Statistical Behavior Modeling for Driver-Adaptive Precrash Systems
Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a driver-individual parameterization of the activation function. In this paper, an adaptation model is proposed, which calculates a driver-adapted...
Saved in:
Published in | IEEE transactions on intelligent transportation systems Vol. 14; no. 4; pp. 1764 - 1772 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
IEEE
01.12.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1524-9050 1558-0016 |
DOI | 10.1109/TITS.2013.2267799 |
Cover
Abstract | Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a driver-individual parameterization of the activation function. In this paper, an adaptation model is proposed, which calculates a driver-adapted activation threshold for the considered precrash algorithm. The model analyzes past situations to calculate a driver-individual activation threshold that achieves a desired activation frequency. The advantage of the proposed model is that the distribution is estimated using a distribution model. This has the result that an activation threshold can be already determined using a small data set. In addition, the confidence interval that has to be considered is decreased. The proposed model was applied in a study with test subjects. Results of this paper confirm the usability of the model. In comparison with an empirical approach, the proposed model achieves a significantly lower threshold and, thus, a higher safety effect of the system. |
---|---|
AbstractList | Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a driver-individual parameterization of the activation function. In this paper, an adaptation model is proposed, which calculates a driver-adapted activation threshold for the considered precrash algorithm. The model analyzes past situations to calculate a driver-individual activation threshold that achieves a desired activation frequency. The advantage of the proposed model is that the distribution is estimated using a distribution model. This has the result that an activation threshold can be already determined using a small data set. In addition, the confidence interval that has to be considered is decreased. The proposed model was applied in a study with test subjects. Results of this paper confirm the usability of the model. In comparison with an empirical approach, the proposed model achieves a significantly lower threshold and, thus, a higher safety effect of the system. |
Author | Muehlfeld, Florian Doric, Igor Ertlmeier, Rudolf Brandmeier, Thomas |
Author_xml | – sequence: 1 givenname: Florian surname: Muehlfeld fullname: Muehlfeld, Florian email: florian.muehlfeld@haw-ingolstadt.de organization: Inst. of Appl. Res., Ingolstadt Univ. of Appl. Sci., Ingolstadt, Germany – sequence: 2 givenname: Igor surname: Doric fullname: Doric, Igor email: igor.doric@haw-ingolstadt.de organization: Inst. of Appl. Res., Ingolstadt Univ. of Appl. Sci., Ingolstadt, Germany – sequence: 3 givenname: Rudolf surname: Ertlmeier fullname: Ertlmeier, Rudolf email: rudolf.ertlmeier@continental-corporation.com organization: Chassis & Safety Div., Passive Safety & Sensorics Bus. Unit, Regensburg, Germany – sequence: 4 givenname: Thomas surname: Brandmeier fullname: Brandmeier, Thomas email: thomas.brandmeier@haw-ingolstadt.de organization: Inst. of Appl. Res., Ingolstadt Univ. of Appl. Sci., Ingolstadt, Germany |
BookMark | eNp9kN9OwjAUhxuDiYA-gPFmLzDsaenaXgKKkmA0Aa-XrjuTmrGRtiHh7d0C8cILr86fnO_kl29EBk3bICH3QCcAVD9uV9vNhFHgE8YyKbW-IkMQQqWUQjboezZNNRX0hoxC-O62UwEwJPNNNNGF6KypkznuzNG1PnlrS6xd85VU3fDk3RF9OivNIXZd8uHRehN2yeYUIu7DLbmuTB3w7lLH5HP5vF28puv3l9Vitk4ty0RMWWGMLS2i0pJVgjMAVjHNlGKFLCwHqkrKtFHcllBqhUJraaRElFooWfAxkee_1rcheKxy6_rwbRO9cXUONO9V5L2KvFeRX1R0JPwhD97tjT_9yzycGYeIv_eZ6IJzwX8AiGJsVQ |
CODEN | ITISFG |
CitedBy_id | crossref_primary_10_1109_TITS_2018_2791437 crossref_primary_10_1109_TIV_2019_2955910 crossref_primary_10_1109_TIV_2019_2960935 crossref_primary_10_1016_j_ifacol_2023_01_096 crossref_primary_10_1109_ACCESS_2020_2963854 crossref_primary_10_1016_j_trf_2020_12_004 crossref_primary_10_1109_TIV_2022_3195635 crossref_primary_10_1016_j_aap_2021_106310 crossref_primary_10_1155_2018_8040815 crossref_primary_10_1109_TITS_2015_2499838 crossref_primary_10_1016_j_aap_2024_107791 crossref_primary_10_3390_s19184011 crossref_primary_10_1016_j_aap_2017_02_015 crossref_primary_10_1016_j_neucom_2019_11_024 crossref_primary_10_1109_TITS_2015_2409374 |
Cites_doi | 10.1016/j.apergo.2003.07.003 10.1109/IVS.2009.5164313 10.1111/j.2517-6161.1977.tb01600.x 10.1016/S0001-4575(97)00030-4 10.1109/VNIS.1994.396875 10.1109/IVS.1996.566382 10.1109/IRS.2006.4338085 10.1016/0389-4304(95)94875-N 10.1109/TCSVT.2010.2087812 10.1109/24.556592 10.1109/ITSC.2011.6082907 10.1109/ITSC.2011.6082950 10.1109/TITS.2007.903441 10.1109/ACC.1995.529336 10.1109/TSMCB.2005.850168 10.1016/j.engappai.2012.02.002 10.2307/2684934 10.1016/0389-4304(94)90216-X 10.1109/TSMCC.2010.2092425 |
ContentType | Journal Article |
DBID | 97E RIA RIE AAYXX CITATION |
DOI | 10.1109/TITS.2013.2267799 |
DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library (IEL) (UW System Shared) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1558-0016 |
EndPage | 1772 |
ExternalDocumentID | 10_1109_TITS_2013_2267799 6553235 |
Genre | orig-research |
GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION |
ID | FETCH-LOGICAL-c265t-2baacdcee8972f532112f292882b7bc3108d029a83cd1d98e5997a77ee79587b3 |
IEDL.DBID | RIE |
ISSN | 1524-9050 |
IngestDate | Wed Oct 01 05:03:03 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Tue Aug 26 16:44:37 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c265t-2baacdcee8972f532112f292882b7bc3108d029a83cd1d98e5997a77ee79587b3 |
PageCount | 9 |
ParticipantIDs | crossref_citationtrail_10_1109_TITS_2013_2267799 crossref_primary_10_1109_TITS_2013_2267799 ieee_primary_6553235 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-Dec. 2013-12-00 |
PublicationDateYYYYMMDD | 2013-12-01 |
PublicationDate_xml | – month: 12 year: 2013 text: 2013-Dec. |
PublicationDecade | 2010 |
PublicationTitle | IEEE transactions on intelligent transportation systems |
PublicationTitleAbbrev | TITS |
PublicationYear | 2013 |
Publisher | IEEE |
Publisher_xml | – name: IEEE |
References | ref35 ref13 ref34 ref15 haeussler (ref28) 2010 lindl (ref14) 2007 ref31 miller (ref11) 2002 ref30 ref32 ref10 zhang (ref23) 2006 ervin (ref33) 2005 ref2 ref17 ref16 seiler (ref3) 0 ref18 dempster (ref36) 1977; 39 feraric (ref4) 1992 koehler (ref22) 2004 horst van der (ref19) 1994 ref24 ref25 cho (ref8) 2010 king (ref29) 1998 ref21 hella (ref27) 1987 (ref1) 1968 rimini-doering (ref26) 2001 ref7 ref9 barber (ref20) 1998 ref6 ref5 higuchi (ref12) 2010 |
References_xml | – year: 2005 ident: ref33 publication-title: Automotive collision avoidance system field operational test report Methodology and results – start-page: 59 year: 1994 ident: ref19 article-title: Time-to-collision and collision avoidance systems publication-title: Proc 6th ICTCT Workshop Austrian Road Safety Board – start-page: 317 year: 2002 ident: ref11 article-title: An adaptive peer-to-peer collision warning system publication-title: Proc IEEE 55th Veh Technol Conf – start-page: 1370 year: 2010 ident: ref12 article-title: Seat vibrotactile warning interface for forward vehicle collision avoidance publication-title: Proc SICE Annu Conf – start-page: 873 year: 1998 ident: ref29 article-title: An algorithm for detecting heavy-truck driver fatigue from steering wheel motion publication-title: Proc 16th Int Tech Conf ESV – ident: ref2 doi: 10.1016/j.apergo.2003.07.003 – year: 2004 ident: ref22 article-title: Accurate PreCrash detection publication-title: Proc 11th World Congr Intell Transp Syst – start-page: 1 year: 2007 ident: ref14 article-title: Autonomous braking for collision mitigation purposes by means of multi sensor perception publication-title: Proc 5th Eur Congr Exhib Intell Transp Syst Services – ident: ref21 doi: 10.1109/IVS.2009.5164313 – year: 0 ident: ref3 – volume: 39 start-page: 1 year: 1977 ident: ref36 article-title: Maximum likelihood from incomplete data via the EM algorithm publication-title: J R Stat Soc Ser B (Methodol ) doi: 10.1111/j.2517-6161.1977.tb01600.x – ident: ref7 doi: 10.1016/S0001-4575(97)00030-4 – start-page: 429 year: 1992 ident: ref4 article-title: Statistical versus neural net approach for driver behaviour description and adaptive warning publication-title: Proc European Conf Human Decision Making and Manual Control – start-page: 255 year: 2006 ident: ref23 article-title: Forward collision warning system based on THASV-II platform publication-title: Proc IEEE Int Conf Veh Electron Safety – ident: ref6 doi: 10.1109/VNIS.1994.396875 – ident: ref9 doi: 10.1109/IVS.1996.566382 – ident: ref15 doi: 10.1109/IRS.2006.4338085 – ident: ref13 doi: 10.1016/0389-4304(95)94875-N – ident: ref5 doi: 10.1109/VNIS.1994.396875 – ident: ref16 doi: 10.1109/TCSVT.2010.2087812 – ident: ref34 doi: 10.1109/24.556592 – start-page: 6949 year: 2010 ident: ref8 article-title: A pre-crash discrimination system for an airbag deployment algorithm publication-title: Proc Amer Control Conf – ident: ref25 doi: 10.1109/ITSC.2011.6082907 – start-page: 2/1 year: 1998 ident: ref20 article-title: advanced collision warning systems publication-title: IEE Colloquium on Industrial Automation and Control Applications in the Automotive Industry (Digest No 1998/234) – start-page: 58 year: 2001 ident: ref26 article-title: Monitoring driver drowsiness and stress in a driving simulator publication-title: Proc Int Driving Symp Human Factors Driver Assessment Training and Vehicle Design – year: 1968 ident: ref1 publication-title: Vienna Convention on Road Traffic – ident: ref24 doi: 10.1109/ITSC.2011.6082950 – ident: ref31 doi: 10.1109/TITS.2007.903441 – ident: ref30 doi: 10.1109/ACC.1995.529336 – start-page: 555 year: 1987 ident: ref27 publication-title: Eye Movements – ident: ref32 doi: 10.1109/TSMCB.2005.850168 – start-page: 3-1 year: 2010 ident: ref28 article-title: Reduction of sleep related accidents by monitoring driver steering behaviour publication-title: Proc Airbag – ident: ref17 doi: 10.1016/j.engappai.2012.02.002 – ident: ref35 doi: 10.2307/2684934 – ident: ref10 doi: 10.1016/0389-4304(94)90216-X – ident: ref18 doi: 10.1109/TSMCC.2010.2092425 |
SSID | ssj0014511 |
Score | 2.209321 |
Snippet | Precrash systems have the potential for preventing or mitigating the results of an accident. However, optimal precrash activation can be only achieved by a... |
SourceID | crossref ieee |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 1764 |
SubjectTerms | Adaptation models Behavior modeling driver adaptation precrash activation Road accidents Road safety Statistical analysis |
Title | Statistical Behavior Modeling for Driver-Adaptive Precrash Systems |
URI | https://ieeexplore.ieee.org/document/6553235 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH_MnfTg1xTnFz14Etu16dIkx_kxpqAIbrBbSZMUQdlG7S7-9ealXZki4q2UpAnvpckveb_8HsBFJHkU5jn1md3--H3et_8cN31fxA5voMSdI8g-JaNJ_2FKpy24au7CGGMc-cwE-Ohi-XqulnhU1ksojUlMN2DDfqK6q9VEDFBny2mjEttQSFcRzCgUvfH9-AVJXHFgsQY2_m0NWkuq4taU4Q48rnpTUUnegmWZBerzh1Djf7u7C9s1uPQG1WjYg5aZ7cPWmuRgB64RXTpxZluwFkcsPMyIhvfSPQthvdsCuRr-QMsFzoXes50UC_nx6tXq5gcwGd6Nb0Z-nUfBVyShpU8yKZW2qyEXjOS2TxZj5UQQC64zlikL8LgOiZA8VjrSghsqBJOMGcME5SyLD6E9m8_MEXhKEWW01jLSFnqZSCZcZRlPUJJG5gnrQriybKpqkXHMdfGeus1GKFJ0RorOSGtndOGyqbKoFDb-KtxBOzcFaxMf__76BDaxcsU-OYV2WSzNmcUQZXbuBs8XTvrBrQ |
linkProvider | IEEE |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH9BPKgHv9CInzt4Mg63jq7tET8IKBATIeG2dG0XEw0QhIt_vX3dIGiM8bYs3fry2rW_t_7e7wFchpKHQZZRn9nwx6_zuv3muKn7InJ4AyXuHEG2F7cG9cchHZbgepkLY4xx5DNTw0t3lq_Hao6_ym5iSiMS0TVYpzaqYHm21vLMAJW2nDoqsV0FdHGGGQbipt_uvyCNK6pZtIHdf9uFVsqquF2luQPdhT05meStNp-lNfX5Q6rxvwbvwnYBL71GPh_2oGRG-7C1IjpYgVvEl06e2TYs5BGnHtZEw8x0z4JY736KbA2_oeUEV0Pv2S6LU_nx6hX65gcwaD7071p-UUnBVySmM5-kUipt90MuGMmsTRZlZUQQC69TlioL8bgOiJA8UjrUghsqBJOMGcME5SyNDqE8Go_MEXhKEWW01jLUFnyZUMZcpSmPUZRGZjGrQrDwbKIKmXGsdvGeuHAjEAkORoKDkRSDUYWr5SOTXGPjr8YV9POyYeHi499vX8BGq9_tJJ127-kENvFFORflFMqz6dycWUQxS8_dRPoCqZHE_g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Statistical+Behavior+Modeling+for+Driver-Adaptive+Precrash+Systems&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Muehlfeld%2C+Florian&rft.au=Doric%2C+Igor&rft.au=Ertlmeier%2C+Rudolf&rft.au=Brandmeier%2C+Thomas&rft.date=2013-12-01&rft.issn=1524-9050&rft.eissn=1558-0016&rft.volume=14&rft.issue=4&rft.spage=1764&rft.epage=1772&rft_id=info:doi/10.1109%2FTITS.2013.2267799&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TITS_2013_2267799 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |