Statistical Behavior Modeling for Driver-Adaptive Precrash Systems

Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a driver-individual parameterization of the activation function. In this paper, an adaptation model is proposed, which calculates a driver-adapted...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 14; no. 4; pp. 1764 - 1772
Main Authors Muehlfeld, Florian, Doric, Igor, Ertlmeier, Rudolf, Brandmeier, Thomas
Format Journal Article
LanguageEnglish
Published IEEE 01.12.2013
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
DOI10.1109/TITS.2013.2267799

Cover

Abstract Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a driver-individual parameterization of the activation function. In this paper, an adaptation model is proposed, which calculates a driver-adapted activation threshold for the considered precrash algorithm. The model analyzes past situations to calculate a driver-individual activation threshold that achieves a desired activation frequency. The advantage of the proposed model is that the distribution is estimated using a distribution model. This has the result that an activation threshold can be already determined using a small data set. In addition, the confidence interval that has to be considered is decreased. The proposed model was applied in a study with test subjects. Results of this paper confirm the usability of the model. In comparison with an empirical approach, the proposed model achieves a significantly lower threshold and, thus, a higher safety effect of the system.
AbstractList Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a driver-individual parameterization of the activation function. In this paper, an adaptation model is proposed, which calculates a driver-adapted activation threshold for the considered precrash algorithm. The model analyzes past situations to calculate a driver-individual activation threshold that achieves a desired activation frequency. The advantage of the proposed model is that the distribution is estimated using a distribution model. This has the result that an activation threshold can be already determined using a small data set. In addition, the confidence interval that has to be considered is decreased. The proposed model was applied in a study with test subjects. Results of this paper confirm the usability of the model. In comparison with an empirical approach, the proposed model achieves a significantly lower threshold and, thus, a higher safety effect of the system.
Author Muehlfeld, Florian
Doric, Igor
Ertlmeier, Rudolf
Brandmeier, Thomas
Author_xml – sequence: 1
  givenname: Florian
  surname: Muehlfeld
  fullname: Muehlfeld, Florian
  email: florian.muehlfeld@haw-ingolstadt.de
  organization: Inst. of Appl. Res., Ingolstadt Univ. of Appl. Sci., Ingolstadt, Germany
– sequence: 2
  givenname: Igor
  surname: Doric
  fullname: Doric, Igor
  email: igor.doric@haw-ingolstadt.de
  organization: Inst. of Appl. Res., Ingolstadt Univ. of Appl. Sci., Ingolstadt, Germany
– sequence: 3
  givenname: Rudolf
  surname: Ertlmeier
  fullname: Ertlmeier, Rudolf
  email: rudolf.ertlmeier@continental-corporation.com
  organization: Chassis & Safety Div., Passive Safety & Sensorics Bus. Unit, Regensburg, Germany
– sequence: 4
  givenname: Thomas
  surname: Brandmeier
  fullname: Brandmeier, Thomas
  email: thomas.brandmeier@haw-ingolstadt.de
  organization: Inst. of Appl. Res., Ingolstadt Univ. of Appl. Sci., Ingolstadt, Germany
BookMark eNp9kN9OwjAUhxuDiYA-gPFmLzDsaenaXgKKkmA0Aa-XrjuTmrGRtiHh7d0C8cILr86fnO_kl29EBk3bICH3QCcAVD9uV9vNhFHgE8YyKbW-IkMQQqWUQjboezZNNRX0hoxC-O62UwEwJPNNNNGF6KypkznuzNG1PnlrS6xd85VU3fDk3RF9OivNIXZd8uHRehN2yeYUIu7DLbmuTB3w7lLH5HP5vF28puv3l9Vitk4ty0RMWWGMLS2i0pJVgjMAVjHNlGKFLCwHqkrKtFHcllBqhUJraaRElFooWfAxkee_1rcheKxy6_rwbRO9cXUONO9V5L2KvFeRX1R0JPwhD97tjT_9yzycGYeIv_eZ6IJzwX8AiGJsVQ
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2018_2791437
crossref_primary_10_1109_TIV_2019_2955910
crossref_primary_10_1109_TIV_2019_2960935
crossref_primary_10_1016_j_ifacol_2023_01_096
crossref_primary_10_1109_ACCESS_2020_2963854
crossref_primary_10_1016_j_trf_2020_12_004
crossref_primary_10_1109_TIV_2022_3195635
crossref_primary_10_1016_j_aap_2021_106310
crossref_primary_10_1155_2018_8040815
crossref_primary_10_1109_TITS_2015_2499838
crossref_primary_10_1016_j_aap_2024_107791
crossref_primary_10_3390_s19184011
crossref_primary_10_1016_j_aap_2017_02_015
crossref_primary_10_1016_j_neucom_2019_11_024
crossref_primary_10_1109_TITS_2015_2409374
Cites_doi 10.1016/j.apergo.2003.07.003
10.1109/IVS.2009.5164313
10.1111/j.2517-6161.1977.tb01600.x
10.1016/S0001-4575(97)00030-4
10.1109/VNIS.1994.396875
10.1109/IVS.1996.566382
10.1109/IRS.2006.4338085
10.1016/0389-4304(95)94875-N
10.1109/TCSVT.2010.2087812
10.1109/24.556592
10.1109/ITSC.2011.6082907
10.1109/ITSC.2011.6082950
10.1109/TITS.2007.903441
10.1109/ACC.1995.529336
10.1109/TSMCB.2005.850168
10.1016/j.engappai.2012.02.002
10.2307/2684934
10.1016/0389-4304(94)90216-X
10.1109/TSMCC.2010.2092425
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TITS.2013.2267799
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library (IEL) (UW System Shared)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 1772
ExternalDocumentID 10_1109_TITS_2013_2267799
6553235
Genre orig-research
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
ID FETCH-LOGICAL-c265t-2baacdcee8972f532112f292882b7bc3108d029a83cd1d98e5997a77ee79587b3
IEDL.DBID RIE
ISSN 1524-9050
IngestDate Wed Oct 01 05:03:03 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Tue Aug 26 16:44:37 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-2baacdcee8972f532112f292882b7bc3108d029a83cd1d98e5997a77ee79587b3
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TITS_2013_2267799
crossref_primary_10_1109_TITS_2013_2267799
ieee_primary_6553235
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-Dec.
2013-12-00
PublicationDateYYYYMMDD 2013-12-01
PublicationDate_xml – month: 12
  year: 2013
  text: 2013-Dec.
PublicationDecade 2010
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref15
haeussler (ref28) 2010
lindl (ref14) 2007
ref31
miller (ref11) 2002
ref30
ref32
ref10
zhang (ref23) 2006
ervin (ref33) 2005
ref2
ref17
ref16
seiler (ref3) 0
ref18
dempster (ref36) 1977; 39
feraric (ref4) 1992
koehler (ref22) 2004
horst van der (ref19) 1994
ref24
ref25
cho (ref8) 2010
king (ref29) 1998
ref21
hella (ref27) 1987
(ref1) 1968
rimini-doering (ref26) 2001
ref7
ref9
barber (ref20) 1998
ref6
ref5
higuchi (ref12) 2010
References_xml – year: 2005
  ident: ref33
  publication-title: Automotive collision avoidance system field operational test report Methodology and results
– start-page: 59
  year: 1994
  ident: ref19
  article-title: Time-to-collision and collision avoidance systems
  publication-title: Proc 6th ICTCT Workshop Austrian Road Safety Board
– start-page: 317
  year: 2002
  ident: ref11
  article-title: An adaptive peer-to-peer collision warning system
  publication-title: Proc IEEE 55th Veh Technol Conf
– start-page: 1370
  year: 2010
  ident: ref12
  article-title: Seat vibrotactile warning interface for forward vehicle collision avoidance
  publication-title: Proc SICE Annu Conf
– start-page: 873
  year: 1998
  ident: ref29
  article-title: An algorithm for detecting heavy-truck driver fatigue from steering wheel motion
  publication-title: Proc 16th Int Tech Conf ESV
– ident: ref2
  doi: 10.1016/j.apergo.2003.07.003
– year: 2004
  ident: ref22
  article-title: Accurate PreCrash detection
  publication-title: Proc 11th World Congr Intell Transp Syst
– start-page: 1
  year: 2007
  ident: ref14
  article-title: Autonomous braking for collision mitigation purposes by means of multi sensor perception
  publication-title: Proc 5th Eur Congr Exhib Intell Transp Syst Services
– ident: ref21
  doi: 10.1109/IVS.2009.5164313
– year: 0
  ident: ref3
– volume: 39
  start-page: 1
  year: 1977
  ident: ref36
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J R Stat Soc Ser B (Methodol )
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: ref7
  doi: 10.1016/S0001-4575(97)00030-4
– start-page: 429
  year: 1992
  ident: ref4
  article-title: Statistical versus neural net approach for driver behaviour description and adaptive warning
  publication-title: Proc European Conf Human Decision Making and Manual Control
– start-page: 255
  year: 2006
  ident: ref23
  article-title: Forward collision warning system based on THASV-II platform
  publication-title: Proc IEEE Int Conf Veh Electron Safety
– ident: ref6
  doi: 10.1109/VNIS.1994.396875
– ident: ref9
  doi: 10.1109/IVS.1996.566382
– ident: ref15
  doi: 10.1109/IRS.2006.4338085
– ident: ref13
  doi: 10.1016/0389-4304(95)94875-N
– ident: ref5
  doi: 10.1109/VNIS.1994.396875
– ident: ref16
  doi: 10.1109/TCSVT.2010.2087812
– ident: ref34
  doi: 10.1109/24.556592
– start-page: 6949
  year: 2010
  ident: ref8
  article-title: A pre-crash discrimination system for an airbag deployment algorithm
  publication-title: Proc Amer Control Conf
– ident: ref25
  doi: 10.1109/ITSC.2011.6082907
– start-page: 2/1
  year: 1998
  ident: ref20
  article-title: advanced collision warning systems
  publication-title: IEE Colloquium on Industrial Automation and Control Applications in the Automotive Industry (Digest No 1998/234)
– start-page: 58
  year: 2001
  ident: ref26
  article-title: Monitoring driver drowsiness and stress in a driving simulator
  publication-title: Proc Int Driving Symp Human Factors Driver Assessment Training and Vehicle Design
– year: 1968
  ident: ref1
  publication-title: Vienna Convention on Road Traffic
– ident: ref24
  doi: 10.1109/ITSC.2011.6082950
– ident: ref31
  doi: 10.1109/TITS.2007.903441
– ident: ref30
  doi: 10.1109/ACC.1995.529336
– start-page: 555
  year: 1987
  ident: ref27
  publication-title: Eye Movements
– ident: ref32
  doi: 10.1109/TSMCB.2005.850168
– start-page: 3-1
  year: 2010
  ident: ref28
  article-title: Reduction of sleep related accidents by monitoring driver steering behaviour
  publication-title: Proc Airbag
– ident: ref17
  doi: 10.1016/j.engappai.2012.02.002
– ident: ref35
  doi: 10.2307/2684934
– ident: ref10
  doi: 10.1016/0389-4304(94)90216-X
– ident: ref18
  doi: 10.1109/TSMCC.2010.2092425
SSID ssj0014511
Score 2.209321
Snippet Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1764
SubjectTerms Adaptation models
Behavior modeling
driver adaptation
precrash activation
Road accidents
Road safety
Statistical analysis
Title Statistical Behavior Modeling for Driver-Adaptive Precrash Systems
URI https://ieeexplore.ieee.org/document/6553235
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnfTg1xTnFz14Etu16dIkx_kxpqAIbrBbSZMUQdlG7S7-9ealXZki4q2UpAnvpckveb_8HsBFJHkU5jn1md3--H3et_8cN31fxA5voMSdI8g-JaNJ_2FKpy24au7CGGMc-cwE-Ohi-XqulnhU1ksojUlMN2DDfqK6q9VEDFBny2mjEttQSFcRzCgUvfH9-AVJXHFgsQY2_m0NWkuq4taU4Q48rnpTUUnegmWZBerzh1Djf7u7C9s1uPQG1WjYg5aZ7cPWmuRgB64RXTpxZluwFkcsPMyIhvfSPQthvdsCuRr-QMsFzoXes50UC_nx6tXq5gcwGd6Nb0Z-nUfBVyShpU8yKZW2qyEXjOS2TxZj5UQQC64zlikL8LgOiZA8VjrSghsqBJOMGcME5SyLD6E9m8_MEXhKEWW01jLSFnqZSCZcZRlPUJJG5gnrQriybKpqkXHMdfGeus1GKFJ0RorOSGtndOGyqbKoFDb-KtxBOzcFaxMf__76BDaxcsU-OYV2WSzNmcUQZXbuBs8XTvrBrQ
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgHv9CInzt4Mg63jq7tET8IKBATIeG2dG0XEw0QhIt_vX3dIGiM8bYs3fry2rW_t_7e7wFchpKHQZZRn9nwx6_zuv3muKn7InJ4AyXuHEG2F7cG9cchHZbgepkLY4xx5DNTw0t3lq_Hao6_ym5iSiMS0TVYpzaqYHm21vLMAJW2nDoqsV0FdHGGGQbipt_uvyCNK6pZtIHdf9uFVsqquF2luQPdhT05meStNp-lNfX5Q6rxvwbvwnYBL71GPh_2oGRG-7C1IjpYgVvEl06e2TYs5BGnHtZEw8x0z4JY736KbA2_oeUEV0Pv2S6LU_nx6hX65gcwaD7071p-UUnBVySmM5-kUipt90MuGMmsTRZlZUQQC69TlioL8bgOiJA8UjrUghsqBJOMGcME5SyNDqE8Go_MEXhKEWW01jLUFnyZUMZcpSmPUZRGZjGrQrDwbKIKmXGsdvGeuHAjEAkORoKDkRSDUYWr5SOTXGPjr8YV9POyYeHi499vX8BGq9_tJJ127-kENvFFORflFMqz6dycWUQxS8_dRPoCqZHE_g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Behavior+Modeling+for+Driver-Adaptive+Precrash+Systems&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Muehlfeld%2C+Florian&rft.au=Doric%2C+Igor&rft.au=Ertlmeier%2C+Rudolf&rft.au=Brandmeier%2C+Thomas&rft.date=2013-12-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=14&rft.issue=4&rft.spage=1764&rft.epage=1772&rft_id=info:doi/10.1109%2FTITS.2013.2267799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2013_2267799
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon