An amalgamation of deep neural networks optimized with Salp swarm algorithm for cervical cancer detection
Cervical cancer is a critical global health issue by affecting millions of women each year and causing high mortality rates if not diagnosed early. Early detection of cervical cancer significantly improves patient outcomes and survival rates. Traditional diagnostic approaches are frequently suscepti...
Saved in:
| Published in | Computers & electrical engineering Vol. 123; p. 110106 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0045-7906 |
| DOI | 10.1016/j.compeleceng.2025.110106 |
Cover
| Abstract | Cervical cancer is a critical global health issue by affecting millions of women each year and causing high mortality rates if not diagnosed early. Early detection of cervical cancer significantly improves patient outcomes and survival rates. Traditional diagnostic approaches are frequently susceptible to errors, which can result in inaccurate diagnoses and being time-consuming. However, the emergence of machine learning and artificial intelligence provides innovative approaches to improve both diagnostic accuracy and efficiency. Individual deep learning models often face challenges in extracting the critical information essential for accurate prediction of disease in complex datasets. To tackle this, we propose a novel ensemble model that leverages the Salp Swarm Algorithm (SSA) to enhance cervical cancer diagnosis. This approach employs three highly effective pre-trained models like DenseNet169, DenseNet201, and Xception for feature extraction. To improve feature attention, we integrated the Convolutional Block Attention Module into each of these models to make them our base models. Subsequently, the predictions generated from each base model within the ensemble are aggregated through a weighted aggregation approach and further optimized the ensemble model by intelligently assigning weights to each model through the SSA. We evaluated our model using two datasets including the Mendeley LBC dataset with four classes and the BloodMNIST Benchmark dataset with eight classes. This approach ensures the robustness and generalizability of the ensemble model by demonstrating its effectiveness on diverse datasets. Our proposed ensemble model demonstrates superior performance compared to existing state-of-the-art methods by attaining an impressive accuracy rates of 99.48% on the 4-class Mendeley LBC dataset and 95.23% on the 8-class BloodMNIST dataset. This work marks a significant advancement in the field of cervical cancer diagnosis. We evaluate our optimized ensemble model using advanced metrics and visualizations such as confusion matrix, receiver operating characteristics (ROC) curve, t-distributed Stochastic Neighbor Embedding (t-SNE) plot, and Grad-CAMs. We validated the significance of our findings by conducting McNemar's Chi-Square and Friedman's Test. This comprehensive assessment underscores the accuracy, robustness, and interpretability of the proposed model in diagnosing cervical cancer cells. |
|---|---|
| AbstractList | Cervical cancer is a critical global health issue by affecting millions of women each year and causing high mortality rates if not diagnosed early. Early detection of cervical cancer significantly improves patient outcomes and survival rates. Traditional diagnostic approaches are frequently susceptible to errors, which can result in inaccurate diagnoses and being time-consuming. However, the emergence of machine learning and artificial intelligence provides innovative approaches to improve both diagnostic accuracy and efficiency. Individual deep learning models often face challenges in extracting the critical information essential for accurate prediction of disease in complex datasets. To tackle this, we propose a novel ensemble model that leverages the Salp Swarm Algorithm (SSA) to enhance cervical cancer diagnosis. This approach employs three highly effective pre-trained models like DenseNet169, DenseNet201, and Xception for feature extraction. To improve feature attention, we integrated the Convolutional Block Attention Module into each of these models to make them our base models. Subsequently, the predictions generated from each base model within the ensemble are aggregated through a weighted aggregation approach and further optimized the ensemble model by intelligently assigning weights to each model through the SSA. We evaluated our model using two datasets including the Mendeley LBC dataset with four classes and the BloodMNIST Benchmark dataset with eight classes. This approach ensures the robustness and generalizability of the ensemble model by demonstrating its effectiveness on diverse datasets. Our proposed ensemble model demonstrates superior performance compared to existing state-of-the-art methods by attaining an impressive accuracy rates of 99.48% on the 4-class Mendeley LBC dataset and 95.23% on the 8-class BloodMNIST dataset. This work marks a significant advancement in the field of cervical cancer diagnosis. We evaluate our optimized ensemble model using advanced metrics and visualizations such as confusion matrix, receiver operating characteristics (ROC) curve, t-distributed Stochastic Neighbor Embedding (t-SNE) plot, and Grad-CAMs. We validated the significance of our findings by conducting McNemar's Chi-Square and Friedman's Test. This comprehensive assessment underscores the accuracy, robustness, and interpretability of the proposed model in diagnosing cervical cancer cells. |
| ArticleNumber | 110106 |
| Author | Khan, Saif Ur Rehman Bilal, Omair Asif, Sohaib Zhao, Ming Li, Yangfan |
| Author_xml | – sequence: 1 givenname: Omair surname: Bilal fullname: Bilal, Omair – sequence: 2 givenname: Sohaib orcidid: 0000-0003-0526-3910 surname: Asif fullname: Asif, Sohaib email: punjabians1592@gmail.com – sequence: 3 givenname: Ming surname: Zhao fullname: Zhao, Ming email: meanzhao@csu.edu.cn – sequence: 4 givenname: Saif Ur Rehman surname: Khan fullname: Khan, Saif Ur Rehman – sequence: 5 givenname: Yangfan surname: Li fullname: Li, Yangfan |
| BookMark | eNqNUMtOwzAQ9KFItIV_MB-QYKexkxyripdUiQNwtlx7U1wSO7JDK_h6NioHjlx29qEZ7cyCzHzwQMgNZzlnXN4echP6ATow4Pd5wQqRczwwOSNzxkqRVQ2Tl2SR0oHhLHk9J27tqe51t8cyuuBpaKkFGKiHz6g7hPEU4keiYRhd777B0pMb3-mL7gaaTjr2FMkh4q6nbYjUQDw6g0yjPfYoNoKZlK_IRau7BNe_uCRv93evm8ds-_zwtFlvM1NIMWa15boGthONrDgiGrOiAStZVe2qUtaiMdbYUvCCCyYsl4KzthaiLuWqWcFqSZqzrokhpQitGqLrdfxSnKkpJ3VQf3JSU07qnBNyN2cu4INHB1El4wB9WBfRhbLB_UPlB2_DfAs |
| Cites_doi | 10.1016/j.bspc.2022.104156 10.1016/j.knosys.2024.111482 10.1016/j.tice.2020.101347 10.3390/electronics11030463 10.4018/979-8-3693-3735-6 10.1016/S0065-3527(06)66003-X 10.1093/plankt/fbv024 10.1016/j.bspc.2024.107221 10.1093/comjnl/bxaa198 10.1007/s12539-023-00589-5 10.15419/bmrat.v4i12.386 10.1016/j.procs.2016.06.105 10.1038/s41598-021-93783-8 10.1016/j.ins.2022.05.058 10.3390/bioengineering11050468 10.1007/s11042-022-12670-0 10.1002/ima.23044 10.1016/j.knosys.2023.111324 10.1016/j.eswa.2019.112951 10.1093/plankt/8.6.1091 10.1016/j.compeleceng.2024.109796 10.1016/j.asoc.2024.112366 10.1016/j.swevo.2019.02.003 10.26554/sti.2023.8.1.84-92 10.1016/j.engappai.2023.106336 10.1016/j.compeleceng.2022.108524 10.1016/j.ins.2020.11.055 10.1002/ima.22953 10.1016/j.compeleceng.2024.109243 10.1007/s13721-024-00466-1 10.3991/ijoe.v19i04.37437 10.1016/j.compeleceng.2024.109248 10.1016/j.compbiomed.2021.104649 10.1016/j.compeleceng.2024.109446 10.1016/j.ajog.2008.12.025 10.1155/2021/5584004 10.1016/j.swevo.2023.101287 10.3390/app14135599 10.1016/j.patcog.2022.108829 10.1002/cyto.a.24698 10.37391/ijeer.110246 10.1200/JCO.2014.55.9948 10.1016/j.engappai.2023.107261 10.1007/s11063-021-10481-2 10.1016/j.compeleceng.2024.109745 10.1016/j.compeleceng.2022.108479 10.1109/ACCESS.2023.3337032 10.2174/2213275911666181120092223 10.1038/s41598-023-36605-3 10.1109/ACCESS.2021.3049165 10.1007/s11571-021-09777-9 10.3390/computers12100200 10.1016/j.advengsoft.2017.07.002 10.32604/iasc.2023.028599 10.1016/j.cmpb.2022.106776 10.3390/sym13061092 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compeleceng.2025.110106 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compeleceng_2025_110106 S0045790625000497 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIIUN AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c265t-8d1a8e0b59671e0b016d59ed6077b746859cdcd45121505d16510f855846393e3 |
| IEDL.DBID | .~1 |
| ISSN | 0045-7906 |
| IngestDate | Wed Oct 01 05:58:50 EDT 2025 Sat Jun 07 17:00:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Salp swarm algorithm Cervical cancer disease Ensemble learning Cancer cells classification |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c265t-8d1a8e0b59671e0b016d59ed6077b746859cdcd45121505d16510f855846393e3 |
| ORCID | 0000-0003-0526-3910 |
| ParticipantIDs | crossref_primary_10_1016_j_compeleceng_2025_110106 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2025_110106 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 2025-04-00 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & electrical engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Alyafeai, Ghouti (bib0010) 2020; 141 Li (bib0076) 2019; 46 Acevedo (bib0071) 2020 Price, Kumar, Suganthan (bib0077) 2023; 78 Cibi, Rose (bib0036) 2023; 17 Li (bib0065) 2024; 284 Khan (bib0019) 2024; 34 Gupta, Gupta (bib0026) 2022; 65 Henschke (bib0062) 2015; 37 Huang (bib0055) 2017 Kaur (bib0027) 2022 Tejashwini, Thriveni, Venugopal (bib0042) 2023 AlMohimeed (bib0044) 2023; 12 Asif (bib0021) 2024; 13 Pramanik (bib0067) 2022; 219 Al Mazroa (bib0052) 2023; 11 Duan (bib0059) 2021; 13 Wang (bib0073) 2021; 552 Thwin, Park (bib0023) 2024; 14 Selvaraju (bib0064) 2017 Chase, Kalouyan, DiSaia (bib0002) 2009; 200 DiMaio, Liao (bib0001) 2006; 66 Asif (bib0012) 2024; 34 Nandanwar, Dhonde (bib0034) 2023; 11 Maurya, Pandey, Dutta (bib0047) 2023; 79 Liang, Qu, Suganthan (bib0075) 2013; 635 Tanabe, Fukunaga (bib0030) 2013 Khan (bib0039) 2021; 2021 Idlahcen, Idri, Zerouaoui (bib0046) 2023 Zhao (bib0049) 2022; 81 Chollet (bib0056) 2017 Aby (bib0017) 2024; 118 Rahaman (bib0063) 2021; 136 Bilal (bib0028) 2024 Wong (bib0041) 2023; 19 Ali (bib0025) 2024; 5 Li (bib0074) 2022; 606 Hekmat (bib0011) 2025; 101 Cui (bib0015) 2024; 120 Mirjalili (bib0058) 2017; 114 Motwani (bib0022) 2023; 105 Jain (bib0040) 2019; 12 Pacal (bib0009) 2024; 289 Momenimovahed, Salehiniya (bib0004) 2017; 4 Wentzensen (bib0003) 2015; 33 Upadhyay, Tomar, Yadav (bib0018) 2024; 120 Hussain (bib0054) 2019 Tanabe, Fukunaga (bib0031) 2014 Kumar (bib0013) 2024; 117 Pramanik, Banerjee, Sarkar (bib0070) 2023; 123 Tseng, Huang (bib0024) 2023; 103 Faris (bib0060) 2020 Madarapu, Ari, Mahapatra (bib0014) 2024; 117 Tan (bib0043) 2024; 16 Hussain, Koundal, Manhas (bib0020) 2023; 105 Chandran (bib0033) 2021; 2021 Manna (bib0068) 2021; 11 Liu (bib0053) 2022; 130 Ilyas, Ahmad (bib0045) 2021; 9 Hussain (bib0006) 2020; 65 Woo (bib0057) 2018 Abd-Alhalem (bib0051) 2024; 127 Devi (bib0005) 2016; 89 Hemalatha, Vetriselvi, Dhandapani (bib0048) 2023; 85 Priya, Karthikeyan, Palanikkumar (bib0037) 2023; 35 Hong (bib0050) 2024; 11 Andersen, Nival (bib0061) 1986; 8 Tanimu (bib0007) 2022; 11 Wankhade (bib0066) 2024 Hajian-Tilaki (bib0072) 2013; 4 Lilhore (bib0032) 2023; 13 Ahishakiye (bib0038) 2021 Avanija (bib0069) 2022 Fathy (bib0029) 2023; 75 Naz (bib0008) 2023; 55 Kumar, Kannan (bib0016) 2024; 119 Desiani (bib0035) 2023; 8 Priya (10.1016/j.compeleceng.2025.110106_bib0037) 2023; 35 Idlahcen (10.1016/j.compeleceng.2025.110106_bib0046) 2023 Maurya (10.1016/j.compeleceng.2025.110106_bib0047) 2023; 79 Acevedo (10.1016/j.compeleceng.2025.110106_bib0071) 2020 Tan (10.1016/j.compeleceng.2025.110106_bib0043) 2024; 16 Tanabe (10.1016/j.compeleceng.2025.110106_bib0030) 2013 Kaur (10.1016/j.compeleceng.2025.110106_bib0027) 2022 Avanija (10.1016/j.compeleceng.2025.110106_bib0069) 2022 Cui (10.1016/j.compeleceng.2025.110106_bib0015) 2024; 120 Ilyas (10.1016/j.compeleceng.2025.110106_bib0045) 2021; 9 Li (10.1016/j.compeleceng.2025.110106_bib0076) 2019; 46 Mirjalili (10.1016/j.compeleceng.2025.110106_bib0058) 2017; 114 Alyafeai (10.1016/j.compeleceng.2025.110106_bib0010) 2020; 141 Hemalatha (10.1016/j.compeleceng.2025.110106_bib0048) 2023; 85 Wankhade (10.1016/j.compeleceng.2025.110106_bib0066) 2024 Wong (10.1016/j.compeleceng.2025.110106_bib0041) 2023; 19 Manna (10.1016/j.compeleceng.2025.110106_bib0068) 2021; 11 Tejashwini (10.1016/j.compeleceng.2025.110106_bib0042) 2023 Duan (10.1016/j.compeleceng.2025.110106_bib0059) 2021; 13 Kumar (10.1016/j.compeleceng.2025.110106_bib0016) 2024; 119 Li (10.1016/j.compeleceng.2025.110106_bib0074) 2022; 606 Desiani (10.1016/j.compeleceng.2025.110106_bib0035) 2023; 8 Gupta (10.1016/j.compeleceng.2025.110106_bib0026) 2022; 65 Khan (10.1016/j.compeleceng.2025.110106_bib0019) 2024; 34 Hong (10.1016/j.compeleceng.2025.110106_bib0050) 2024; 11 Liang (10.1016/j.compeleceng.2025.110106_bib0075) 2013; 635 Nandanwar (10.1016/j.compeleceng.2025.110106_bib0034) 2023; 11 Tseng (10.1016/j.compeleceng.2025.110106_bib0024) 2023; 103 Tanimu (10.1016/j.compeleceng.2025.110106_bib0007) 2022; 11 Asif (10.1016/j.compeleceng.2025.110106_bib0012) 2024; 34 Naz (10.1016/j.compeleceng.2025.110106_bib0008) 2023; 55 Madarapu (10.1016/j.compeleceng.2025.110106_bib0014) 2024; 117 Asif (10.1016/j.compeleceng.2025.110106_bib0021) 2024; 13 Momenimovahed (10.1016/j.compeleceng.2025.110106_bib0004) 2017; 4 Hussain (10.1016/j.compeleceng.2025.110106_bib0006) 2020; 65 Selvaraju (10.1016/j.compeleceng.2025.110106_bib0064) 2017 Pacal (10.1016/j.compeleceng.2025.110106_bib0009) 2024; 289 Chase (10.1016/j.compeleceng.2025.110106_bib0002) 2009; 200 Upadhyay (10.1016/j.compeleceng.2025.110106_bib0018) 2024; 120 Ali (10.1016/j.compeleceng.2025.110106_bib0025) 2024; 5 Al Mazroa (10.1016/j.compeleceng.2025.110106_bib0052) 2023; 11 Hussain (10.1016/j.compeleceng.2025.110106_bib0020) 2023; 105 Hekmat (10.1016/j.compeleceng.2025.110106_bib0011) 2025; 101 Andersen (10.1016/j.compeleceng.2025.110106_bib0061) 1986; 8 AlMohimeed (10.1016/j.compeleceng.2025.110106_bib0044) 2023; 12 Pramanik (10.1016/j.compeleceng.2025.110106_bib0067) 2022; 219 Tanabe (10.1016/j.compeleceng.2025.110106_bib0031) 2014 Lilhore (10.1016/j.compeleceng.2025.110106_bib0032) 2023; 13 Chollet (10.1016/j.compeleceng.2025.110106_bib0056) 2017 Faris (10.1016/j.compeleceng.2025.110106_bib0060) 2020 Hajian-Tilaki (10.1016/j.compeleceng.2025.110106_bib0072) 2013; 4 Ahishakiye (10.1016/j.compeleceng.2025.110106_bib0038) 2021 Bilal (10.1016/j.compeleceng.2025.110106_bib0028) 2024 Devi (10.1016/j.compeleceng.2025.110106_bib0005) 2016; 89 Pramanik (10.1016/j.compeleceng.2025.110106_bib0070) 2023; 123 Cibi (10.1016/j.compeleceng.2025.110106_bib0036) 2023; 17 Wentzensen (10.1016/j.compeleceng.2025.110106_bib0003) 2015; 33 Motwani (10.1016/j.compeleceng.2025.110106_bib0022) 2023; 105 Aby (10.1016/j.compeleceng.2025.110106_bib0017) 2024; 118 Jain (10.1016/j.compeleceng.2025.110106_bib0040) 2019; 12 Price (10.1016/j.compeleceng.2025.110106_bib0077) 2023; 78 DiMaio (10.1016/j.compeleceng.2025.110106_bib0001) 2006; 66 Huang (10.1016/j.compeleceng.2025.110106_bib0055) 2017 Chandran (10.1016/j.compeleceng.2025.110106_bib0033) 2021; 2021 Henschke (10.1016/j.compeleceng.2025.110106_bib0062) 2015; 37 Rahaman (10.1016/j.compeleceng.2025.110106_bib0063) 2021; 136 Abd-Alhalem (10.1016/j.compeleceng.2025.110106_bib0051) 2024; 127 Hussain (10.1016/j.compeleceng.2025.110106_bib0054) 2019 Wang (10.1016/j.compeleceng.2025.110106_bib0073) 2021; 552 Zhao (10.1016/j.compeleceng.2025.110106_bib0049) 2022; 81 Fathy (10.1016/j.compeleceng.2025.110106_bib0029) 2023; 75 Thwin (10.1016/j.compeleceng.2025.110106_bib0023) 2024; 14 Liu (10.1016/j.compeleceng.2025.110106_bib0053) 2022; 130 Li (10.1016/j.compeleceng.2025.110106_bib0065) 2024; 284 Khan (10.1016/j.compeleceng.2025.110106_bib0039) 2021; 2021 Kumar (10.1016/j.compeleceng.2025.110106_bib0013) 2024; 117 Woo (10.1016/j.compeleceng.2025.110106_bib0057) 2018 |
| References_xml | – volume: 34 start-page: e22953 year: 2024 ident: bib0012 article-title: MozzieNet: a deep learning approach to efficiently detect malaria parasites in blood smear images publication-title: Int J Imaging Syst Technol – volume: 117 year: 2024 ident: bib0013 article-title: Grey Wolf optimized SwinUNet based transformer framework for liver segmentation from CT images publication-title: Comput Electr Eng – volume: 13 start-page: 12473 year: 2023 ident: bib0032 article-title: Hybrid model for precise hepatitis-C classification using improved random forest and SVM method publication-title: Sci Rep – volume: 2021 year: 2021 ident: bib0033 article-title: Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images publication-title: Biomed Res Int – volume: 66 start-page: 125 year: 2006 end-page: 159 ident: bib0001 article-title: Human papillomaviruses and cervical cancer publication-title: Adv Virus Res – volume: 8 start-page: 84 year: 2023 end-page: 92 ident: bib0035 article-title: Majority voting as ensemble classifier for cervical cancer classification publication-title: Science and Technology Indonesia – volume: 11 start-page: 468 year: 2024 ident: bib0050 article-title: Lightweight low-rank adaptation vision Transformer framework for cervical cancer detection and cervix type classification publication-title: Bioengineering – year: 2024 ident: bib0066 article-title: A meta-learner-integrated stacking voting ensemble network for cervical malignancy classification publication-title: 2024 International Conference on Emerging Smart Computing and Informatics (ESCI) – year: 2022 ident: bib0069 article-title: Prediction and analysis of cervical cancer: an ensemble approach publication-title: 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA) – volume: 11 start-page: 463 year: 2022 ident: bib0007 article-title: A machine learning method for classification of cervical cancer publication-title: Electronics – volume: 5 year: 2024 ident: bib0025 article-title: An ensemble classification approach for cervical cancer prediction using behavioral risk factors publication-title: Healthc Anal – volume: 120 year: 2024 ident: bib0015 article-title: ResMT: a hybrid CNN-transformer framework for glioma grading with 3D MRI publication-title: Comput Electr Eng – volume: 118 year: 2024 ident: bib0017 article-title: A review on leukemia detection and classification using Artificial Intelligence-based techniques publication-title: Comput Electr Eng – volume: 33 start-page: 83 year: 2015 ident: bib0003 article-title: Multiple biopsies and detection of cervical cancer precursors at colposcopy publication-title: J Clinic Oncol – volume: 120 year: 2024 ident: bib0018 article-title: Advancements in Alzheimer's disease classification using deep learning frameworks for multimodal neuroimaging: a comprehensive review publication-title: Comput Electr Eng – volume: 35 year: 2023 ident: bib0037 article-title: Pre screening of cervical cancer through gradient boosting ensemble learning method publication-title: Intell Autom Soft Comput – volume: 635 start-page: 2014 year: 2013 ident: bib0075 publication-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization – volume: 105 year: 2023 ident: bib0020 article-title: Deep learning-based diagnosis of disc degenerative diseases using MRI: a comprehensive review publication-title: Comput Electr Eng – volume: 9 start-page: 12374 year: 2021 end-page: 12388 ident: bib0045 article-title: An enhanced ensemble diagnosis of cervical cancer: a pursuit of machine intelligence towards sustainable health publication-title: IEEE Access – volume: 141 year: 2020 ident: bib0010 article-title: A fully-automated deep learning pipeline for cervical cancer classification publication-title: Expert Syst Appl – volume: 284 year: 2024 ident: bib0065 article-title: Graph t-SNE multi-view autoencoder for joint clustering and completion of incomplete multi-view data publication-title: Knowl Based Syst – volume: 17 start-page: 1261 year: 2023 end-page: 1269 ident: bib0036 article-title: Classification of stages in cervical cancer MRI by customized CNN and transfer learning publication-title: Cogn Neurodyn – volume: 103 start-page: 295 year: 2023 end-page: 303 ident: bib0024 article-title: Classification of peripheral blood neutrophils using deep learning publication-title: Cytometry Part A – year: 2024 ident: bib0028 article-title: Differential evolution Optimization based ensemble framework for accurate cervical cancer diagnosis publication-title: Appl Soft Comput – year: 2022 ident: bib0027 article-title: MLNet: metaheuristics-based lightweight deep learning network for cervical cancer diagnosis publication-title: IEEE J Biomed Health Inform – volume: 12 start-page: 200 year: 2023 ident: bib0044 article-title: Cervical cancer diagnosis using stacked ensemble model and optimized feature selection: an explainable artificial intelligence approach publication-title: Computers – volume: 78 year: 2023 ident: bib0077 article-title: Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers with standard non-parametric tests publication-title: Swarm Evol Comput – volume: 119 year: 2024 ident: bib0016 article-title: An efficient diagnosis of heart disease using optimized cross-layer Densenet121 pyramid mutual attention network publication-title: Comput Electr Eng – volume: 11 start-page: 135175 year: 2023 end-page: 135184 ident: bib0052 article-title: Improved Bald Eagle search optimization with deep learning-based cervical cancer detection and classification publication-title: IEEE Access – volume: 2021 year: 2021 ident: bib0039 article-title: Cervical cancer diagnosis model using extreme gradient boosting and bioinspired firefly optimization publication-title: Sci Program – volume: 34 start-page: e23044 year: 2024 ident: bib0019 article-title: Deep hybrid model for Mpox disease diagnosis from skin lesion images publication-title: Int J Imaging Syst Technol – year: 2013 ident: bib0030 article-title: Success-history based parameter adaptation for differential evolution publication-title: 2013 IEEE congress on evolutionary computation – year: 2018 ident: bib0057 article-title: Cbam: convolutional block attention module publication-title: Proceedings of the European conference on computer vision (ECCV) – year: 2017 ident: bib0064 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization publication-title: Proceedings of the IEEE international conference on computer vision – volume: 606 start-page: 350 year: 2022 end-page: 367 ident: bib0074 article-title: A novel adaptive publication-title: Info Sci – volume: 85 year: 2023 ident: bib0048 article-title: CervixFuzzyFusion for cervical cancer cell image classification publication-title: Biomed Signal Process Control – volume: 55 start-page: 115 year: 2023 end-page: 140 ident: bib0008 article-title: Recognizing gastrointestinal malignancies on WCE and CCE images by an ensemble of deep and handcrafted features with entropy and PCA based features optimization publication-title: Neural Process Lett – volume: 12 start-page: 293 year: 2019 end-page: 303 ident: bib0040 article-title: Optimized model for cervical cancer detection using binary cuckoo search publication-title: Recent Patents Comput Sci – volume: 79 year: 2023 ident: bib0047 article-title: VisionCervix: papanicolaou cervical smears classification using novel CNN-Vision ensemble approach publication-title: Biomed Signal Process Control – volume: 101 year: 2025 ident: bib0011 article-title: An attention-fused architecture for brain tumor diagnosis publication-title: Biomed Signal Process Control – volume: 16 start-page: 16 year: 2024 end-page: 38 ident: bib0043 article-title: Cervical cancer classification from pap smear images using deep convolutional neural network models publication-title: Interdisc Sci – volume: 14 start-page: 5599 year: 2024 ident: bib0023 article-title: Skin lesion classification using a deep ensemble model publication-title: Appl Sci – start-page: 185 year: 2020 end-page: 199 ident: bib0060 article-title: Salp swarm algorithm: theory, literature review, and application in extreme learning machines publication-title: Nature-inspired Optimizers – volume: 13 start-page: 30 year: 2024 ident: bib0021 article-title: A deep ensemble learning framework for COVID-19 detection in chest X-ray images publication-title: Network Model Anal Health Info Bioinfo – volume: 136 year: 2021 ident: bib0063 article-title: DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques publication-title: Comput Biol Med – volume: 19 start-page: 77 year: 2023 end-page: 93 ident: bib0041 article-title: Deep learning and transfer learning methods to effectively diagnose cervical cancer from liquid-based cytology pap smear images publication-title: Int J Online Biomed Eng – year: 2023 ident: bib0046 article-title: Integrating autoencoder-based hybrid models into cervical carcinoma prediction from liquid-based cytology – year: 2023 ident: bib0042 article-title: Ensemble learning for improved cervical cancer classification in pap smear images publication-title: 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA) – start-page: 4 year: 2019 ident: bib0054 article-title: Liquid based cytology pap smear images for multi-class diagnosis of cervical cancer publication-title: Data Brief – volume: 4 start-page: 1795 year: 2017 end-page: 1811 ident: bib0004 article-title: Incidence, mortality and risk factors of cervical cancer in the world publication-title: Biomed Res Ther – volume: 4 start-page: 627 year: 2013 ident: bib0072 article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation publication-title: Caspian J Intern Med – year: 2021 ident: bib0038 article-title: Comparative performance of machine leaning algorithms in prediction of cervical cancer publication-title: 2021 IST-Africa Conference (IST-Africa) – volume: 13 start-page: 1092 year: 2021 ident: bib0059 article-title: Improved salp swarm algorithm with simulated annealing for solving engineering optimization problems publication-title: Symmetry – volume: 37 start-page: 1074 year: 2015 end-page: 1087 ident: bib0062 article-title: Population drivers of a Thalia democratica swarm: insights from population modelling publication-title: J Plankton Res – volume: 219 year: 2022 ident: bib0067 article-title: A fuzzy distance-based ensemble of deep models for cervical cancer detection publication-title: Comput Methods Programs Biomed – volume: 89 start-page: 465 year: 2016 end-page: 472 ident: bib0005 article-title: Classification of cervical cancer using artificial neural networks publication-title: Procedia Comput Sci – year: 2017 ident: bib0055 article-title: Densely connected convolutional networks publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 200 start-page: 472 year: 2009 end-page: 480 ident: bib0002 article-title: Colposcopy to evaluate abnormal cervical cytology in 2008 publication-title: Am J Obstet Gynecol – volume: 11 start-page: 582 year: 2023 end-page: 589 ident: bib0034 article-title: A novel approach to cervical cancer detection using hybrid stacked ensemble models and feature selection publication-title: Int J Electr Electr Res – volume: 289 year: 2024 ident: bib0009 article-title: MaxCerVixT: a novel lightweight vision transformer-based approach for precise cervical cancer detection publication-title: Knowl Based Syst – volume: 117 year: 2024 ident: bib0014 article-title: A multi-resolution convolutional attention network for efficient diabetic retinopathy classification publication-title: Comput Electr Eng – volume: 114 start-page: 163 year: 2017 end-page: 191 ident: bib0058 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw – volume: 65 year: 2020 ident: bib0006 article-title: A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network publication-title: Tissue Cell – volume: 75 start-page: 1527 year: 2023 end-page: 1545 ident: bib0029 article-title: A novel meta-heuristic optimization algorithm in white blood cells classification publication-title: Comput Mater Contin – volume: 130 year: 2022 ident: bib0053 article-title: CVM-Cervix: a hybrid cervical pap-smear image classification framework using CNN, visual transformer and multilayer perceptron publication-title: Pattern Recognit – volume: 127 year: 2024 ident: bib0051 article-title: Cervical cancer classification based on a bilinear convolutional neural network approach and random projection publication-title: Eng Appl Artif Intell – start-page: 30 year: 2020 ident: bib0071 article-title: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems publication-title: Data Brief – year: 2017 ident: bib0056 article-title: Xception: deep learning with depthwise separable convolutions publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition – volume: 46 start-page: 104 year: 2019 end-page: 117 ident: bib0076 article-title: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties publication-title: Swarm Evol Comput – year: 2014 ident: bib0031 article-title: Improving the search performance of SHADE using linear population size reduction publication-title: 2014 IEEE congress on evolutionary computation (CEC) – volume: 123 year: 2023 ident: bib0070 article-title: MSENet: mean and standard deviation based ensemble network for cervical cancer detection publication-title: Eng Appl Artif Intell – volume: 81 start-page: 24265 year: 2022 end-page: 24300 ident: bib0049 article-title: Improving cervical cancer classification with imbalanced datasets combining taming transformers with T2T-ViT publication-title: Multimed Tools Appl – volume: 8 start-page: 1091 year: 1986 end-page: 1110 ident: bib0061 article-title: A model of the population dynamics of salps in coastal waters of the Ligurian Sea publication-title: J Plankton Res – volume: 105 year: 2023 ident: bib0022 article-title: Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function publication-title: Comput Electr Eng – volume: 552 start-page: 201 year: 2021 end-page: 219 ident: bib0073 article-title: -SHADE-E: ensemble of two differential evolution algorithms originating from publication-title: Info Sci – volume: 11 start-page: 14538 year: 2021 ident: bib0068 article-title: A fuzzy rank-based ensemble of CNN models for classification of cervical cytology publication-title: Sci Rep – volume: 65 start-page: 1527 year: 2022 end-page: 1539 ident: bib0026 article-title: Computational prediction of cervical cancer diagnosis using ensemble-based classification algorithm publication-title: Comput J – year: 2021 ident: 10.1016/j.compeleceng.2025.110106_bib0038 article-title: Comparative performance of machine leaning algorithms in prediction of cervical cancer – volume: 79 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0047 article-title: VisionCervix: papanicolaou cervical smears classification using novel CNN-Vision ensemble approach publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2022.104156 – volume: 289 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0009 article-title: MaxCerVixT: a novel lightweight vision transformer-based approach for precise cervical cancer detection publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2024.111482 – volume: 65 year: 2020 ident: 10.1016/j.compeleceng.2025.110106_bib0006 article-title: A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network publication-title: Tissue Cell doi: 10.1016/j.tice.2020.101347 – volume: 11 start-page: 463 issue: 3 year: 2022 ident: 10.1016/j.compeleceng.2025.110106_bib0007 article-title: A machine learning method for classification of cervical cancer publication-title: Electronics doi: 10.3390/electronics11030463 – volume: 119 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0016 article-title: An efficient diagnosis of heart disease using optimized cross-layer Densenet121 pyramid mutual attention network publication-title: Comput Electr Eng doi: 10.4018/979-8-3693-3735-6 – year: 2022 ident: 10.1016/j.compeleceng.2025.110106_bib0069 article-title: Prediction and analysis of cervical cancer: an ensemble approach – volume: 66 start-page: 125 year: 2006 ident: 10.1016/j.compeleceng.2025.110106_bib0001 article-title: Human papillomaviruses and cervical cancer publication-title: Adv Virus Res doi: 10.1016/S0065-3527(06)66003-X – volume: 37 start-page: 1074 issue: 5 year: 2015 ident: 10.1016/j.compeleceng.2025.110106_bib0062 article-title: Population drivers of a Thalia democratica swarm: insights from population modelling publication-title: J Plankton Res doi: 10.1093/plankt/fbv024 – volume: 101 year: 2025 ident: 10.1016/j.compeleceng.2025.110106_bib0011 article-title: An attention-fused architecture for brain tumor diagnosis publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2024.107221 – volume: 65 start-page: 1527 issue: 6 year: 2022 ident: 10.1016/j.compeleceng.2025.110106_bib0026 article-title: Computational prediction of cervical cancer diagnosis using ensemble-based classification algorithm publication-title: Comput J doi: 10.1093/comjnl/bxaa198 – volume: 16 start-page: 16 issue: 1 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0043 article-title: Cervical cancer classification from pap smear images using deep convolutional neural network models publication-title: Interdisc Sci doi: 10.1007/s12539-023-00589-5 – volume: 4 start-page: 1795 issue: 12 year: 2017 ident: 10.1016/j.compeleceng.2025.110106_bib0004 article-title: Incidence, mortality and risk factors of cervical cancer in the world publication-title: Biomed Res Ther doi: 10.15419/bmrat.v4i12.386 – volume: 75 start-page: 1527 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0029 article-title: A novel meta-heuristic optimization algorithm in white blood cells classification publication-title: Comput Mater Contin – volume: 89 start-page: 465 year: 2016 ident: 10.1016/j.compeleceng.2025.110106_bib0005 article-title: Classification of cervical cancer using artificial neural networks publication-title: Procedia Comput Sci doi: 10.1016/j.procs.2016.06.105 – volume: 2021 issue: 1 year: 2021 ident: 10.1016/j.compeleceng.2025.110106_bib0039 article-title: Cervical cancer diagnosis model using extreme gradient boosting and bioinspired firefly optimization publication-title: Sci Program – start-page: 4 year: 2019 ident: 10.1016/j.compeleceng.2025.110106_bib0054 article-title: Liquid based cytology pap smear images for multi-class diagnosis of cervical cancer publication-title: Data Brief – volume: 11 start-page: 14538 issue: 1 year: 2021 ident: 10.1016/j.compeleceng.2025.110106_bib0068 article-title: A fuzzy rank-based ensemble of CNN models for classification of cervical cytology publication-title: Sci Rep doi: 10.1038/s41598-021-93783-8 – volume: 606 start-page: 350 year: 2022 ident: 10.1016/j.compeleceng.2025.110106_bib0074 article-title: A novel adaptive l-SHADE algorithm and its application in UAV swarm resource configuration problem publication-title: Info Sci doi: 10.1016/j.ins.2022.05.058 – volume: 11 start-page: 468 issue: 5 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0050 article-title: Lightweight low-rank adaptation vision Transformer framework for cervical cancer detection and cervix type classification publication-title: Bioengineering doi: 10.3390/bioengineering11050468 – volume: 81 start-page: 24265 issue: 17 year: 2022 ident: 10.1016/j.compeleceng.2025.110106_bib0049 article-title: Improving cervical cancer classification with imbalanced datasets combining taming transformers with T2T-ViT publication-title: Multimed Tools Appl doi: 10.1007/s11042-022-12670-0 – volume: 34 start-page: e23044 issue: 2 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0019 article-title: Deep hybrid model for Mpox disease diagnosis from skin lesion images publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.23044 – volume: 284 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0065 article-title: Graph t-SNE multi-view autoencoder for joint clustering and completion of incomplete multi-view data publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2023.111324 – volume: 141 year: 2020 ident: 10.1016/j.compeleceng.2025.110106_bib0010 article-title: A fully-automated deep learning pipeline for cervical cancer classification publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.112951 – volume: 8 start-page: 1091 issue: 6 year: 1986 ident: 10.1016/j.compeleceng.2025.110106_bib0061 article-title: A model of the population dynamics of salps in coastal waters of the Ligurian Sea publication-title: J Plankton Res doi: 10.1093/plankt/8.6.1091 – volume: 120 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0018 article-title: Advancements in Alzheimer's disease classification using deep learning frameworks for multimodal neuroimaging: a comprehensive review publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2024.109796 – year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0028 article-title: Differential evolution Optimization based ensemble framework for accurate cervical cancer diagnosis publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2024.112366 – volume: 46 start-page: 104 year: 2019 ident: 10.1016/j.compeleceng.2025.110106_bib0076 article-title: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2019.02.003 – volume: 8 start-page: 84 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0035 article-title: Majority voting as ensemble classifier for cervical cancer classification publication-title: Science and Technology Indonesia doi: 10.26554/sti.2023.8.1.84-92 – year: 2017 ident: 10.1016/j.compeleceng.2025.110106_bib0056 article-title: Xception: deep learning with depthwise separable convolutions – volume: 123 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0070 article-title: MSENet: mean and standard deviation based ensemble network for cervical cancer detection publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.106336 – year: 2017 ident: 10.1016/j.compeleceng.2025.110106_bib0064 article-title: Grad-cam: visual explanations from deep networks via gradient-based localization – volume: 105 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0020 article-title: Deep learning-based diagnosis of disc degenerative diseases using MRI: a comprehensive review publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.108524 – volume: 552 start-page: 201 year: 2021 ident: 10.1016/j.compeleceng.2025.110106_bib0073 article-title: l-SHADE-E: ensemble of two differential evolution algorithms originating from l-SHADE publication-title: Info Sci doi: 10.1016/j.ins.2020.11.055 – volume: 34 start-page: e22953 issue: 1 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0012 article-title: MozzieNet: a deep learning approach to efficiently detect malaria parasites in blood smear images publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22953 – year: 2014 ident: 10.1016/j.compeleceng.2025.110106_bib0031 article-title: Improving the search performance of SHADE using linear population size reduction – year: 2013 ident: 10.1016/j.compeleceng.2025.110106_bib0030 article-title: Success-history based parameter adaptation for differential evolution – volume: 635 start-page: 2014 year: 2013 ident: 10.1016/j.compeleceng.2025.110106_bib0075 – volume: 117 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0014 article-title: A multi-resolution convolutional attention network for efficient diabetic retinopathy classification publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2024.109243 – volume: 13 start-page: 30 issue: 1 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0021 article-title: A deep ensemble learning framework for COVID-19 detection in chest X-ray images publication-title: Network Model Anal Health Info Bioinfo doi: 10.1007/s13721-024-00466-1 – volume: 19 start-page: 77 issue: 4 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0041 article-title: Deep learning and transfer learning methods to effectively diagnose cervical cancer from liquid-based cytology pap smear images publication-title: Int J Online Biomed Eng doi: 10.3991/ijoe.v19i04.37437 – volume: 117 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0013 article-title: Grey Wolf optimized SwinUNet based transformer framework for liver segmentation from CT images publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2024.109248 – volume: 136 year: 2021 ident: 10.1016/j.compeleceng.2025.110106_bib0063 article-title: DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques publication-title: Comput Biol Med doi: 10.1016/j.compbiomed.2021.104649 – year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0046 – volume: 4 start-page: 627 issue: 2 year: 2013 ident: 10.1016/j.compeleceng.2025.110106_bib0072 article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation publication-title: Caspian J Intern Med – volume: 118 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0017 article-title: A review on leukemia detection and classification using Artificial Intelligence-based techniques publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2024.109446 – year: 2022 ident: 10.1016/j.compeleceng.2025.110106_bib0027 article-title: MLNet: metaheuristics-based lightweight deep learning network for cervical cancer diagnosis publication-title: IEEE J Biomed Health Inform – year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0066 article-title: A meta-learner-integrated stacking voting ensemble network for cervical malignancy classification – start-page: 185 year: 2020 ident: 10.1016/j.compeleceng.2025.110106_bib0060 article-title: Salp swarm algorithm: theory, literature review, and application in extreme learning machines publication-title: Nature-inspired Optimizers – volume: 200 start-page: 472 issue: 5 year: 2009 ident: 10.1016/j.compeleceng.2025.110106_bib0002 article-title: Colposcopy to evaluate abnormal cervical cytology in 2008 publication-title: Am J Obstet Gynecol doi: 10.1016/j.ajog.2008.12.025 – year: 2017 ident: 10.1016/j.compeleceng.2025.110106_bib0055 article-title: Densely connected convolutional networks – volume: 2021 issue: 1 year: 2021 ident: 10.1016/j.compeleceng.2025.110106_bib0033 article-title: Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images publication-title: Biomed Res Int doi: 10.1155/2021/5584004 – volume: 78 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0077 article-title: Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers with standard non-parametric tests publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2023.101287 – volume: 14 start-page: 5599 issue: 13 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0023 article-title: Skin lesion classification using a deep ensemble model publication-title: Appl Sci doi: 10.3390/app14135599 – volume: 130 year: 2022 ident: 10.1016/j.compeleceng.2025.110106_bib0053 article-title: CVM-Cervix: a hybrid cervical pap-smear image classification framework using CNN, visual transformer and multilayer perceptron publication-title: Pattern Recognit doi: 10.1016/j.patcog.2022.108829 – volume: 103 start-page: 295 issue: 4 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0024 article-title: Classification of peripheral blood neutrophils using deep learning publication-title: Cytometry Part A doi: 10.1002/cyto.a.24698 – volume: 11 start-page: 582 issue: 2 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0034 article-title: A novel approach to cervical cancer detection using hybrid stacked ensemble models and feature selection publication-title: Int J Electr Electr Res doi: 10.37391/ijeer.110246 – volume: 33 start-page: 83 issue: 1 year: 2015 ident: 10.1016/j.compeleceng.2025.110106_bib0003 article-title: Multiple biopsies and detection of cervical cancer precursors at colposcopy publication-title: J Clinic Oncol doi: 10.1200/JCO.2014.55.9948 – start-page: 30 year: 2020 ident: 10.1016/j.compeleceng.2025.110106_bib0071 article-title: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems publication-title: Data Brief – volume: 127 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0051 article-title: Cervical cancer classification based on a bilinear convolutional neural network approach and random projection publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2023.107261 – volume: 55 start-page: 115 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0008 article-title: Recognizing gastrointestinal malignancies on WCE and CCE images by an ensemble of deep and handcrafted features with entropy and PCA based features optimization publication-title: Neural Process Lett doi: 10.1007/s11063-021-10481-2 – year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0042 article-title: Ensemble learning for improved cervical cancer classification in pap smear images – volume: 120 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0015 article-title: ResMT: a hybrid CNN-transformer framework for glioma grading with 3D MRI publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2024.109745 – volume: 105 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0022 article-title: Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2022.108479 – volume: 85 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0048 article-title: CervixFuzzyFusion for cervical cancer cell image classification publication-title: Biomed Signal Process Control – volume: 5 year: 2024 ident: 10.1016/j.compeleceng.2025.110106_bib0025 article-title: An ensemble classification approach for cervical cancer prediction using behavioral risk factors publication-title: Healthc Anal – volume: 11 start-page: 135175 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0052 article-title: Improved Bald Eagle search optimization with deep learning-based cervical cancer detection and classification publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3337032 – volume: 12 start-page: 293 issue: 4 year: 2019 ident: 10.1016/j.compeleceng.2025.110106_bib0040 article-title: Optimized model for cervical cancer detection using binary cuckoo search publication-title: Recent Patents Comput Sci doi: 10.2174/2213275911666181120092223 – volume: 13 start-page: 12473 issue: 1 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0032 article-title: Hybrid model for precise hepatitis-C classification using improved random forest and SVM method publication-title: Sci Rep doi: 10.1038/s41598-023-36605-3 – volume: 9 start-page: 12374 year: 2021 ident: 10.1016/j.compeleceng.2025.110106_bib0045 article-title: An enhanced ensemble diagnosis of cervical cancer: a pursuit of machine intelligence towards sustainable health publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3049165 – volume: 17 start-page: 1261 issue: 5 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0036 article-title: Classification of stages in cervical cancer MRI by customized CNN and transfer learning publication-title: Cogn Neurodyn doi: 10.1007/s11571-021-09777-9 – volume: 12 start-page: 200 issue: 10 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0044 article-title: Cervical cancer diagnosis using stacked ensemble model and optimized feature selection: an explainable artificial intelligence approach publication-title: Computers doi: 10.3390/computers12100200 – volume: 114 start-page: 163 year: 2017 ident: 10.1016/j.compeleceng.2025.110106_bib0058 article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2017.07.002 – volume: 35 issue: 3 year: 2023 ident: 10.1016/j.compeleceng.2025.110106_bib0037 article-title: Pre screening of cervical cancer through gradient boosting ensemble learning method publication-title: Intell Autom Soft Comput doi: 10.32604/iasc.2023.028599 – volume: 219 year: 2022 ident: 10.1016/j.compeleceng.2025.110106_bib0067 article-title: A fuzzy distance-based ensemble of deep models for cervical cancer detection publication-title: Comput Methods Programs Biomed doi: 10.1016/j.cmpb.2022.106776 – year: 2018 ident: 10.1016/j.compeleceng.2025.110106_bib0057 article-title: Cbam: convolutional block attention module – volume: 13 start-page: 1092 issue: 6 year: 2021 ident: 10.1016/j.compeleceng.2025.110106_bib0059 article-title: Improved salp swarm algorithm with simulated annealing for solving engineering optimization problems publication-title: Symmetry doi: 10.3390/sym13061092 |
| SSID | ssj0004618 |
| Score | 2.4741592 |
| Snippet | Cervical cancer is a critical global health issue by affecting millions of women each year and causing high mortality rates if not diagnosed early. Early... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110106 |
| SubjectTerms | Cancer cells classification Cervical cancer disease Deep learning Ensemble learning Salp swarm algorithm |
| Title | An amalgamation of deep neural networks optimized with Salp swarm algorithm for cervical cancer detection |
| URI | https://dx.doi.org/10.1016/j.compeleceng.2025.110106 |
| Volume | 123 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0045-7906 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004618 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0045-7906 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004618 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0045-7906 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004618 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0045-7906 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004618 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0045-7906 databaseCode: AKRWK dateStart: 19730601 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004618 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF8rWu7JE3BlzEcU3EvOthbSZpUKvZCVxF88Leb0wtWEHzwsYFTymny5Uv4vnMQuuRcUukL31LcERaRXFqcK2G5NFSuJKEjGXiHHxZsviR3K7rqoWnrhQFZZYP9NaZXaN2MjJpsjvI4Bo8voR6U2aUVzwVHOSEedDG4-nQ63kinRmMCpRlttokuvjVeINuGdjM6fTZHRZeCKN6B5ke_7VGdfWe2i3Yawogn9TftoZ5O99F2p4zgAYonKRYJmDJqHyLOIqy0zjEUqzSxaS31XuPM4EMSf2iF4foVP4rXHK_fRZFgE5wVZizBhsTisAIQExnCnCjMy8pKsZUeouXs5mk6t5oWClboMlpaXDmCa1tSn3mOhktPpqivFbM9T3qEceqHKlSEQpEJmyqHmTUacQq0ZOyP9fgI9dMs1ccI28J2QxkZPsTMcVoaWhIJxiSzFdGuGLMBctukBXldKSNoJWQvQSfTAWQ6qDM9QNdteoMfvz0wiP53-Mn_wk_RFjzVQpwz1C-LN31uOEYph9UkGqKNye39fPEFPKLSzw |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3MCX48iJ84PyP4Wtd2SZqCL2M4pm57cYO9laTJZOK60VUEH_zt5rYdThB88DXllnKbnJyEc88FuBZCMRXK0NHCkw5VQjlCaOn4LNa-orGnONYO9_q8M6QPIzaqQGtZC4OyyhL7C0zP0bocqZfZrM8nE6zxpSxAm12W89xgDdYp8wM8gd18eivFkV4BxxS9GV2-AVffIi_UbWO_GZM827Oiz1AV72H3o982qZWNp70LOyVjJM3io_agYpJ92F7xETyASTMhcopVGUUhIpmNiTZmTtCt0sYmhdZ7QWYWIKaTD6MJ3r-SJ_k6J4t3mU6JDZ6ldmxKLIslcY4gNjLGSZHal2W5ZCs5hGH7btDqOGUPBSf2OcscoT0pjKtYyAPP4K0n1yw0mrtBoALKBQtjHWvK0GXCZdrjdpGOBUNe0ggbpnEE1WSWmGMgrnT9WI0tIeL2PK0sLxlLzhV3NTW-bPAa-MukRfPCKiNaasheopVMR5jpqMh0DW6X6Y1-_PfIQvrf4Sf_C7-Ezc6g14269_3HU9jCJ4Uq5wyqWfpmzi3hyNRFPqG-AEey1GQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+amalgamation+of+deep+neural+networks+optimized+with+Salp+swarm+algorithm+for+cervical+cancer+detection&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Bilal%2C+Omair&rft.au=Asif%2C+Sohaib&rft.au=Zhao%2C+Ming&rft.au=Khan%2C+Saif+Ur+Rehman&rft.date=2025-04-01&rft.issn=0045-7906&rft.volume=123&rft.spage=110106&rft_id=info:doi/10.1016%2Fj.compeleceng.2025.110106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2025_110106 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |