Chance-Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing

Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing hyperspectral unmixing algorithms is based on Craig's criterion, which states that the vertices of the minimum-volume simplex enclosing the...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on geoscience and remote sensing Vol. 49; no. 11; pp. 4194 - 4209
Main Authors Ambikapathi, A., Chan, T., Wing-Kin Ma, Chong-Yung Chi
Format Journal Article
LanguageEnglish
Published IEEE 01.11.2011
Subjects
Online AccessGet full text
ISSN0196-2892
1558-0644
DOI10.1109/TGRS.2011.2151197

Cover

Abstract Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing hyperspectral unmixing algorithms is based on Craig's criterion, which states that the vertices of the minimum-volume simplex enclosing the hyperspectral data should yield high fidelity estimates of the endmember signatures associated with the data cloud. Recently, we have developed a minimum-volume enclosing simplex (MVES) algorithm based on Craig's criterion and validated that the MVES algorithm is very useful to unmix highly mixed hyperspectral data. However, the presence of noise in the observations expands the actual data cloud, and as a consequence, the endmember estimates obtained by applying Craig-criterion-based algorithms to the noisy data may no longer be in close proximity to the true endmember signatures. In this paper, we propose a robust MVES (RMVES) algorithm that accounts for the noise effects in the observations by employing chance constraints. These chance constraints in turn control the volume of the resulting simplex. Under the Gaussian noise assumption, the chance-constrained MVES problem can be formulated into a deterministic nonlinear program. The problem can then be conveniently handled by alternating optimization, in which each subproblem involved is handled by using sequential quadratic programming solvers. The proposed RMVES is compared with several existing benchmark algorithms, including its predecessor, the MVES algorithm. Monte Carlo simulations and real hyperspectral data experiments are presented to demonstrate the efficacy of the proposed RMVES algorithm.
AbstractList Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing hyperspectral unmixing algorithms is based on Craig's criterion, which states that the vertices of the minimum-volume simplex enclosing the hyperspectral data should yield high fidelity estimates of the endmember signatures associated with the data cloud. Recently, we have developed a minimum-volume enclosing simplex (MVES) algorithm based on Craig's criterion and validated that the MVES algorithm is very useful to unmix highly mixed hyperspectral data. However, the presence of noise in the observations expands the actual data cloud, and as a consequence, the endmember estimates obtained by applying Craig-criterion-based algorithms to the noisy data may no longer be in close proximity to the true endmember signatures. In this paper, we propose a robust MVES (RMVES) algorithm that accounts for the noise effects in the observations by employing chance constraints. These chance constraints in turn control the volume of the resulting simplex. Under the Gaussian noise assumption, the chance-constrained MVES problem can be formulated into a deterministic nonlinear program. The problem can then be conveniently handled by alternating optimization, in which each subproblem involved is handled by using sequential quadratic programming solvers. The proposed RMVES is compared with several existing benchmark algorithms, including its predecessor, the MVES algorithm. Monte Carlo simulations and real hyperspectral data experiments are presented to demonstrate the efficacy of the proposed RMVES algorithm.
Author Wing-Kin Ma
Ambikapathi, A.
Chong-Yung Chi
Chan, T.
Author_xml – sequence: 1
  givenname: A.
  surname: Ambikapathi
  fullname: Ambikapathi, A.
  email: aareul@ieee.org
  organization: Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan
– sequence: 2
  givenname: T.
  surname: Chan
  fullname: Chan, T.
  email: thchan@ieee.org
  organization: Inst. of Commun. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan
– sequence: 3
  surname: Wing-Kin Ma
  fullname: Wing-Kin Ma
  email: wkma@ieee.org
  organization: Dept. of Electron. Eng., Chinese Univ. of Hong Kong, Hong Kong, China
– sequence: 4
  surname: Chong-Yung Chi
  fullname: Chong-Yung Chi
  email: cychi@ee.nthu.edu.tw
  organization: Dept. of Electr. Eng., Nat. Tsing Hua Univ., Hsinchu, Taiwan
BookMark eNp9kE9rwjAYxsNwMHX7AGOXfIG6vE3SNkcRpwPHwD-7liammtEmJamg334tyg477PQ-h-f3wPsboYF1ViP0DGQCQMTrdrHeTGICMImBA4j0Dg2B8ywiCWMDNCQgkijORPyARiF8EwKMQzpE-exYWKWjmbOh9YWxeo_XTp5Ciz-MNfWpjr5cdao1nltVuWDsAW9M3VT6jKfVwXnTHmtcOo-Xl0b70GjVzVR4Z2tz7sqP6L4sqqCfbneMdm_z7WwZrT4X77PpKlJxwtuI7WnGqJasFCIpRJeBMCFAKpmppGSMSiA0E1KVsgAag4gzniZUKkr3XAIdo_S6q7wLwesyV6YtWuNs_1WVA8l7T3nvKe895TdPHQl_yMabuvCXf5mXK2O01r99nmaUMkJ_ANIGds4
CODEN IGRSD2
CitedBy_id crossref_primary_10_1109_TIP_2015_2446196
crossref_primary_10_3390_rs71215834
crossref_primary_10_1080_01431161_2024_2305628
crossref_primary_10_1016_j_ijleo_2013_06_073
crossref_primary_10_1109_JSTARS_2014_2371615
crossref_primary_10_1080_01431161_2017_1375571
crossref_primary_10_1109_TGRS_2012_2213261
crossref_primary_10_1109_TGRS_2018_2852745
crossref_primary_10_1109_TSP_2015_2508778
crossref_primary_10_1109_TSP_2016_2602800
crossref_primary_10_1109_TIP_2015_2509258
crossref_primary_10_1109_JSTARS_2014_2320896
crossref_primary_10_1109_JSTARS_2015_2427656
crossref_primary_10_1109_JSTARS_2015_2454518
crossref_primary_10_1109_JSTARS_2017_2682281
crossref_primary_10_1109_TGRS_2012_2230182
crossref_primary_10_1109_JSTARS_2012_2186629
crossref_primary_10_1109_TGRS_2017_2728104
crossref_primary_10_1109_ACCESS_2019_2921919
crossref_primary_10_1109_JSTARS_2024_3465227
crossref_primary_10_1109_TGRS_2016_2580702
crossref_primary_10_1007_s12046_018_0839_5
crossref_primary_10_1080_01431161_2021_1910369
crossref_primary_10_1109_JSTARS_2015_2403254
crossref_primary_10_1109_TGRS_2011_2167193
crossref_primary_10_1016_j_ijleo_2018_03_082
crossref_primary_10_1214_20_AOS2016
crossref_primary_10_1109_TGRS_2011_2163941
crossref_primary_10_1109_MSP_2013_2279731
crossref_primary_10_1109_JSTARS_2012_2194696
crossref_primary_10_1109_TGRS_2012_2226943
crossref_primary_10_1109_TIP_2023_3301769
crossref_primary_10_1109_JSTARS_2021_3116698
crossref_primary_10_1109_TGRS_2012_2207905
crossref_primary_10_1016_j_cam_2023_115708
crossref_primary_10_3390_rs15112822
crossref_primary_10_1109_TGRS_2019_2916296
crossref_primary_10_1038_s41598_017_15952_y
crossref_primary_10_1109_TCI_2024_3402322
crossref_primary_10_1016_j_earscirev_2015_07_007
crossref_primary_10_1109_TGRS_2013_2248013
crossref_primary_10_1016_j_patcog_2016_09_006
crossref_primary_10_1109_TGRS_2015_2424719
crossref_primary_10_1109_TSP_2021_3133690
crossref_primary_10_1109_TGRS_2015_2417162
crossref_primary_10_1109_TGRS_2023_3321839
crossref_primary_10_1002_cem_2512
crossref_primary_10_1109_JSTARS_2022_3190027
crossref_primary_10_1631_FITEE_1600028
crossref_primary_10_3390_rs10071106
crossref_primary_10_1109_TGRS_2014_2352857
crossref_primary_10_1109_JSTARS_2021_3115177
Cites_doi 10.3133/ofr93592
10.1109/WHISPERS.2009.5289018
10.1109/TGRS.2003.819189
10.1109/TGRS.2004.835299
10.1109/TPAMI.2009.72
10.1109/TGRS.2006.881803
10.1109/36.297973
10.1109/TAC.1974.1100705
10.1080/10556789908805766
10.1109/WHISPERS.2009.5289072
10.1109/ACSSC.2007.4487406
10.1109/TGRS.2009.2034979
10.1109/36.911111
10.1109/TSP.2009.2025802
10.1016/0005-1098(78)90005-5
10.1021/ac902569e
10.1029/JB090iS02p0C797
10.1109/IGARSS.2008.4779330
10.1109/TGRS.2008.2002882
10.1109/WHISPERS.2010.5594929
10.1109/TGRS.2002.802494
10.1109/TGRS.2005.844293
10.1109/TSP.2009.2025797
10.1109/ICASSP.2010.5495388
10.1109/79.974727
10.1109/WHISPERS.2010.5594862
10.2172/15002155
10.1109/TSP.2008.928937
10.1017/CBO9780511804441
10.1109/36.3001
10.1109/TGRS.2008.918089
10.1117/1.2434950
10.1117/12.366289
10.1016/j.laa.2005.06.025
10.1109/TGRS.2010.2041062
10.1017/S0962492900002518
10.1109/TGRS.2009.2038483
10.1109/TGRS.2009.2014945
10.1109/TGRS.2006.888466
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TGRS.2011.2151197
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0644
EndPage 4209
ExternalDocumentID 10_1109_TGRS_2011_2151197
5783340
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
RXW
TAE
TN5
VH1
Y6R
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-4d3843eb4f996a9843104991bcb8c6f443b10389bcfba13219285763bc33d5b13
IEDL.DBID RIE
ISSN 0196-2892
IngestDate Thu Apr 24 23:05:36 EDT 2025
Wed Oct 01 05:07:44 EDT 2025
Tue Aug 26 17:18:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-4d3843eb4f996a9843104991bcb8c6f443b10389bcfba13219285763bc33d5b13
PageCount 16
ParticipantIDs ieee_primary_5783340
crossref_citationtrail_10_1109_TGRS_2011_2151197
crossref_primary_10_1109_TGRS_2011_2151197
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2011-Nov.
2011-11-00
PublicationDateYYYYMMDD 2011-11-01
PublicationDate_xml – month: 11
  year: 2011
  text: 2011-Nov.
PublicationDecade 2010
PublicationTitle IEEE transactions on geoscience and remote sensing
PublicationTitleAbbrev TGRS
PublicationYear 2011
Publisher IEEE
Publisher_xml – name: IEEE
References ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
winter (ref13) 1999
nascimento (ref49) 2006
ref45
ref41
ref44
boardman (ref12) 1995
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
(ref43) 0
ref34
ref36
ref31
ref30
clarke (ref47) 1996
ref33
ref32
ref2
ref1
ma (ref39) 2010
ref38
chan (ref48) 2009
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
grant (ref37) 2010
(ref46) 0
strang (ref35) 2006
(ref42) 0
References_xml – ident: ref44
  doi: 10.3133/ofr93592
– start-page: 23
  year: 1995
  ident: ref12
  article-title: Mapping target signatures via partial unmixing of AVIRIS data
  publication-title: Proc Summ JPL Airborne Earth Sci Workshop
– ident: ref17
  doi: 10.1109/WHISPERS.2009.5289018
– ident: ref8
  doi: 10.1109/TGRS.2003.819189
– ident: ref20
  doi: 10.1109/TGRS.2004.835299
– ident: ref40
  doi: 10.1109/TPAMI.2009.72
– ident: ref14
  doi: 10.1109/TGRS.2006.881803
– ident: ref19
  doi: 10.1109/36.297973
– year: 2010
  ident: ref37
  publication-title: CVX MATLAB Software for Disciplined Convex Programming
– ident: ref9
  doi: 10.1109/TAC.1974.1100705
– start-page: 49
  year: 1996
  ident: ref47
  article-title: Evolution in imaging spectroscopy analysis and sensor signal-to-noise: An examination of how far we have come
  publication-title: Proc 6th Annu JPL Airborne Earth Sci Workshop
– ident: ref36
  doi: 10.1080/10556789908805766
– ident: ref31
  doi: 10.1109/WHISPERS.2009.5289072
– ident: ref22
  doi: 10.1109/ACSSC.2007.4487406
– ident: ref15
  doi: 10.1109/TGRS.2009.2034979
– ident: ref18
  doi: 10.1109/36.911111
– ident: ref26
  doi: 10.1109/TSP.2009.2025802
– ident: ref10
  doi: 10.1016/0005-1098(78)90005-5
– ident: ref3
  doi: 10.1021/ac902569e
– ident: ref5
  doi: 10.1029/JB090iS02p0C797
– ident: ref25
  doi: 10.1109/IGARSS.2008.4779330
– ident: ref45
  doi: 10.1109/TGRS.2008.2002882
– year: 2006
  ident: ref35
  publication-title: Linear Algebra and its Applications
– ident: ref29
  doi: 10.1109/WHISPERS.2010.5594929
– ident: ref27
  doi: 10.1109/TGRS.2002.802494
– ident: ref16
  doi: 10.1109/TGRS.2005.844293
– ident: ref30
  doi: 10.1109/TSP.2009.2025797
– ident: ref33
  doi: 10.1109/ICASSP.2010.5495388
– year: 2009
  ident: ref48
  publication-title: Convex analysis based non-negative blind source separation for biomedical and hyperspectral image analysis
– ident: ref1
  doi: 10.1109/79.974727
– year: 0
  ident: ref43
– year: 2006
  ident: ref49
  publication-title: Unsupervised hyperspectral unmixing
– year: 2010
  ident: ref39
  publication-title: Convex Optimization in Signal Processing and Communications
– ident: ref34
  doi: 10.1109/WHISPERS.2010.5594862
– ident: ref7
  doi: 10.2172/15002155
– year: 0
  ident: ref42
  publication-title: MATLAB Optimization ToolboxVersion 7 6 (R2008a)
– ident: ref38
  doi: 10.1109/TSP.2008.928937
– ident: ref32
  doi: 10.1017/CBO9780511804441
– ident: ref6
  doi: 10.1109/36.3001
– year: 0
  ident: ref46
  publication-title: AVIRIS Data Products
– ident: ref11
  doi: 10.1109/TGRS.2008.918089
– ident: ref4
  doi: 10.1117/1.2434950
– start-page: 266
  year: 1999
  ident: ref13
  article-title: N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data
  publication-title: Proc SPIEImaging Spectrometry V
  doi: 10.1117/12.366289
– ident: ref2
  doi: 10.1016/j.laa.2005.06.025
– ident: ref21
  doi: 10.1109/TGRS.2010.2041062
– ident: ref41
  doi: 10.1017/S0962492900002518
– ident: ref24
  doi: 10.1109/TGRS.2009.2038483
– ident: ref28
  doi: 10.1109/TGRS.2009.2014945
– ident: ref23
  doi: 10.1109/TGRS.2006.888466
SSID ssj0014517
Score 2.3363826
Snippet Effective unmixing of hyperspectral data cube under a noisy scenario has been a challenging research problem in remote sensing arena. A branch of existing...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4194
SubjectTerms Abundance map
Algorithm design and analysis
chance-constrained optimization
convex analysis
endmember signature
Gaussian noise
Hyperspectral imaging
hyperspectral imaging (HI)
hyperspectral unmixing (HU)
Noise measurement
sequential quadratic programming (SQP)
Title Chance-Constrained Robust Minimum-Volume Enclosing Simplex Algorithm for Hyperspectral Unmixing
URI https://ieeexplore.ieee.org/document/5783340
Volume 49
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0644
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014517
  issn: 0196-2892
  databaseCode: RIE
  dateStart: 19800101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGA1zIOiDl01x3siDT2Jn06Rd-zhkOoT5sIvsrTSXanFrZWth-Ov9knZjiIhvoaRtykmT7yQ550PohvGOI0UsAYHItRgPPItLSoDzaAGz7Chh3PUHL15_wp6n7rSG7jZaGKWUOXym2rpo9vJlJgq9VAbk3aeUAUHf6fheqdXa7Bgwl1TSaM8CEuFUO5jEDu7HT8NRadap5zei_Z225qCtpCpmTnk8RIN1a8qjJB_tIudt8fXDqPG_zT1CB1VwibtlbzhGNZU20P6W5WAD7Zojn2LZRKEWFghl6ZSdJlGEkniY8WKZ40GSJvNibr2aoQv3UjHL9JoCHiXaTHiFu7O3bJHk73MMMS_uA5ctJZsLePsknScrqHyCJo-98UPfqtItWMLx3NxikvqMKs5i4EBRAGWi-RDhgvvCixmjXLupB1zEPAISC7GhD2yFckGpdDmhp6ieZqk6Qzh2BYxe2tpGuSySxJcBcRz4113u2PC4FrLXAISi8iLXXzoLDSexg1BjFmrMwgqzFrrd3PJZGnH8Vbmp4dhUrJA4__3yBdozK8VGYXiJ6vmiUFcQauT82vSxb55WzyI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1bS8MwGP0QRdQH7-K85sEnsXNpkto-iqjzMh90E9_KcqkWt1ZmC-Kv90taxxAR30JJ25STJt9Jcs4HcMDlia9VohGBvvC4jAJPakaR81gBsz4xyrnrd-6Cdo9fP4mnKTgaa2GMMe7wmWnaotvL17kq7VIZkveQMY4EfUZwzkWl1hrvGXBBa3F04CGN8Os9TNqKjruX9w-VXaed4ah1eJqYhSbSqrhZ5WIJOt_tqQ6TvDbLQjbV5w-rxv82eBkW6_CSnFb9YQWmTLYKCxOmg6sw6w59qvc1iK20QBnPJu10qSKMJve5LN8L0kmzdFgOvUc3eJHzTA1yu6pAHlJrJ_xBTgfP-SgtXoYEo17SRjZbiTZH-PZeNkw_sPI69C7Ou2dtr0644Ck_EIXHNQs5M5InyIL6EZapZURUKhmqIOGcSeunHkmVyD7SWIwOQ-QrTCrGtJCUbcB0lmdmE0giFI5f1tzGCN7XNNQR9X3824X0W_i4BrS-AYhV7UZuv3QQO1bSimKLWWwxi2vMGnA4vuWtsuL4q_KahWNcsUZi6_fL-zDX7nZu49uru5ttmHfrxk5vuAPTxag0uxh4FHLP9bcvoybSbw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chance-Constrained+Robust+Minimum-Volume+Enclosing+Simplex+Algorithm+for+Hyperspectral+Unmixing&rft.jtitle=IEEE+transactions+on+geoscience+and+remote+sensing&rft.au=Ambikapathi%2C+ArulMurugan&rft.au=Chan%2C+Tsung-Han&rft.au=Ma%2C+Wing-Kin&rft.au=Chi%2C+Chong-Yung&rft.date=2011-11-01&rft.issn=0196-2892&rft.eissn=1558-0644&rft.volume=49&rft.issue=11&rft.spage=4194&rft.epage=4209&rft_id=info:doi/10.1109%2FTGRS.2011.2151197&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TGRS_2011_2151197
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-2892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-2892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-2892&client=summon