwHFZZ6X6n0622rmYa1ddsjHq9xn_u3iptHzYGKj777Vz9i_b03tNbmIeKbMM4JvaYelHsvsV43aBNcxr0DFfuDiJOQQ-4-_tnNuqd3TleFksVYIS2W9OKmMNyVfyoepffPv4Szxf3QyBwDBnXF7FH02D720yAACmwsoVpXcIceiVwIkeZe2Y4G_UxdwQjkiq4qs7AR7Nutk-rAxodB0xm4yIzuA9t-7wBTm77pCjhNVgdhkVNa_nxocortiuh9-R_BGQr3V1DdtqQEwAupuS3uDw-ujjseFV7Bs8EMpp6hlRDYExL5bHS2NJRaHyUOsiVMlkzk6hMqBOFkiZ8H3UmQ0aXUhpl4iRXrTUxXw5L_COA3KQ4QiQ7SU6yVlFm8jjUJgl1wQX5s3UR1AJJR64KR1qHp92l76SYshRTJ8V1cVCLLv2wpVKyFl-zb3yPfVP85CsXrrYl5qfjGW4TfpnqHbtBd8RC-6TbOeex---q-wIhFvg3 |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9tAEB6CA00vJX3RtGk7hV6FZVm7K4VeTGhwmsSXOpCb0K5GjYMjm9imyS_M3-rMrpSmUOihJ8FqB600yzffrOYB8Jn5mlZ1aaOMBjZK6zxjHKzzSFfD2lBszMBK7vDZRI_P028X6mILDrtcGAmrbLE_YLpH63ak337N_nI263-X7q3a92ETohKz376dKsbkHmyPjk_GkwdANsr3jJP5kQg8gU-_w7x-kM90up45Kd6dKMlCT6QB_N_M1CPTc7QLz1rOiKOwrOewRc0L2Gnbl1_evYT76c8FMj_GUkqM-NNp9C1uVsicFAVvcd1VMcdZg5LL0VSRW2yWc6rChCUrFkNhZ5TT2TA659UhX4MErjY3denoAEf-ede0upwzVuJDvDou6m6ul6fbNrXYr4TfU34TsLkMdx2basd-AIawkldwfvR1ejiO2g4NkUu0WkeO0SFxbmiqzFgaWpW6mLRNKmNcOSg1GZfa3JDmgTgmW-pUCKbWzrgsr8zwNfSaRUNvANlTyhQRm0r2k61Rpauy1Lo8tbXU5C_3IOkUUixDIY6ii1C7Kh5psRAtFkGLe_ClU13xx64q2GD8W_zt_4l_hJ3x9Oy0OD2enLyDp3InRK_tQ299s6H3TGfW9kO7XX8BuEP5Pw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Two+new+analytical+models+for+heat+transport+in+ground-coupled+heat+pump+system+with+heat+loss+at+ground+surface%3A+A+new+meshless+treatment+of+ground+heat+exchanger+for+reflecting+heat+capacity+effect&rft.jtitle=Geothermics&rft.au=Tang%2C+Chenyang&rft.au=Yeh%2C+Hund-Der&rft.au=Huang%2C+Ching-Sheng&rft.date=2025-03-01&rft.pub=Elsevier+Ltd&rft.issn=0375-6505&rft.volume=127&rft_id=info:doi/10.1016%2Fj.geothermics.2025.103258&rft.externalDocID=S0375650525000100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0375-6505&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0375-6505&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0375-6505&client=summon |