Chance-Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing
Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing hyperspectral unmixing algorithms is based on Craig's criterion, which states that the vertices of the minimum-volume simplex enclosing the...
Saved in:
| Published in | IEEE transactions on geoscience and remote sensing Vol. 49; no. 11; pp. 4194 - 4209 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.11.2011
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-2892 1558-0644 |
| DOI | 10.1109/TGRS.2011.2151197 |
Cover
| Abstract | Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing hyperspectral unmixing algorithms is based on Craig's criterion, which states that the vertices of the minimum-volume simplex enclosing the hyperspectral data should yield high fidelity estimates of the endmember signatures associated with the data cloud. Recently, we have developed a minimum-volume enclosing simplex (MVES) algorithm based on Craig's criterion and validated that the MVES algorithm is very useful to unmix highly mixed hyperspectral data. However, the presence of noise in the observations expands the actual data cloud, and as a consequence, the endmember estimates obtained by applying Craig-criterion-based algorithms to the noisy data may no longer be in close proximity to the true endmember signatures. In this paper, we propose a robust MVES (RMVES) algorithm that accounts for the noise effects in the observations by employing chance constraints. These chance constraints in turn control the volume of the resulting simplex. Under the Gaussian noise assumption, the chance-constrained MVES problem can be formulated into a deterministic nonlinear program. The problem can then be conveniently handled by alternating optimization, in which each subproblem involved is handled by using sequential quadratic programming solvers. The proposed RMVES is compared with several existing benchmark algorithms, including its predecessor, the MVES algorithm. Monte Carlo simulations and real hyperspectral data experiments are presented to demonstrate the efficacy of the proposed RMVES algorithm. |
|---|---|
| AbstractList | Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing hyperspectral unmixing algorithms is based on Craig's criterion, which states that the vertices of the minimum-volume simplex enclosing the hyperspectral data should yield high fidelity estimates of the endmember signatures associated with the data cloud. Recently, we have developed a minimum-volume enclosing simplex (MVES) algorithm based on Craig's criterion and validated that the MVES algorithm is very useful to unmix highly mixed hyperspectral data. However, the presence of noise in the observations expands the actual data cloud, and as a consequence, the endmember estimates obtained by applying Craig-criterion-based algorithms to the noisy data may no longer be in close proximity to the true endmember signatures. In this paper, we propose a robust MVES (RMVES) algorithm that accounts for the noise effects in the observations by employing chance constraints. These chance constraints in turn control the volume of the resulting simplex. Under the Gaussian noise assumption, the chance-constrained MVES problem can be formulated into a deterministic nonlinear program. The problem can then be conveniently handled by alternating optimization, in which each subproblem involved is handled by using sequential quadratic programming solvers. The proposed RMVES is compared with several existing benchmark algorithms, including its predecessor, the MVES algorithm. Monte Carlo simulations and real hyperspectral data experiments are presented to demonstrate the efficacy of the proposed RMVES algorithm. |
| Author | Wing-Kin Ma Ambikapathi, A. Chong-Yung Chi Chan, T. |
| Author_xml | – sequence: 1 givenname: A. surname: Ambikapathi fullname: Ambikapathi, A. email: aareul@ieee.org organization: Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan – sequence: 2 givenname: T. surname: Chan fullname: Chan, T. email: thchan@ieee.org organization: Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan – sequence: 3 surname: Wing-Kin Ma fullname: Wing-Kin Ma email: wkma@ieee.org organization: Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Hong Kong, China – sequence: 4 surname: Chong-Yung Chi fullname: Chong-Yung Chi email: cychi@ee.nthu.edu.tw organization: Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan |
| BookMark | eNp9kE9rwjAYxsNwMHX7AGOXfIG6vE3SNkcRpwPHwD-7liammtEmJamg334tyg477PQ-h-f3wPsboYF1ViP0DGQCQMTrdrHeTGICMImBA4j0Dg2B8ywiCWMDNCQgkijORPyARiF8EwKMQzpE-exYWKWjmbOh9YWxeo_XTp5Ciz-MNfWpjr5cdao1nltVuWDsAW9M3VT6jKfVwXnTHmtcOo-Xl0b70GjVzVR4Z2tz7sqP6L4sqqCfbneMdm_z7WwZrT4X77PpKlJxwtuI7WnGqJasFCIpRJeBMCFAKpmppGSMSiA0E1KVsgAag4gzniZUKkr3XAIdo_S6q7wLwesyV6YtWuNs_1WVA8l7T3nvKe895TdPHQl_yMabuvCXf5mXK2O01r99nmaUMkJ_ANIGds4 |
| CODEN | IGRSD2 |
| CitedBy_id | crossref_primary_10_1109_TIP_2015_2446196 crossref_primary_10_3390_rs71215834 crossref_primary_10_1080_01431161_2024_2305628 crossref_primary_10_1016_j_ijleo_2013_06_073 crossref_primary_10_1109_JSTARS_2014_2371615 crossref_primary_10_1080_01431161_2017_1375571 crossref_primary_10_1109_TGRS_2012_2213261 crossref_primary_10_1109_TGRS_2018_2852745 crossref_primary_10_1109_TSP_2015_2508778 crossref_primary_10_1109_TSP_2016_2602800 crossref_primary_10_1109_TIP_2015_2509258 crossref_primary_10_1109_JSTARS_2014_2320896 crossref_primary_10_1109_JSTARS_2015_2427656 crossref_primary_10_1109_JSTARS_2015_2454518 crossref_primary_10_1109_JSTARS_2017_2682281 crossref_primary_10_1109_TGRS_2012_2230182 crossref_primary_10_1109_JSTARS_2012_2186629 crossref_primary_10_1109_TGRS_2017_2728104 crossref_primary_10_1109_ACCESS_2019_2921919 crossref_primary_10_1109_JSTARS_2024_3465227 crossref_primary_10_1109_TGRS_2016_2580702 crossref_primary_10_1007_s12046_018_0839_5 crossref_primary_10_1080_01431161_2021_1910369 crossref_primary_10_1109_JSTARS_2015_2403254 crossref_primary_10_1109_TGRS_2011_2167193 crossref_primary_10_1016_j_ijleo_2018_03_082 crossref_primary_10_1214_20_AOS2016 crossref_primary_10_1109_TGRS_2011_2163941 crossref_primary_10_1109_MSP_2013_2279731 crossref_primary_10_1109_JSTARS_2012_2194696 crossref_primary_10_1109_TGRS_2012_2226943 crossref_primary_10_1109_TIP_2023_3301769 crossref_primary_10_1109_JSTARS_2021_3116698 crossref_primary_10_1109_TGRS_2012_2207905 crossref_primary_10_1016_j_cam_2023_115708 crossref_primary_10_3390_rs15112822 crossref_primary_10_1109_TGRS_2019_2916296 crossref_primary_10_1038_s41598_017_15952_y crossref_primary_10_1109_TCI_2024_3402322 crossref_primary_10_1016_j_earscirev_2015_07_007 crossref_primary_10_1109_TGRS_2013_2248013 crossref_primary_10_1016_j_patcog_2016_09_006 crossref_primary_10_1109_TGRS_2015_2424719 crossref_primary_10_1109_TSP_2021_3133690 crossref_primary_10_1109_TGRS_2015_2417162 crossref_primary_10_1109_TGRS_2023_3321839 crossref_primary_10_1002_cem_2512 crossref_primary_10_1109_JSTARS_2022_3190027 crossref_primary_10_1631_FITEE_1600028 crossref_primary_10_3390_rs10071106 crossref_primary_10_1109_TGRS_2014_2352857 crossref_primary_10_1109_JSTARS_2021_3115177 |
| Cites_doi | 10.3133/ofr93592 10.1109/WHISPERS.2009.5289018 10.1109/TGRS.2003.819189 10.1109/TGRS.2004.835299 10.1109/TPAMI.2009.72 10.1109/TGRS.2006.881803 10.1109/36.297973 10.1109/TAC.1974.1100705 10.1080/10556789908805766 10.1109/WHISPERS.2009.5289072 10.1109/ACSSC.2007.4487406 10.1109/TGRS.2009.2034979 10.1109/36.911111 10.1109/TSP.2009.2025802 10.1016/0005-1098(78)90005-5 10.1021/ac902569e 10.1029/JB090iS02p0C797 10.1109/IGARSS.2008.4779330 10.1109/TGRS.2008.2002882 10.1109/WHISPERS.2010.5594929 10.1109/TGRS.2002.802494 10.1109/TGRS.2005.844293 10.1109/TSP.2009.2025797 10.1109/ICASSP.2010.5495388 10.1109/79.974727 10.1109/WHISPERS.2010.5594862 10.2172/15002155 10.1109/TSP.2008.928937 10.1017/CBO9780511804441 10.1109/36.3001 10.1109/TGRS.2008.918089 10.1117/1.2434950 10.1117/12.366289 10.1016/j.laa.2005.06.025 10.1109/TGRS.2010.2041062 10.1017/S0962492900002518 10.1109/TGRS.2009.2038483 10.1109/TGRS.2009.2014945 10.1109/TGRS.2006.888466 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TGRS.2011.2151197 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0644 |
| EndPage | 4209 |
| ExternalDocumentID | 10_1109_TGRS_2011_2151197 5783340 |
| Genre | orig-research |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS RXW TAE TN5 VH1 Y6R AAYXX CITATION |
| ID | FETCH-LOGICAL-c265t-4d3843eb4f996a9843104991bcb8c6f443b10389bcfba13219285763bc33d5b13 |
| IEDL.DBID | RIE |
| ISSN | 0196-2892 |
| IngestDate | Thu Apr 24 23:05:36 EDT 2025 Wed Oct 01 05:07:44 EDT 2025 Tue Aug 26 17:18:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c265t-4d3843eb4f996a9843104991bcb8c6f443b10389bcfba13219285763bc33d5b13 |
| PageCount | 16 |
| ParticipantIDs | ieee_primary_5783340 crossref_citationtrail_10_1109_TGRS_2011_2151197 crossref_primary_10_1109_TGRS_2011_2151197 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2011-Nov. 2011-11-00 |
| PublicationDateYYYYMMDD | 2011-11-01 |
| PublicationDate_xml | – month: 11 year: 2011 text: 2011-Nov. |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on geoscience and remote sensing |
| PublicationTitleAbbrev | TGRS |
| PublicationYear | 2011 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 winter (ref13) 1999 nascimento (ref49) 2006 ref45 ref41 ref44 boardman (ref12) 1995 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 (ref43) 0 ref34 ref36 ref31 ref30 clarke (ref47) 1996 ref33 ref32 ref2 ref1 ma (ref39) 2010 ref38 chan (ref48) 2009 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 grant (ref37) 2010 (ref46) 0 strang (ref35) 2006 (ref42) 0 |
| References_xml | – ident: ref44 doi: 10.3133/ofr93592 – start-page: 23 year: 1995 ident: ref12 article-title: Mapping target signatures via partial unmixing of AVIRIS data publication-title: Proc Summ JPL Airborne Earth Sci Workshop – ident: ref17 doi: 10.1109/WHISPERS.2009.5289018 – ident: ref8 doi: 10.1109/TGRS.2003.819189 – ident: ref20 doi: 10.1109/TGRS.2004.835299 – ident: ref40 doi: 10.1109/TPAMI.2009.72 – ident: ref14 doi: 10.1109/TGRS.2006.881803 – ident: ref19 doi: 10.1109/36.297973 – year: 2010 ident: ref37 publication-title: CVX MATLAB Software for Disciplined Convex Programming – ident: ref9 doi: 10.1109/TAC.1974.1100705 – start-page: 49 year: 1996 ident: ref47 article-title: Evolution in imaging spectroscopy analysis and sensor signal-to-noise: An examination of how far we have come publication-title: Proc 6th Annu JPL Airborne Earth Sci Workshop – ident: ref36 doi: 10.1080/10556789908805766 – ident: ref31 doi: 10.1109/WHISPERS.2009.5289072 – ident: ref22 doi: 10.1109/ACSSC.2007.4487406 – ident: ref15 doi: 10.1109/TGRS.2009.2034979 – ident: ref18 doi: 10.1109/36.911111 – ident: ref26 doi: 10.1109/TSP.2009.2025802 – ident: ref10 doi: 10.1016/0005-1098(78)90005-5 – ident: ref3 doi: 10.1021/ac902569e – ident: ref5 doi: 10.1029/JB090iS02p0C797 – ident: ref25 doi: 10.1109/IGARSS.2008.4779330 – ident: ref45 doi: 10.1109/TGRS.2008.2002882 – year: 2006 ident: ref35 publication-title: Linear Algebra and its Applications – ident: ref29 doi: 10.1109/WHISPERS.2010.5594929 – ident: ref27 doi: 10.1109/TGRS.2002.802494 – ident: ref16 doi: 10.1109/TGRS.2005.844293 – ident: ref30 doi: 10.1109/TSP.2009.2025797 – ident: ref33 doi: 10.1109/ICASSP.2010.5495388 – year: 2009 ident: ref48 publication-title: Convex analysis based non-negative blind source separation for biomedical and hyperspectral image analysis – ident: ref1 doi: 10.1109/79.974727 – year: 0 ident: ref43 – year: 2006 ident: ref49 publication-title: Unsupervised hyperspectral unmixing – year: 2010 ident: ref39 publication-title: Convex Optimization in Signal Processing and Communications – ident: ref34 doi: 10.1109/WHISPERS.2010.5594862 – ident: ref7 doi: 10.2172/15002155 – year: 0 ident: ref42 publication-title: MATLAB Optimization ToolboxVersion 7 6 (R2008a) – ident: ref38 doi: 10.1109/TSP.2008.928937 – ident: ref32 doi: 10.1017/CBO9780511804441 – ident: ref6 doi: 10.1109/36.3001 – year: 0 ident: ref46 publication-title: AVIRIS Data Products – ident: ref11 doi: 10.1109/TGRS.2008.918089 – ident: ref4 doi: 10.1117/1.2434950 – start-page: 266 year: 1999 ident: ref13 article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data publication-title: Proc SPIEImaging Spectrometry V doi: 10.1117/12.366289 – ident: ref2 doi: 10.1016/j.laa.2005.06.025 – ident: ref21 doi: 10.1109/TGRS.2010.2041062 – ident: ref41 doi: 10.1017/S0962492900002518 – ident: ref24 doi: 10.1109/TGRS.2009.2038483 – ident: ref28 doi: 10.1109/TGRS.2009.2014945 – ident: ref23 doi: 10.1109/TGRS.2006.888466 |
| SSID | ssj0014517 |
| Score | 2.3363826 |
| Snippet | Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 4194 |
| SubjectTerms | Abundance map Algorithm design and analysis chance-constrained optimization convex analysis endmember signature Gaussian noise Hyperspectral imaging hyperspectral imaging (HI) hyperspectral unmixing (HU) Noise measurement sequential quadratic programming (SQP) |
| Title | Chance-Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing |
| URI | https://ieeexplore.ieee.org/document/5783340 |
| Volume | 49 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0644 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014517 issn: 0196-2892 databaseCode: RIE dateStart: 19800101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1zIOiDl01x3siDT2Jn06Rd-zhkOoT5sIvsrTSXanFrZWth-Ov9knZjiIhvoaRtykmT7yQ550PohvGOI0UsAYHItRgPPItLSoDzaAGz7Chh3PUHL15_wp6n7rSG7jZaGKWUOXym2rpo9vJlJgq9VAbk3aeUAUHf6fheqdXa7Bgwl1TSaM8CEuFUO5jEDu7HT8NRadap5zei_Z225qCtpCpmTnk8RIN1a8qjJB_tIudt8fXDqPG_zT1CB1VwibtlbzhGNZU20P6W5WAD7Zojn2LZRKEWFghl6ZSdJlGEkniY8WKZ40GSJvNibr2aoQv3UjHL9JoCHiXaTHiFu7O3bJHk73MMMS_uA5ctJZsLePsknScrqHyCJo-98UPfqtItWMLx3NxikvqMKs5i4EBRAGWi-RDhgvvCixmjXLupB1zEPAISC7GhD2yFckGpdDmhp6ieZqk6Qzh2BYxe2tpGuSySxJcBcRz4113u2PC4FrLXAISi8iLXXzoLDSexg1BjFmrMwgqzFrrd3PJZGnH8Vbmp4dhUrJA4__3yBdozK8VGYXiJ6vmiUFcQauT82vSxb55WzyI |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGP0QRdQH7-K85sEnsXNpkto-iqjzMh90E9_KcqkWt1ZmC-Kv90taxxAR30JJ25STJt9Jcs4HcMDlia9VohGBvvC4jAJPakaR81gBsz4xyrnrd-6Cdo9fP4mnKTgaa2GMMe7wmWnaotvL17kq7VIZkveQMY4EfUZwzkWl1hrvGXBBa3F04CGN8Os9TNqKjruX9w-VXaed4ah1eJqYhSbSqrhZ5WIJOt_tqQ6TvDbLQjbV5w-rxv82eBkW6_CSnFb9YQWmTLYKCxOmg6sw6w59qvc1iK20QBnPJu10qSKMJve5LN8L0kmzdFgOvUc3eJHzTA1yu6pAHlJrJ_xBTgfP-SgtXoYEo17SRjZbiTZH-PZeNkw_sPI69C7Ou2dtr0644Ck_EIXHNQs5M5InyIL6EZapZURUKhmqIOGcSeunHkmVyD7SWIwOQ-QrTCrGtJCUbcB0lmdmE0giFI5f1tzGCN7XNNQR9X3824X0W_i4BrS-AYhV7UZuv3QQO1bSimKLWWwxi2vMGnA4vuWtsuL4q_KahWNcsUZi6_fL-zDX7nZu49uru5ttmHfrxk5vuAPTxag0uxh4FHLP9bcvoybSbw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chance-Constrained+Robust+Minimum-Volume+Enclosing+Simplex+Algorithm+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Ambikapathi%2C+ArulMurugan&rft.au=Chan%2C+Tsung-Han&rft.au=Ma%2C+Wing-Kin&rft.au=Chi%2C+Chong-Yung&rft.date=2011-11-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=49&rft.issue=11&rft.spage=4194&rft.epage=4209&rft_id=info:doi/10.1109%2FTGRS.2011.2151197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2011_2151197 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon |