An amalgamation of deep neural networks optimized with Salp swarm algorithm for cervical cancer detection

Cervical cancer is a critical global health issue by affecting millions of women each year and causing high mortality rates if not diagnosed early. Early detection of cervical cancer significantly improves patient outcomes and survival rates. Traditional diagnostic approaches are frequently suscepti...

Full description

Saved in:
Bibliographic Details
Published inComputers & electrical engineering Vol. 123; p. 110106
Main Authors Bilal, Omair, Asif, Sohaib, Zhao, Ming, Khan, Saif Ur Rehman, Li, Yangfan
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2025
Subjects
Online AccessGet full text
ISSN0045-7906
DOI10.1016/j.compeleceng.2025.110106

Cover

Abstract Cervical cancer is a critical global health issue by affecting millions of women each year and causing high mortality rates if not diagnosed early. Early detection of cervical cancer significantly improves patient outcomes and survival rates. Traditional diagnostic approaches are frequently susceptible to errors, which can result in inaccurate diagnoses and being time-consuming. However, the emergence of machine learning and artificial intelligence provides innovative approaches to improve both diagnostic accuracy and efficiency. Individual deep learning models often face challenges in extracting the critical information essential for accurate prediction of disease in complex datasets. To tackle this, we propose a novel ensemble model that leverages the Salp Swarm Algorithm (SSA) to enhance cervical cancer diagnosis. This approach employs three highly effective pre-trained models like DenseNet169, DenseNet201, and Xception for feature extraction. To improve feature attention, we integrated the Convolutional Block Attention Module into each of these models to make them our base models. Subsequently, the predictions generated from each base model within the ensemble are aggregated through a weighted aggregation approach and further optimized the ensemble model by intelligently assigning weights to each model through the SSA. We evaluated our model using two datasets including the Mendeley LBC dataset with four classes and the BloodMNIST Benchmark dataset with eight classes. This approach ensures the robustness and generalizability of the ensemble model by demonstrating its effectiveness on diverse datasets. Our proposed ensemble model demonstrates superior performance compared to existing state-of-the-art methods by attaining an impressive accuracy rates of 99.48% on the 4-class Mendeley LBC dataset and 95.23% on the 8-class BloodMNIST dataset. This work marks a significant advancement in the field of cervical cancer diagnosis. We evaluate our optimized ensemble model using advanced metrics and visualizations such as confusion matrix, receiver operating characteristics (ROC) curve, t-distributed Stochastic Neighbor Embedding (t-SNE) plot, and Grad-CAMs. We validated the significance of our findings by conducting McNemar's Chi-Square and Friedman's Test. This comprehensive assessment underscores the accuracy, robustness, and interpretability of the proposed model in diagnosing cervical cancer cells.
AbstractList Cervical cancer is a critical global health issue by affecting millions of women each year and causing high mortality rates if not diagnosed early. Early detection of cervical cancer significantly improves patient outcomes and survival rates. Traditional diagnostic approaches are frequently susceptible to errors, which can result in inaccurate diagnoses and being time-consuming. However, the emergence of machine learning and artificial intelligence provides innovative approaches to improve both diagnostic accuracy and efficiency. Individual deep learning models often face challenges in extracting the critical information essential for accurate prediction of disease in complex datasets. To tackle this, we propose a novel ensemble model that leverages the Salp Swarm Algorithm (SSA) to enhance cervical cancer diagnosis. This approach employs three highly effective pre-trained models like DenseNet169, DenseNet201, and Xception for feature extraction. To improve feature attention, we integrated the Convolutional Block Attention Module into each of these models to make them our base models. Subsequently, the predictions generated from each base model within the ensemble are aggregated through a weighted aggregation approach and further optimized the ensemble model by intelligently assigning weights to each model through the SSA. We evaluated our model using two datasets including the Mendeley LBC dataset with four classes and the BloodMNIST Benchmark dataset with eight classes. This approach ensures the robustness and generalizability of the ensemble model by demonstrating its effectiveness on diverse datasets. Our proposed ensemble model demonstrates superior performance compared to existing state-of-the-art methods by attaining an impressive accuracy rates of 99.48% on the 4-class Mendeley LBC dataset and 95.23% on the 8-class BloodMNIST dataset. This work marks a significant advancement in the field of cervical cancer diagnosis. We evaluate our optimized ensemble model using advanced metrics and visualizations such as confusion matrix, receiver operating characteristics (ROC) curve, t-distributed Stochastic Neighbor Embedding (t-SNE) plot, and Grad-CAMs. We validated the significance of our findings by conducting McNemar's Chi-Square and Friedman's Test. This comprehensive assessment underscores the accuracy, robustness, and interpretability of the proposed model in diagnosing cervical cancer cells.
ArticleNumber 110106
Author Khan, Saif Ur Rehman
Bilal, Omair
Asif, Sohaib
Zhao, Ming
Li, Yangfan
Author_xml – sequence: 1
  givenname: Omair
  surname: Bilal
  fullname: Bilal, Omair
– sequence: 2
  givenname: Sohaib
  orcidid: 0000-0003-0526-3910
  surname: Asif
  fullname: Asif, Sohaib
  email: punjabians1592@gmail.com
– sequence: 3
  givenname: Ming
  surname: Zhao
  fullname: Zhao, Ming
  email: meanzhao@csu.edu.cn
– sequence: 4
  givenname: Saif Ur Rehman
  surname: Khan
  fullname: Khan, Saif Ur Rehman
– sequence: 5
  givenname: Yangfan
  surname: Li
  fullname: Li, Yangfan
BookMark eNqNUMtOwzAQ9KFItIV_MB-QYKexkxyripdUiQNwtlx7U1wSO7JDK_h6NioHjlx29qEZ7cyCzHzwQMgNZzlnXN4echP6ATow4Pd5wQqRczwwOSNzxkqRVQ2Tl2SR0oHhLHk9J27tqe51t8cyuuBpaKkFGKiHz6g7hPEU4keiYRhd777B0pMb3-mL7gaaTjr2FMkh4q6nbYjUQDw6g0yjPfYoNoKZlK_IRau7BNe_uCRv93evm8ds-_zwtFlvM1NIMWa15boGthONrDgiGrOiAStZVe2qUtaiMdbYUvCCCyYsl4KzthaiLuWqWcFqSZqzrokhpQitGqLrdfxSnKkpJ3VQf3JSU07qnBNyN2cu4INHB1El4wB9WBfRhbLB_UPlB2_DfAs
Cites_doi 10.1016/j.bspc.2022.104156
10.1016/j.knosys.2024.111482
10.1016/j.tice.2020.101347
10.3390/electronics11030463
10.4018/979-8-3693-3735-6
10.1016/S0065-3527(06)66003-X
10.1093/plankt/fbv024
10.1016/j.bspc.2024.107221
10.1093/comjnl/bxaa198
10.1007/s12539-023-00589-5
10.15419/bmrat.v4i12.386
10.1016/j.procs.2016.06.105
10.1038/s41598-021-93783-8
10.1016/j.ins.2022.05.058
10.3390/bioengineering11050468
10.1007/s11042-022-12670-0
10.1002/ima.23044
10.1016/j.knosys.2023.111324
10.1016/j.eswa.2019.112951
10.1093/plankt/8.6.1091
10.1016/j.compeleceng.2024.109796
10.1016/j.asoc.2024.112366
10.1016/j.swevo.2019.02.003
10.26554/sti.2023.8.1.84-92
10.1016/j.engappai.2023.106336
10.1016/j.compeleceng.2022.108524
10.1016/j.ins.2020.11.055
10.1002/ima.22953
10.1016/j.compeleceng.2024.109243
10.1007/s13721-024-00466-1
10.3991/ijoe.v19i04.37437
10.1016/j.compeleceng.2024.109248
10.1016/j.compbiomed.2021.104649
10.1016/j.compeleceng.2024.109446
10.1016/j.ajog.2008.12.025
10.1155/2021/5584004
10.1016/j.swevo.2023.101287
10.3390/app14135599
10.1016/j.patcog.2022.108829
10.1002/cyto.a.24698
10.37391/ijeer.110246
10.1200/JCO.2014.55.9948
10.1016/j.engappai.2023.107261
10.1007/s11063-021-10481-2
10.1016/j.compeleceng.2024.109745
10.1016/j.compeleceng.2022.108479
10.1109/ACCESS.2023.3337032
10.2174/2213275911666181120092223
10.1038/s41598-023-36605-3
10.1109/ACCESS.2021.3049165
10.1007/s11571-021-09777-9
10.3390/computers12100200
10.1016/j.advengsoft.2017.07.002
10.32604/iasc.2023.028599
10.1016/j.cmpb.2022.106776
10.3390/sym13061092
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2025.110106
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compeleceng_2025_110106
S0045790625000497
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c265t-8d1a8e0b59671e0b016d59ed6077b746859cdcd45121505d16510f855846393e3
IEDL.DBID .~1
ISSN 0045-7906
IngestDate Wed Oct 01 05:58:50 EDT 2025
Sat Jun 07 17:00:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Salp swarm algorithm
Cervical cancer disease
Ensemble learning
Cancer cells classification
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-8d1a8e0b59671e0b016d59ed6077b746859cdcd45121505d16510f855846393e3
ORCID 0000-0003-0526-3910
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2025_110106
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2025_110106
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Alyafeai, Ghouti (bib0010) 2020; 141
Li (bib0076) 2019; 46
Acevedo (bib0071) 2020
Price, Kumar, Suganthan (bib0077) 2023; 78
Cibi, Rose (bib0036) 2023; 17
Li (bib0065) 2024; 284
Khan (bib0019) 2024; 34
Gupta, Gupta (bib0026) 2022; 65
Henschke (bib0062) 2015; 37
Huang (bib0055) 2017
Kaur (bib0027) 2022
Tejashwini, Thriveni, Venugopal (bib0042) 2023
AlMohimeed (bib0044) 2023; 12
Asif (bib0021) 2024; 13
Pramanik (bib0067) 2022; 219
Al Mazroa (bib0052) 2023; 11
Duan (bib0059) 2021; 13
Wang (bib0073) 2021; 552
Thwin, Park (bib0023) 2024; 14
Selvaraju (bib0064) 2017
Chase, Kalouyan, DiSaia (bib0002) 2009; 200
DiMaio, Liao (bib0001) 2006; 66
Asif (bib0012) 2024; 34
Nandanwar, Dhonde (bib0034) 2023; 11
Maurya, Pandey, Dutta (bib0047) 2023; 79
Liang, Qu, Suganthan (bib0075) 2013; 635
Tanabe, Fukunaga (bib0030) 2013
Khan (bib0039) 2021; 2021
Idlahcen, Idri, Zerouaoui (bib0046) 2023
Zhao (bib0049) 2022; 81
Chollet (bib0056) 2017
Aby (bib0017) 2024; 118
Rahaman (bib0063) 2021; 136
Bilal (bib0028) 2024
Wong (bib0041) 2023; 19
Ali (bib0025) 2024; 5
Li (bib0074) 2022; 606
Hekmat (bib0011) 2025; 101
Cui (bib0015) 2024; 120
Mirjalili (bib0058) 2017; 114
Motwani (bib0022) 2023; 105
Jain (bib0040) 2019; 12
Pacal (bib0009) 2024; 289
Momenimovahed, Salehiniya (bib0004) 2017; 4
Wentzensen (bib0003) 2015; 33
Upadhyay, Tomar, Yadav (bib0018) 2024; 120
Hussain (bib0054) 2019
Tanabe, Fukunaga (bib0031) 2014
Kumar (bib0013) 2024; 117
Pramanik, Banerjee, Sarkar (bib0070) 2023; 123
Tseng, Huang (bib0024) 2023; 103
Faris (bib0060) 2020
Madarapu, Ari, Mahapatra (bib0014) 2024; 117
Tan (bib0043) 2024; 16
Hussain, Koundal, Manhas (bib0020) 2023; 105
Chandran (bib0033) 2021; 2021
Manna (bib0068) 2021; 11
Liu (bib0053) 2022; 130
Ilyas, Ahmad (bib0045) 2021; 9
Hussain (bib0006) 2020; 65
Woo (bib0057) 2018
Abd-Alhalem (bib0051) 2024; 127
Devi (bib0005) 2016; 89
Hemalatha, Vetriselvi, Dhandapani (bib0048) 2023; 85
Priya, Karthikeyan, Palanikkumar (bib0037) 2023; 35
Hong (bib0050) 2024; 11
Andersen, Nival (bib0061) 1986; 8
Tanimu (bib0007) 2022; 11
Wankhade (bib0066) 2024
Hajian-Tilaki (bib0072) 2013; 4
Lilhore (bib0032) 2023; 13
Ahishakiye (bib0038) 2021
Avanija (bib0069) 2022
Fathy (bib0029) 2023; 75
Naz (bib0008) 2023; 55
Kumar, Kannan (bib0016) 2024; 119
Desiani (bib0035) 2023; 8
Priya (10.1016/j.compeleceng.2025.110106_bib0037) 2023; 35
Idlahcen (10.1016/j.compeleceng.2025.110106_bib0046) 2023
Maurya (10.1016/j.compeleceng.2025.110106_bib0047) 2023; 79
Acevedo (10.1016/j.compeleceng.2025.110106_bib0071) 2020
Tan (10.1016/j.compeleceng.2025.110106_bib0043) 2024; 16
Tanabe (10.1016/j.compeleceng.2025.110106_bib0030) 2013
Kaur (10.1016/j.compeleceng.2025.110106_bib0027) 2022
Avanija (10.1016/j.compeleceng.2025.110106_bib0069) 2022
Cui (10.1016/j.compeleceng.2025.110106_bib0015) 2024; 120
Ilyas (10.1016/j.compeleceng.2025.110106_bib0045) 2021; 9
Li (10.1016/j.compeleceng.2025.110106_bib0076) 2019; 46
Mirjalili (10.1016/j.compeleceng.2025.110106_bib0058) 2017; 114
Alyafeai (10.1016/j.compeleceng.2025.110106_bib0010) 2020; 141
Hemalatha (10.1016/j.compeleceng.2025.110106_bib0048) 2023; 85
Wankhade (10.1016/j.compeleceng.2025.110106_bib0066) 2024
Wong (10.1016/j.compeleceng.2025.110106_bib0041) 2023; 19
Manna (10.1016/j.compeleceng.2025.110106_bib0068) 2021; 11
Tejashwini (10.1016/j.compeleceng.2025.110106_bib0042) 2023
Duan (10.1016/j.compeleceng.2025.110106_bib0059) 2021; 13
Kumar (10.1016/j.compeleceng.2025.110106_bib0016) 2024; 119
Li (10.1016/j.compeleceng.2025.110106_bib0074) 2022; 606
Desiani (10.1016/j.compeleceng.2025.110106_bib0035) 2023; 8
Gupta (10.1016/j.compeleceng.2025.110106_bib0026) 2022; 65
Khan (10.1016/j.compeleceng.2025.110106_bib0019) 2024; 34
Hong (10.1016/j.compeleceng.2025.110106_bib0050) 2024; 11
Liang (10.1016/j.compeleceng.2025.110106_bib0075) 2013; 635
Nandanwar (10.1016/j.compeleceng.2025.110106_bib0034) 2023; 11
Tseng (10.1016/j.compeleceng.2025.110106_bib0024) 2023; 103
Tanimu (10.1016/j.compeleceng.2025.110106_bib0007) 2022; 11
Asif (10.1016/j.compeleceng.2025.110106_bib0012) 2024; 34
Naz (10.1016/j.compeleceng.2025.110106_bib0008) 2023; 55
Madarapu (10.1016/j.compeleceng.2025.110106_bib0014) 2024; 117
Asif (10.1016/j.compeleceng.2025.110106_bib0021) 2024; 13
Momenimovahed (10.1016/j.compeleceng.2025.110106_bib0004) 2017; 4
Hussain (10.1016/j.compeleceng.2025.110106_bib0006) 2020; 65
Selvaraju (10.1016/j.compeleceng.2025.110106_bib0064) 2017
Pacal (10.1016/j.compeleceng.2025.110106_bib0009) 2024; 289
Chase (10.1016/j.compeleceng.2025.110106_bib0002) 2009; 200
Upadhyay (10.1016/j.compeleceng.2025.110106_bib0018) 2024; 120
Ali (10.1016/j.compeleceng.2025.110106_bib0025) 2024; 5
Al Mazroa (10.1016/j.compeleceng.2025.110106_bib0052) 2023; 11
Hussain (10.1016/j.compeleceng.2025.110106_bib0020) 2023; 105
Hekmat (10.1016/j.compeleceng.2025.110106_bib0011) 2025; 101
Andersen (10.1016/j.compeleceng.2025.110106_bib0061) 1986; 8
AlMohimeed (10.1016/j.compeleceng.2025.110106_bib0044) 2023; 12
Pramanik (10.1016/j.compeleceng.2025.110106_bib0067) 2022; 219
Tanabe (10.1016/j.compeleceng.2025.110106_bib0031) 2014
Lilhore (10.1016/j.compeleceng.2025.110106_bib0032) 2023; 13
Chollet (10.1016/j.compeleceng.2025.110106_bib0056) 2017
Faris (10.1016/j.compeleceng.2025.110106_bib0060) 2020
Hajian-Tilaki (10.1016/j.compeleceng.2025.110106_bib0072) 2013; 4
Ahishakiye (10.1016/j.compeleceng.2025.110106_bib0038) 2021
Bilal (10.1016/j.compeleceng.2025.110106_bib0028) 2024
Devi (10.1016/j.compeleceng.2025.110106_bib0005) 2016; 89
Pramanik (10.1016/j.compeleceng.2025.110106_bib0070) 2023; 123
Cibi (10.1016/j.compeleceng.2025.110106_bib0036) 2023; 17
Wentzensen (10.1016/j.compeleceng.2025.110106_bib0003) 2015; 33
Motwani (10.1016/j.compeleceng.2025.110106_bib0022) 2023; 105
Aby (10.1016/j.compeleceng.2025.110106_bib0017) 2024; 118
Jain (10.1016/j.compeleceng.2025.110106_bib0040) 2019; 12
Price (10.1016/j.compeleceng.2025.110106_bib0077) 2023; 78
DiMaio (10.1016/j.compeleceng.2025.110106_bib0001) 2006; 66
Huang (10.1016/j.compeleceng.2025.110106_bib0055) 2017
Chandran (10.1016/j.compeleceng.2025.110106_bib0033) 2021; 2021
Henschke (10.1016/j.compeleceng.2025.110106_bib0062) 2015; 37
Rahaman (10.1016/j.compeleceng.2025.110106_bib0063) 2021; 136
Abd-Alhalem (10.1016/j.compeleceng.2025.110106_bib0051) 2024; 127
Hussain (10.1016/j.compeleceng.2025.110106_bib0054) 2019
Wang (10.1016/j.compeleceng.2025.110106_bib0073) 2021; 552
Zhao (10.1016/j.compeleceng.2025.110106_bib0049) 2022; 81
Fathy (10.1016/j.compeleceng.2025.110106_bib0029) 2023; 75
Thwin (10.1016/j.compeleceng.2025.110106_bib0023) 2024; 14
Liu (10.1016/j.compeleceng.2025.110106_bib0053) 2022; 130
Li (10.1016/j.compeleceng.2025.110106_bib0065) 2024; 284
Khan (10.1016/j.compeleceng.2025.110106_bib0039) 2021; 2021
Kumar (10.1016/j.compeleceng.2025.110106_bib0013) 2024; 117
Woo (10.1016/j.compeleceng.2025.110106_bib0057) 2018
References_xml – volume: 34
  start-page: e22953
  year: 2024
  ident: bib0012
  article-title: MozzieNet: a deep learning approach to efficiently detect malaria parasites in blood smear images
  publication-title: Int J Imaging Syst Technol
– volume: 117
  year: 2024
  ident: bib0013
  article-title: Grey Wolf optimized SwinUNet based transformer framework for liver segmentation from CT images
  publication-title: Comput Electr Eng
– volume: 13
  start-page: 12473
  year: 2023
  ident: bib0032
  article-title: Hybrid model for precise hepatitis-C classification using improved random forest and SVM method
  publication-title: Sci Rep
– volume: 2021
  year: 2021
  ident: bib0033
  article-title: Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images
  publication-title: Biomed Res Int
– volume: 66
  start-page: 125
  year: 2006
  end-page: 159
  ident: bib0001
  article-title: Human papillomaviruses and cervical cancer
  publication-title: Adv Virus Res
– volume: 8
  start-page: 84
  year: 2023
  end-page: 92
  ident: bib0035
  article-title: Majority voting as ensemble classifier for cervical cancer classification
  publication-title: Science and Technology Indonesia
– volume: 11
  start-page: 468
  year: 2024
  ident: bib0050
  article-title: Lightweight low-rank adaptation vision Transformer framework for cervical cancer detection and cervix type classification
  publication-title: Bioengineering
– year: 2024
  ident: bib0066
  article-title: A meta-learner-integrated stacking voting ensemble network for cervical malignancy classification
  publication-title: 2024 International Conference on Emerging Smart Computing and Informatics (ESCI)
– year: 2022
  ident: bib0069
  article-title: Prediction and analysis of cervical cancer: an ensemble approach
  publication-title: 2022 4th International Conference on Inventive Research in Computing Applications (ICIRCA)
– volume: 11
  start-page: 463
  year: 2022
  ident: bib0007
  article-title: A machine learning method for classification of cervical cancer
  publication-title: Electronics
– volume: 5
  year: 2024
  ident: bib0025
  article-title: An ensemble classification approach for cervical cancer prediction using behavioral risk factors
  publication-title: Healthc Anal
– volume: 120
  year: 2024
  ident: bib0015
  article-title: ResMT: a hybrid CNN-transformer framework for glioma grading with 3D MRI
  publication-title: Comput Electr Eng
– volume: 118
  year: 2024
  ident: bib0017
  article-title: A review on leukemia detection and classification using Artificial Intelligence-based techniques
  publication-title: Comput Electr Eng
– volume: 33
  start-page: 83
  year: 2015
  ident: bib0003
  article-title: Multiple biopsies and detection of cervical cancer precursors at colposcopy
  publication-title: J Clinic Oncol
– volume: 120
  year: 2024
  ident: bib0018
  article-title: Advancements in Alzheimer's disease classification using deep learning frameworks for multimodal neuroimaging: a comprehensive review
  publication-title: Comput Electr Eng
– volume: 35
  year: 2023
  ident: bib0037
  article-title: Pre screening of cervical cancer through gradient boosting ensemble learning method
  publication-title: Intell Autom Soft Comput
– volume: 635
  start-page: 2014
  year: 2013
  ident: bib0075
  publication-title: Problem definitions and evaluation criteria for the cec 2014 special session and competition on single objective real-parameter numerical optimization
– volume: 105
  year: 2023
  ident: bib0020
  article-title: Deep learning-based diagnosis of disc degenerative diseases using MRI: a comprehensive review
  publication-title: Comput Electr Eng
– volume: 9
  start-page: 12374
  year: 2021
  end-page: 12388
  ident: bib0045
  article-title: An enhanced ensemble diagnosis of cervical cancer: a pursuit of machine intelligence towards sustainable health
  publication-title: IEEE Access
– volume: 141
  year: 2020
  ident: bib0010
  article-title: A fully-automated deep learning pipeline for cervical cancer classification
  publication-title: Expert Syst Appl
– volume: 284
  year: 2024
  ident: bib0065
  article-title: Graph t-SNE multi-view autoencoder for joint clustering and completion of incomplete multi-view data
  publication-title: Knowl Based Syst
– volume: 17
  start-page: 1261
  year: 2023
  end-page: 1269
  ident: bib0036
  article-title: Classification of stages in cervical cancer MRI by customized CNN and transfer learning
  publication-title: Cogn Neurodyn
– volume: 103
  start-page: 295
  year: 2023
  end-page: 303
  ident: bib0024
  article-title: Classification of peripheral blood neutrophils using deep learning
  publication-title: Cytometry Part A
– year: 2024
  ident: bib0028
  article-title: Differential evolution Optimization based ensemble framework for accurate cervical cancer diagnosis
  publication-title: Appl Soft Comput
– year: 2022
  ident: bib0027
  article-title: MLNet: metaheuristics-based lightweight deep learning network for cervical cancer diagnosis
  publication-title: IEEE J Biomed Health Inform
– volume: 12
  start-page: 200
  year: 2023
  ident: bib0044
  article-title: Cervical cancer diagnosis using stacked ensemble model and optimized feature selection: an explainable artificial intelligence approach
  publication-title: Computers
– volume: 78
  year: 2023
  ident: bib0077
  article-title: Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers with standard non-parametric tests
  publication-title: Swarm Evol Comput
– volume: 119
  year: 2024
  ident: bib0016
  article-title: An efficient diagnosis of heart disease using optimized cross-layer Densenet121 pyramid mutual attention network
  publication-title: Comput Electr Eng
– volume: 11
  start-page: 135175
  year: 2023
  end-page: 135184
  ident: bib0052
  article-title: Improved Bald Eagle search optimization with deep learning-based cervical cancer detection and classification
  publication-title: IEEE Access
– volume: 2021
  year: 2021
  ident: bib0039
  article-title: Cervical cancer diagnosis model using extreme gradient boosting and bioinspired firefly optimization
  publication-title: Sci Program
– volume: 34
  start-page: e23044
  year: 2024
  ident: bib0019
  article-title: Deep hybrid model for Mpox disease diagnosis from skin lesion images
  publication-title: Int J Imaging Syst Technol
– year: 2013
  ident: bib0030
  article-title: Success-history based parameter adaptation for differential evolution
  publication-title: 2013 IEEE congress on evolutionary computation
– year: 2018
  ident: bib0057
  article-title: Cbam: convolutional block attention module
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– year: 2017
  ident: bib0064
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE international conference on computer vision
– volume: 606
  start-page: 350
  year: 2022
  end-page: 367
  ident: bib0074
  article-title: A novel adaptive
  publication-title: Info Sci
– volume: 85
  year: 2023
  ident: bib0048
  article-title: CervixFuzzyFusion for cervical cancer cell image classification
  publication-title: Biomed Signal Process Control
– volume: 55
  start-page: 115
  year: 2023
  end-page: 140
  ident: bib0008
  article-title: Recognizing gastrointestinal malignancies on WCE and CCE images by an ensemble of deep and handcrafted features with entropy and PCA based features optimization
  publication-title: Neural Process Lett
– volume: 12
  start-page: 293
  year: 2019
  end-page: 303
  ident: bib0040
  article-title: Optimized model for cervical cancer detection using binary cuckoo search
  publication-title: Recent Patents Comput Sci
– volume: 79
  year: 2023
  ident: bib0047
  article-title: VisionCervix: papanicolaou cervical smears classification using novel CNN-Vision ensemble approach
  publication-title: Biomed Signal Process Control
– volume: 101
  year: 2025
  ident: bib0011
  article-title: An attention-fused architecture for brain tumor diagnosis
  publication-title: Biomed Signal Process Control
– volume: 16
  start-page: 16
  year: 2024
  end-page: 38
  ident: bib0043
  article-title: Cervical cancer classification from pap smear images using deep convolutional neural network models
  publication-title: Interdisc Sci
– volume: 14
  start-page: 5599
  year: 2024
  ident: bib0023
  article-title: Skin lesion classification using a deep ensemble model
  publication-title: Appl Sci
– start-page: 185
  year: 2020
  end-page: 199
  ident: bib0060
  article-title: Salp swarm algorithm: theory, literature review, and application in extreme learning machines
  publication-title: Nature-inspired Optimizers
– volume: 13
  start-page: 30
  year: 2024
  ident: bib0021
  article-title: A deep ensemble learning framework for COVID-19 detection in chest X-ray images
  publication-title: Network Model Anal Health Info Bioinfo
– volume: 136
  year: 2021
  ident: bib0063
  article-title: DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques
  publication-title: Comput Biol Med
– volume: 19
  start-page: 77
  year: 2023
  end-page: 93
  ident: bib0041
  article-title: Deep learning and transfer learning methods to effectively diagnose cervical cancer from liquid-based cytology pap smear images
  publication-title: Int J Online Biomed Eng
– year: 2023
  ident: bib0046
  article-title: Integrating autoencoder-based hybrid models into cervical carcinoma prediction from liquid-based cytology
– year: 2023
  ident: bib0042
  article-title: Ensemble learning for improved cervical cancer classification in pap smear images
  publication-title: 2023 IEEE 5th International Conference on Cybernetics, Cognition and Machine Learning Applications (ICCCMLA)
– start-page: 4
  year: 2019
  ident: bib0054
  article-title: Liquid based cytology pap smear images for multi-class diagnosis of cervical cancer
  publication-title: Data Brief
– volume: 4
  start-page: 1795
  year: 2017
  end-page: 1811
  ident: bib0004
  article-title: Incidence, mortality and risk factors of cervical cancer in the world
  publication-title: Biomed Res Ther
– volume: 4
  start-page: 627
  year: 2013
  ident: bib0072
  article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation
  publication-title: Caspian J Intern Med
– year: 2021
  ident: bib0038
  article-title: Comparative performance of machine leaning algorithms in prediction of cervical cancer
  publication-title: 2021 IST-Africa Conference (IST-Africa)
– volume: 13
  start-page: 1092
  year: 2021
  ident: bib0059
  article-title: Improved salp swarm algorithm with simulated annealing for solving engineering optimization problems
  publication-title: Symmetry
– volume: 37
  start-page: 1074
  year: 2015
  end-page: 1087
  ident: bib0062
  article-title: Population drivers of a Thalia democratica swarm: insights from population modelling
  publication-title: J Plankton Res
– volume: 219
  year: 2022
  ident: bib0067
  article-title: A fuzzy distance-based ensemble of deep models for cervical cancer detection
  publication-title: Comput Methods Programs Biomed
– volume: 89
  start-page: 465
  year: 2016
  end-page: 472
  ident: bib0005
  article-title: Classification of cervical cancer using artificial neural networks
  publication-title: Procedia Comput Sci
– year: 2017
  ident: bib0055
  article-title: Densely connected convolutional networks
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 200
  start-page: 472
  year: 2009
  end-page: 480
  ident: bib0002
  article-title: Colposcopy to evaluate abnormal cervical cytology in 2008
  publication-title: Am J Obstet Gynecol
– volume: 11
  start-page: 582
  year: 2023
  end-page: 589
  ident: bib0034
  article-title: A novel approach to cervical cancer detection using hybrid stacked ensemble models and feature selection
  publication-title: Int J Electr Electr Res
– volume: 289
  year: 2024
  ident: bib0009
  article-title: MaxCerVixT: a novel lightweight vision transformer-based approach for precise cervical cancer detection
  publication-title: Knowl Based Syst
– volume: 117
  year: 2024
  ident: bib0014
  article-title: A multi-resolution convolutional attention network for efficient diabetic retinopathy classification
  publication-title: Comput Electr Eng
– volume: 114
  start-page: 163
  year: 2017
  end-page: 191
  ident: bib0058
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
– volume: 65
  year: 2020
  ident: bib0006
  article-title: A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network
  publication-title: Tissue Cell
– volume: 75
  start-page: 1527
  year: 2023
  end-page: 1545
  ident: bib0029
  article-title: A novel meta-heuristic optimization algorithm in white blood cells classification
  publication-title: Comput Mater Contin
– volume: 130
  year: 2022
  ident: bib0053
  article-title: CVM-Cervix: a hybrid cervical pap-smear image classification framework using CNN, visual transformer and multilayer perceptron
  publication-title: Pattern Recognit
– volume: 127
  year: 2024
  ident: bib0051
  article-title: Cervical cancer classification based on a bilinear convolutional neural network approach and random projection
  publication-title: Eng Appl Artif Intell
– start-page: 30
  year: 2020
  ident: bib0071
  article-title: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
  publication-title: Data Brief
– year: 2017
  ident: bib0056
  article-title: Xception: deep learning with depthwise separable convolutions
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition
– volume: 46
  start-page: 104
  year: 2019
  end-page: 117
  ident: bib0076
  article-title: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties
  publication-title: Swarm Evol Comput
– year: 2014
  ident: bib0031
  article-title: Improving the search performance of SHADE using linear population size reduction
  publication-title: 2014 IEEE congress on evolutionary computation (CEC)
– volume: 123
  year: 2023
  ident: bib0070
  article-title: MSENet: mean and standard deviation based ensemble network for cervical cancer detection
  publication-title: Eng Appl Artif Intell
– volume: 81
  start-page: 24265
  year: 2022
  end-page: 24300
  ident: bib0049
  article-title: Improving cervical cancer classification with imbalanced datasets combining taming transformers with T2T-ViT
  publication-title: Multimed Tools Appl
– volume: 8
  start-page: 1091
  year: 1986
  end-page: 1110
  ident: bib0061
  article-title: A model of the population dynamics of salps in coastal waters of the Ligurian Sea
  publication-title: J Plankton Res
– volume: 105
  year: 2023
  ident: bib0022
  article-title: Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function
  publication-title: Comput Electr Eng
– volume: 552
  start-page: 201
  year: 2021
  end-page: 219
  ident: bib0073
  article-title: -SHADE-E: ensemble of two differential evolution algorithms originating from
  publication-title: Info Sci
– volume: 11
  start-page: 14538
  year: 2021
  ident: bib0068
  article-title: A fuzzy rank-based ensemble of CNN models for classification of cervical cytology
  publication-title: Sci Rep
– volume: 65
  start-page: 1527
  year: 2022
  end-page: 1539
  ident: bib0026
  article-title: Computational prediction of cervical cancer diagnosis using ensemble-based classification algorithm
  publication-title: Comput J
– year: 2021
  ident: 10.1016/j.compeleceng.2025.110106_bib0038
  article-title: Comparative performance of machine leaning algorithms in prediction of cervical cancer
– volume: 79
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0047
  article-title: VisionCervix: papanicolaou cervical smears classification using novel CNN-Vision ensemble approach
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2022.104156
– volume: 289
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0009
  article-title: MaxCerVixT: a novel lightweight vision transformer-based approach for precise cervical cancer detection
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2024.111482
– volume: 65
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110106_bib0006
  article-title: A comprehensive study on the multi-class cervical cancer diagnostic prediction on pap smear images using a fusion-based decision from ensemble deep convolutional neural network
  publication-title: Tissue Cell
  doi: 10.1016/j.tice.2020.101347
– volume: 11
  start-page: 463
  issue: 3
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110106_bib0007
  article-title: A machine learning method for classification of cervical cancer
  publication-title: Electronics
  doi: 10.3390/electronics11030463
– volume: 119
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0016
  article-title: An efficient diagnosis of heart disease using optimized cross-layer Densenet121 pyramid mutual attention network
  publication-title: Comput Electr Eng
  doi: 10.4018/979-8-3693-3735-6
– year: 2022
  ident: 10.1016/j.compeleceng.2025.110106_bib0069
  article-title: Prediction and analysis of cervical cancer: an ensemble approach
– volume: 66
  start-page: 125
  year: 2006
  ident: 10.1016/j.compeleceng.2025.110106_bib0001
  article-title: Human papillomaviruses and cervical cancer
  publication-title: Adv Virus Res
  doi: 10.1016/S0065-3527(06)66003-X
– volume: 37
  start-page: 1074
  issue: 5
  year: 2015
  ident: 10.1016/j.compeleceng.2025.110106_bib0062
  article-title: Population drivers of a Thalia democratica swarm: insights from population modelling
  publication-title: J Plankton Res
  doi: 10.1093/plankt/fbv024
– volume: 101
  year: 2025
  ident: 10.1016/j.compeleceng.2025.110106_bib0011
  article-title: An attention-fused architecture for brain tumor diagnosis
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2024.107221
– volume: 65
  start-page: 1527
  issue: 6
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110106_bib0026
  article-title: Computational prediction of cervical cancer diagnosis using ensemble-based classification algorithm
  publication-title: Comput J
  doi: 10.1093/comjnl/bxaa198
– volume: 16
  start-page: 16
  issue: 1
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0043
  article-title: Cervical cancer classification from pap smear images using deep convolutional neural network models
  publication-title: Interdisc Sci
  doi: 10.1007/s12539-023-00589-5
– volume: 4
  start-page: 1795
  issue: 12
  year: 2017
  ident: 10.1016/j.compeleceng.2025.110106_bib0004
  article-title: Incidence, mortality and risk factors of cervical cancer in the world
  publication-title: Biomed Res Ther
  doi: 10.15419/bmrat.v4i12.386
– volume: 75
  start-page: 1527
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0029
  article-title: A novel meta-heuristic optimization algorithm in white blood cells classification
  publication-title: Comput Mater Contin
– volume: 89
  start-page: 465
  year: 2016
  ident: 10.1016/j.compeleceng.2025.110106_bib0005
  article-title: Classification of cervical cancer using artificial neural networks
  publication-title: Procedia Comput Sci
  doi: 10.1016/j.procs.2016.06.105
– volume: 2021
  issue: 1
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110106_bib0039
  article-title: Cervical cancer diagnosis model using extreme gradient boosting and bioinspired firefly optimization
  publication-title: Sci Program
– start-page: 4
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110106_bib0054
  article-title: Liquid based cytology pap smear images for multi-class diagnosis of cervical cancer
  publication-title: Data Brief
– volume: 11
  start-page: 14538
  issue: 1
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110106_bib0068
  article-title: A fuzzy rank-based ensemble of CNN models for classification of cervical cytology
  publication-title: Sci Rep
  doi: 10.1038/s41598-021-93783-8
– volume: 606
  start-page: 350
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110106_bib0074
  article-title: A novel adaptive l-SHADE algorithm and its application in UAV swarm resource configuration problem
  publication-title: Info Sci
  doi: 10.1016/j.ins.2022.05.058
– volume: 11
  start-page: 468
  issue: 5
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0050
  article-title: Lightweight low-rank adaptation vision Transformer framework for cervical cancer detection and cervix type classification
  publication-title: Bioengineering
  doi: 10.3390/bioengineering11050468
– volume: 81
  start-page: 24265
  issue: 17
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110106_bib0049
  article-title: Improving cervical cancer classification with imbalanced datasets combining taming transformers with T2T-ViT
  publication-title: Multimed Tools Appl
  doi: 10.1007/s11042-022-12670-0
– volume: 34
  start-page: e23044
  issue: 2
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0019
  article-title: Deep hybrid model for Mpox disease diagnosis from skin lesion images
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.23044
– volume: 284
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0065
  article-title: Graph t-SNE multi-view autoencoder for joint clustering and completion of incomplete multi-view data
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2023.111324
– volume: 141
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110106_bib0010
  article-title: A fully-automated deep learning pipeline for cervical cancer classification
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.112951
– volume: 8
  start-page: 1091
  issue: 6
  year: 1986
  ident: 10.1016/j.compeleceng.2025.110106_bib0061
  article-title: A model of the population dynamics of salps in coastal waters of the Ligurian Sea
  publication-title: J Plankton Res
  doi: 10.1093/plankt/8.6.1091
– volume: 120
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0018
  article-title: Advancements in Alzheimer's disease classification using deep learning frameworks for multimodal neuroimaging: a comprehensive review
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2024.109796
– year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0028
  article-title: Differential evolution Optimization based ensemble framework for accurate cervical cancer diagnosis
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2024.112366
– volume: 46
  start-page: 104
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110106_bib0076
  article-title: Comparison between MOEA/D and NSGA-III on a set of novel many and multi-objective benchmark problems with challenging difficulties
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2019.02.003
– volume: 8
  start-page: 84
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0035
  article-title: Majority voting as ensemble classifier for cervical cancer classification
  publication-title: Science and Technology Indonesia
  doi: 10.26554/sti.2023.8.1.84-92
– year: 2017
  ident: 10.1016/j.compeleceng.2025.110106_bib0056
  article-title: Xception: deep learning with depthwise separable convolutions
– volume: 123
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0070
  article-title: MSENet: mean and standard deviation based ensemble network for cervical cancer detection
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.106336
– year: 2017
  ident: 10.1016/j.compeleceng.2025.110106_bib0064
  article-title: Grad-cam: visual explanations from deep networks via gradient-based localization
– volume: 105
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0020
  article-title: Deep learning-based diagnosis of disc degenerative diseases using MRI: a comprehensive review
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.108524
– volume: 552
  start-page: 201
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110106_bib0073
  article-title: l-SHADE-E: ensemble of two differential evolution algorithms originating from l-SHADE
  publication-title: Info Sci
  doi: 10.1016/j.ins.2020.11.055
– volume: 34
  start-page: e22953
  issue: 1
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0012
  article-title: MozzieNet: a deep learning approach to efficiently detect malaria parasites in blood smear images
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22953
– year: 2014
  ident: 10.1016/j.compeleceng.2025.110106_bib0031
  article-title: Improving the search performance of SHADE using linear population size reduction
– year: 2013
  ident: 10.1016/j.compeleceng.2025.110106_bib0030
  article-title: Success-history based parameter adaptation for differential evolution
– volume: 635
  start-page: 2014
  year: 2013
  ident: 10.1016/j.compeleceng.2025.110106_bib0075
– volume: 117
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0014
  article-title: A multi-resolution convolutional attention network for efficient diabetic retinopathy classification
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2024.109243
– volume: 13
  start-page: 30
  issue: 1
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0021
  article-title: A deep ensemble learning framework for COVID-19 detection in chest X-ray images
  publication-title: Network Model Anal Health Info Bioinfo
  doi: 10.1007/s13721-024-00466-1
– volume: 19
  start-page: 77
  issue: 4
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0041
  article-title: Deep learning and transfer learning methods to effectively diagnose cervical cancer from liquid-based cytology pap smear images
  publication-title: Int J Online Biomed Eng
  doi: 10.3991/ijoe.v19i04.37437
– volume: 117
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0013
  article-title: Grey Wolf optimized SwinUNet based transformer framework for liver segmentation from CT images
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2024.109248
– volume: 136
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110106_bib0063
  article-title: DeepCervix: a deep learning-based framework for the classification of cervical cells using hybrid deep feature fusion techniques
  publication-title: Comput Biol Med
  doi: 10.1016/j.compbiomed.2021.104649
– year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0046
– volume: 4
  start-page: 627
  issue: 2
  year: 2013
  ident: 10.1016/j.compeleceng.2025.110106_bib0072
  article-title: Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation
  publication-title: Caspian J Intern Med
– volume: 118
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0017
  article-title: A review on leukemia detection and classification using Artificial Intelligence-based techniques
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2024.109446
– year: 2022
  ident: 10.1016/j.compeleceng.2025.110106_bib0027
  article-title: MLNet: metaheuristics-based lightweight deep learning network for cervical cancer diagnosis
  publication-title: IEEE J Biomed Health Inform
– year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0066
  article-title: A meta-learner-integrated stacking voting ensemble network for cervical malignancy classification
– start-page: 185
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110106_bib0060
  article-title: Salp swarm algorithm: theory, literature review, and application in extreme learning machines
  publication-title: Nature-inspired Optimizers
– volume: 200
  start-page: 472
  issue: 5
  year: 2009
  ident: 10.1016/j.compeleceng.2025.110106_bib0002
  article-title: Colposcopy to evaluate abnormal cervical cytology in 2008
  publication-title: Am J Obstet Gynecol
  doi: 10.1016/j.ajog.2008.12.025
– year: 2017
  ident: 10.1016/j.compeleceng.2025.110106_bib0055
  article-title: Densely connected convolutional networks
– volume: 2021
  issue: 1
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110106_bib0033
  article-title: Diagnosis of cervical cancer based on ensemble deep learning network using colposcopy images
  publication-title: Biomed Res Int
  doi: 10.1155/2021/5584004
– volume: 78
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0077
  article-title: Trial-based dominance for comparing both the speed and accuracy of stochastic optimizers with standard non-parametric tests
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2023.101287
– volume: 14
  start-page: 5599
  issue: 13
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0023
  article-title: Skin lesion classification using a deep ensemble model
  publication-title: Appl Sci
  doi: 10.3390/app14135599
– volume: 130
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110106_bib0053
  article-title: CVM-Cervix: a hybrid cervical pap-smear image classification framework using CNN, visual transformer and multilayer perceptron
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108829
– volume: 103
  start-page: 295
  issue: 4
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0024
  article-title: Classification of peripheral blood neutrophils using deep learning
  publication-title: Cytometry Part A
  doi: 10.1002/cyto.a.24698
– volume: 11
  start-page: 582
  issue: 2
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0034
  article-title: A novel approach to cervical cancer detection using hybrid stacked ensemble models and feature selection
  publication-title: Int J Electr Electr Res
  doi: 10.37391/ijeer.110246
– volume: 33
  start-page: 83
  issue: 1
  year: 2015
  ident: 10.1016/j.compeleceng.2025.110106_bib0003
  article-title: Multiple biopsies and detection of cervical cancer precursors at colposcopy
  publication-title: J Clinic Oncol
  doi: 10.1200/JCO.2014.55.9948
– start-page: 30
  year: 2020
  ident: 10.1016/j.compeleceng.2025.110106_bib0071
  article-title: A dataset of microscopic peripheral blood cell images for development of automatic recognition systems
  publication-title: Data Brief
– volume: 127
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0051
  article-title: Cervical cancer classification based on a bilinear convolutional neural network approach and random projection
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2023.107261
– volume: 55
  start-page: 115
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0008
  article-title: Recognizing gastrointestinal malignancies on WCE and CCE images by an ensemble of deep and handcrafted features with entropy and PCA based features optimization
  publication-title: Neural Process Lett
  doi: 10.1007/s11063-021-10481-2
– year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0042
  article-title: Ensemble learning for improved cervical cancer classification in pap smear images
– volume: 120
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0015
  article-title: ResMT: a hybrid CNN-transformer framework for glioma grading with 3D MRI
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2024.109745
– volume: 105
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0022
  article-title: Enhanced framework for COVID-19 prediction with computed tomography scan images using dense convolutional neural network and novel loss function
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2022.108479
– volume: 85
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0048
  article-title: CervixFuzzyFusion for cervical cancer cell image classification
  publication-title: Biomed Signal Process Control
– volume: 5
  year: 2024
  ident: 10.1016/j.compeleceng.2025.110106_bib0025
  article-title: An ensemble classification approach for cervical cancer prediction using behavioral risk factors
  publication-title: Healthc Anal
– volume: 11
  start-page: 135175
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0052
  article-title: Improved Bald Eagle search optimization with deep learning-based cervical cancer detection and classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3337032
– volume: 12
  start-page: 293
  issue: 4
  year: 2019
  ident: 10.1016/j.compeleceng.2025.110106_bib0040
  article-title: Optimized model for cervical cancer detection using binary cuckoo search
  publication-title: Recent Patents Comput Sci
  doi: 10.2174/2213275911666181120092223
– volume: 13
  start-page: 12473
  issue: 1
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0032
  article-title: Hybrid model for precise hepatitis-C classification using improved random forest and SVM method
  publication-title: Sci Rep
  doi: 10.1038/s41598-023-36605-3
– volume: 9
  start-page: 12374
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110106_bib0045
  article-title: An enhanced ensemble diagnosis of cervical cancer: a pursuit of machine intelligence towards sustainable health
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3049165
– volume: 17
  start-page: 1261
  issue: 5
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0036
  article-title: Classification of stages in cervical cancer MRI by customized CNN and transfer learning
  publication-title: Cogn Neurodyn
  doi: 10.1007/s11571-021-09777-9
– volume: 12
  start-page: 200
  issue: 10
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0044
  article-title: Cervical cancer diagnosis using stacked ensemble model and optimized feature selection: an explainable artificial intelligence approach
  publication-title: Computers
  doi: 10.3390/computers12100200
– volume: 114
  start-page: 163
  year: 2017
  ident: 10.1016/j.compeleceng.2025.110106_bib0058
  article-title: Salp swarm algorithm: a bio-inspired optimizer for engineering design problems
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2017.07.002
– volume: 35
  issue: 3
  year: 2023
  ident: 10.1016/j.compeleceng.2025.110106_bib0037
  article-title: Pre screening of cervical cancer through gradient boosting ensemble learning method
  publication-title: Intell Autom Soft Comput
  doi: 10.32604/iasc.2023.028599
– volume: 219
  year: 2022
  ident: 10.1016/j.compeleceng.2025.110106_bib0067
  article-title: A fuzzy distance-based ensemble of deep models for cervical cancer detection
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2022.106776
– year: 2018
  ident: 10.1016/j.compeleceng.2025.110106_bib0057
  article-title: Cbam: convolutional block attention module
– volume: 13
  start-page: 1092
  issue: 6
  year: 2021
  ident: 10.1016/j.compeleceng.2025.110106_bib0059
  article-title: Improved salp swarm algorithm with simulated annealing for solving engineering optimization problems
  publication-title: Symmetry
  doi: 10.3390/sym13061092
SSID ssj0004618
Score 2.4741592
Snippet Cervical cancer is a critical global health issue by affecting millions of women each year and causing high mortality rates if not diagnosed early. Early...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 110106
SubjectTerms Cancer cells classification
Cervical cancer disease
Deep learning
Ensemble learning
Salp swarm algorithm
Title An amalgamation of deep neural networks optimized with Salp swarm algorithm for cervical cancer detection
URI https://dx.doi.org/10.1016/j.compeleceng.2025.110106
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0045-7906
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004618
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0045-7906
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004618
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0045-7906
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004618
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0045-7906
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004618
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0045-7906
  databaseCode: AKRWK
  dateStart: 19730601
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004618
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA5jguiDeMV5GRF8rWu7JE3BlzEcU3EvOthbSZpUKvZCVxF88Leb0wtWEHzwsYFTymny5Uv4vnMQuuRcUukL31LcERaRXFqcK2G5NFSuJKEjGXiHHxZsviR3K7rqoWnrhQFZZYP9NaZXaN2MjJpsjvI4Bo8voR6U2aUVzwVHOSEedDG4-nQ63kinRmMCpRlttokuvjVeINuGdjM6fTZHRZeCKN6B5ke_7VGdfWe2i3Yawogn9TftoZ5O99F2p4zgAYonKRYJmDJqHyLOIqy0zjEUqzSxaS31XuPM4EMSf2iF4foVP4rXHK_fRZFgE5wVZizBhsTisAIQExnCnCjMy8pKsZUeouXs5mk6t5oWClboMlpaXDmCa1tSn3mOhktPpqivFbM9T3qEceqHKlSEQpEJmyqHmTUacQq0ZOyP9fgI9dMs1ccI28J2QxkZPsTMcVoaWhIJxiSzFdGuGLMBctukBXldKSNoJWQvQSfTAWQ6qDM9QNdteoMfvz0wiP53-Mn_wk_RFjzVQpwz1C-LN31uOEYph9UkGqKNye39fPEFPKLSzw
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFL3MCX48iJ84PyP4Wtd2SZqCL2M4pm57cYO9laTJZOK60VUEH_zt5rYdThB88DXllnKbnJyEc88FuBZCMRXK0NHCkw5VQjlCaOn4LNa-orGnONYO9_q8M6QPIzaqQGtZC4OyyhL7C0zP0bocqZfZrM8nE6zxpSxAm12W89xgDdYp8wM8gd18eivFkV4BxxS9GV2-AVffIi_UbWO_GZM827Oiz1AV72H3o982qZWNp70LOyVjJM3io_agYpJ92F7xETyASTMhcopVGUUhIpmNiTZmTtCt0sYmhdZ7QWYWIKaTD6MJ3r-SJ_k6J4t3mU6JDZ6ldmxKLIslcY4gNjLGSZHal2W5ZCs5hGH7btDqOGUPBSf2OcscoT0pjKtYyAPP4K0n1yw0mrtBoALKBQtjHWvK0GXCZdrjdpGOBUNe0ggbpnEE1WSWmGMgrnT9WI0tIeL2PK0sLxlLzhV3NTW-bPAa-MukRfPCKiNaasheopVMR5jpqMh0DW6X6Y1-_PfIQvrf4Sf_C7-Ezc6g14269_3HU9jCJ4Uq5wyqWfpmzi3hyNRFPqG-AEey1GQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+amalgamation+of+deep+neural+networks+optimized+with+Salp+swarm+algorithm+for+cervical+cancer+detection&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Bilal%2C+Omair&rft.au=Asif%2C+Sohaib&rft.au=Zhao%2C+Ming&rft.au=Khan%2C+Saif+Ur+Rehman&rft.date=2025-04-01&rft.issn=0045-7906&rft.volume=123&rft.spage=110106&rft_id=info:doi/10.1016%2Fj.compeleceng.2025.110106&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2025_110106
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon