Robust data-driven Kalman filtering for unknown linear systems using maximum likelihood optimization
This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalma...
Saved in:
| Published in | Automatica (Oxford) Vol. 180; p. 112474 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0005-1098 |
| DOI | 10.1016/j.automatica.2025.112474 |
Cover
| Abstract | This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is designed, which can estimate the state of a given but unknown state-space model. The performance gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified through a sample complexity bound. In particular, when the number of the pre-collected states tends to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated by numerical simulations. |
|---|---|
| AbstractList | This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is designed, which can estimate the state of a given but unknown state-space model. The performance gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified through a sample complexity bound. In particular, when the number of the pre-collected states tends to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated by numerical simulations. |
| ArticleNumber | 112474 |
| Author | Xing, Yu Johansson, Karl Henrik Duan, Peihu Liu, Tao |
| Author_xml | – sequence: 1 givenname: Peihu surname: Duan fullname: Duan, Peihu email: duanpeihu@bit.edu.cn organization: State Key Laboratory of Environment Characteristics and Effects for Near-Space, Beijing Institute of Technology, Beijing, China – sequence: 2 givenname: Tao surname: Liu fullname: Liu, Tao email: taoliu@eee.hku.hk organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong Special Administrative Region of China – sequence: 3 givenname: Yu surname: Xing fullname: Xing, Yu email: yuxing2@kth.se organization: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden – sequence: 4 givenname: Karl Henrik surname: Johansson fullname: Johansson, Karl Henrik email: kallej@kth.se organization: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden |
| BookMark | eNqFkMtOwzAQRb0oEm3hH_wDCXbqPLqEipeohIRgbU3sCbiN7cp2CuXrSVUklqxGo5l7dXRmZOK8Q0IoZzlnvLra5DAkbyEZBXnBijLnvBC1mJApY6zMOFs252QW42ZcBW-KKdEvvh1iohoSZDqYPTr6BL0FRzvTJwzGvdPOBzq4rfOfjvbGIQQaDzGhjXSIxwcLX8YOdjxusTcf3mvqd8lY8z2yeHdBzjroI17-zjl5u7t9XT1k6-f7x9X1OlNFVaasEF3dtiNwowSgbgVoUY3IrFZKLDXwttJ1KYqFZqpsaqGgrkouurISTaMWuJiT5tSrgo8xYCd3wVgIB8mZPBqSG_lnSB4NyZOhMXpziuLItzcYZFQGnUJtAqoktTf_l_wAtGl7Iw |
| Cites_doi | 10.1109/TAC.2024.3409749 10.1109/LCSYS.2021.3102821 10.23919/ECC.2019.8795639 10.2514/3.3166 10.1109/TAC.2024.3371373 10.1109/TAC.2023.3335797 10.1016/j.ins.2012.07.014 10.1109/TAC.1970.1099422 10.1007/s10208-019-09426-y 10.1109/TAC.2010.2053060 10.1109/9.935054 10.1109/TSP.2022.3158588 10.1109/TSP.2015.2440220 10.1016/j.automatica.2023.111385 10.1115/1.3662552 10.1016/j.sysconle.2004.09.003 10.1016/j.arcontrol.2021.09.005 10.23919/ECC55457.2022.9838494 10.1109/TIE.2012.2236994 10.1016/j.apenergy.2013.03.041 10.1109/CDC40024.2019.9029499 10.1109/LCSYS.2020.3042924 10.1016/j.automatica.2010.07.001 10.23919/ACC.2019.8814438 10.1109/TPWRS.2018.2846744 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.automatica.2025.112474 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_automatica_2025_112474 S0005109825003693 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 23N 3R3 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 77I 8P~ 9JN 9JO AAAKF AAAKG AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AATTM AAXKI AAXUO AAYWO ABFNM ABFRF ABJNI ABMAC ABUCO ABWVN ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADIYS ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFFNX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHHHB AHJVU AHPGS AI. AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APLSM APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HAMUX HLZ HVGLF HZ~ H~9 IHE J1W JJJVA K-O KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K T9H TAE TN5 VH1 WH7 WUQ X6Y XPP ZMT ~G- ~HD AAYXX ACLOT CITATION |
| ID | FETCH-LOGICAL-c265t-24f7bb2478c4aedb4ad4609807cc49da1b6d75423d0c5874ca76514f56488c3e3 |
| IEDL.DBID | .~1 |
| ISSN | 0005-1098 |
| IngestDate | Wed Oct 01 05:34:50 EDT 2025 Sat Sep 20 17:13:43 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Unknown system matrices Sample complexity Performance analysis Robust data-driven Kalman filter |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c265t-24f7bb2478c4aedb4ad4609807cc49da1b6d75423d0c5874ca76514f56488c3e3 |
| ParticipantIDs | crossref_primary_10_1016_j_automatica_2025_112474 elsevier_sciencedirect_doi_10_1016_j_automatica_2025_112474 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | October 2025 2025-10-00 |
| PublicationDateYYYYMMDD | 2025-10-01 |
| PublicationDate_xml | – month: 10 year: 2025 text: October 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Automatica (Oxford) |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bequette (b6) 2003 Wolff, Lopez, Müller (b32) 2024; 69 Sayed (b24) 2001; 46 (pp. 3648–3654). Hou, Wang (b11) 2013; 235 (pp. 307–312). Turan, Ferrari-Trecate (b29) 2021; 6 Marelli, Fu, Ninness (b16) 2015; 63 Lv, Li, Duan (b15) 2024; 159 Adachi, R., & Wakasa, Y. (2021). Dual system representation and prediction method for data-driven estimation. In (pp. 1245–1250). Poncela, Poncela, Perán (b21) 2013; 108 Shafieezadeh Abadeh, Nguyen, Kuhn, Mohajerin Esfahani (b25) 2018; 31 Coulson, J., Lygeros, J., & Dörfler, F. (2019). Data-enabled predictive control: In the shallows of the DeePC. In Auger, Hilairet, Guerrero, Monmasson, Orlowska-Kowalska, Katsura (b5) 2013; 60 Markovsky, Dörfler (b17) 2021; 52 Liu, Wang, Sun, Bullo, Chen (b13) 2024; 69 Mehra (b18) 1970; 15 Anderson, Moore (b4) 2005 Xian, Zhao, Wen, Chen (b33) 2024; 69 Netto, Mili (b19) 2018; 33 Oymak, S., & Ozay, N. (2019). Non-asymptotic identification of LTI systems from a single trajectory. In Verhaegen, Verdult (b30) 2007 (pp. 5655–5661). Dean, Mania, Matni, Recht, Tu (b9) 2020; 20 Ljung (b14) 1999 Alanwar, A., Berndt, A., Johansson, K. H., & Sandberg, H. (2022). Data-driven set-based estimation using matrix zonotopes with set containment guarantees. In Revach, Shlezinger, Ni, Escoriza, van Sloun, Eldar (b23) 2022; 70 Zheng, Li (b34) 2020; 5 (pp. 875–881). Tsiamis, Matni, Pappas (b27) 2020 Tsiamis, A., & Pappas, G. J. (2019). Finite sample analysis of stochastic system identification. In Rauch, Tung, Striebel (b22) 1965; 3 Kalman (b12) 1960 Alessandri, Baglietto, Battistelli (b3) 2010; 46 Duan, Liu, Xing, Johansson (b10) 2024 Sui, Johansen, Feng (b26) 2010; 55 Chen (b7) 1984 Willems, Rapisarda, Markovsky, De Moor (b31) 2005; 54 Alessandri (10.1016/j.automatica.2025.112474_b3) 2010; 46 Hou (10.1016/j.automatica.2025.112474_b11) 2013; 235 Rauch (10.1016/j.automatica.2025.112474_b22) 1965; 3 10.1016/j.automatica.2025.112474_b28 Ljung (10.1016/j.automatica.2025.112474_b14) 1999 Tsiamis (10.1016/j.automatica.2025.112474_b27) 2020 Markovsky (10.1016/j.automatica.2025.112474_b17) 2021; 52 10.1016/j.automatica.2025.112474_b20 Lv (10.1016/j.automatica.2025.112474_b15) 2024; 159 Xian (10.1016/j.automatica.2025.112474_b33) 2024; 69 Bequette (10.1016/j.automatica.2025.112474_b6) 2003 Poncela (10.1016/j.automatica.2025.112474_b21) 2013; 108 10.1016/j.automatica.2025.112474_b8 Shafieezadeh Abadeh (10.1016/j.automatica.2025.112474_b25) 2018; 31 Verhaegen (10.1016/j.automatica.2025.112474_b30) 2007 10.1016/j.automatica.2025.112474_b2 Wolff (10.1016/j.automatica.2025.112474_b32) 2024; 69 10.1016/j.automatica.2025.112474_b1 Anderson (10.1016/j.automatica.2025.112474_b4) 2005 Mehra (10.1016/j.automatica.2025.112474_b18) 1970; 15 Dean (10.1016/j.automatica.2025.112474_b9) 2020; 20 Kalman (10.1016/j.automatica.2025.112474_b12) 1960 Netto (10.1016/j.automatica.2025.112474_b19) 2018; 33 Revach (10.1016/j.automatica.2025.112474_b23) 2022; 70 Sui (10.1016/j.automatica.2025.112474_b26) 2010; 55 Auger (10.1016/j.automatica.2025.112474_b5) 2013; 60 Liu (10.1016/j.automatica.2025.112474_b13) 2024; 69 Sayed (10.1016/j.automatica.2025.112474_b24) 2001; 46 Willems (10.1016/j.automatica.2025.112474_b31) 2005; 54 Zheng (10.1016/j.automatica.2025.112474_b34) 2020; 5 Turan (10.1016/j.automatica.2025.112474_b29) 2021; 6 Duan (10.1016/j.automatica.2025.112474_b10) 2024 Chen (10.1016/j.automatica.2025.112474_b7) 1984 Marelli (10.1016/j.automatica.2025.112474_b16) 2015; 63 |
| References_xml | – year: 2005 ident: b4 article-title: Optimal filtering – volume: 159 year: 2024 ident: b15 article-title: Minimal-order specified-time unknown input observers publication-title: Automatica – volume: 69 start-page: 8526 year: 2024 end-page: 8538 ident: b13 article-title: Learning robust data-based LQG controllers from noisy data publication-title: IEEE Transactions on Automatic Control – volume: 15 start-page: 175 year: 1970 end-page: 184 ident: b18 article-title: On the identification of variances and adaptive Kalman filtering publication-title: IEEE Transactions on Automatic Control – start-page: 435 year: 2020 end-page: 444 ident: b27 article-title: Sample complexity of Kalman filtering for unknown systems publication-title: Learning for dynamics and control – volume: 46 start-page: 998 year: 2001 end-page: 1013 ident: b24 article-title: A framework for state-space estimation with uncertain models publication-title: IEEE Transactions on Automatic Control – reference: (pp. 5655–5661). – volume: 6 start-page: 1424 year: 2021 end-page: 1429 ident: b29 article-title: Data-driven unknown-input observers and state estimation publication-title: IEEE Control Systems Letters – reference: Coulson, J., Lygeros, J., & Dörfler, F. (2019). Data-enabled predictive control: In the shallows of the DeePC. In – volume: 69 start-page: 4522 year: 2024 end-page: 4537 ident: b33 article-title: Robust event-triggered distributed optimal coordination of heterogeneous systems over directed networks publication-title: IEEE Transactions on Automatic Control – volume: 20 start-page: 633 year: 2020 end-page: 679 ident: b9 article-title: On the sample complexity of the linear quadratic regulator publication-title: Foundations of Computational Mathematics – reference: Adachi, R., & Wakasa, Y. (2021). Dual system representation and prediction method for data-driven estimation. In – start-page: 35 year: 1960 end-page: 45 ident: b12 article-title: A new approach to linear filtering and prediction problems publication-title: Transaction of the ASME-Journal of Basic Engineering – volume: 33 start-page: 7228 year: 2018 end-page: 7237 ident: b19 article-title: A robust data-driven Koopman Kalman filter for power systems dynamic state estimation publication-title: IEEE Transactions on Power Systems – reference: (pp. 307–312). – volume: 63 start-page: 4502 year: 2015 end-page: 4515 ident: b16 article-title: Asymptotic optimality of the maximum-likelihood Kalman filter for Bayesian tracking with multiple nonlinear sensors publication-title: IEEE Transactions on Signal Processing – volume: 235 start-page: 3 year: 2013 end-page: 35 ident: b11 article-title: From model-based control to data-driven control: Survey, classification and perspective publication-title: Information Sciences – reference: (pp. 3648–3654). – volume: 52 start-page: 42 year: 2021 end-page: 64 ident: b17 article-title: Behavioral systems theory in data-driven analysis, signal processing, and control publication-title: Annual Reviews in Control – reference: Oymak, S., & Ozay, N. (2019). Non-asymptotic identification of LTI systems from a single trajectory. In – volume: 108 start-page: 349 year: 2013 end-page: 362 ident: b21 article-title: Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting publication-title: Applied Energy – volume: 70 start-page: 1532 year: 2022 end-page: 1547 ident: b23 article-title: KalmanNet: Neural network aided Kalman filtering for partially known dynamics publication-title: IEEE Transactions on Signal Processing – volume: 46 start-page: 1870 year: 2010 end-page: 1876 ident: b3 article-title: A maximum-likelihood Kalman filter for switching discrete-time linear systems publication-title: Automatica – year: 2024 ident: b10 article-title: Robust data-driven Kalman filtering for unknown linear systems using maximum likelihood optimization – year: 1999 ident: b14 article-title: System identification: Theory for the user – volume: 60 start-page: 5458 year: 2013 end-page: 5471 ident: b5 article-title: Industrial applications of the Kalman filter: A review publication-title: IEEE Transactions on Industrial Electronics – volume: 3 start-page: 1445 year: 1965 end-page: 1450 ident: b22 article-title: Maximum likelihood estimates of linear dynamic systems publication-title: Journal of the American Institute of Aeronautics and Astronautics – year: 2003 ident: b6 article-title: Process control: Modeling, design, and simulation – volume: 69 start-page: 5598 year: 2024 end-page: 5604 ident: b32 article-title: Robust data-driven moving horizon estimation for linear discrete-time systems publication-title: IEEE Transactions on Automatic Control – reference: Alanwar, A., Berndt, A., Johansson, K. H., & Sandberg, H. (2022). Data-driven set-based estimation using matrix zonotopes with set containment guarantees. In – year: 2007 ident: b30 article-title: Filtering and system identification: A least squares approach – volume: 54 start-page: 325 year: 2005 end-page: 329 ident: b31 article-title: A note on persistency of excitation publication-title: Systems & Control Letters – volume: 5 start-page: 1693 year: 2020 end-page: 1698 ident: b34 article-title: Non-asymptotic identification of linear dynamical systems using multiple trajectories publication-title: IEEE Control Systems Letters – reference: (pp. 1245–1250). – year: 1984 ident: b7 article-title: Linear System Theory and Design – volume: 31 year: 2018 ident: b25 article-title: Wasserstein distributionally robust Kalman filtering publication-title: Advances in Neural Information Processing Systems – volume: 55 start-page: 2363 year: 2010 end-page: 2368 ident: b26 article-title: Linear moving horizon estimation with pre-estimating observer publication-title: IEEE Transactions on Automatic Control – reference: Tsiamis, A., & Pappas, G. J. (2019). Finite sample analysis of stochastic system identification. In – reference: (pp. 875–881). – volume: 69 start-page: 8526 issue: 12 year: 2024 ident: 10.1016/j.automatica.2025.112474_b13 article-title: Learning robust data-based LQG controllers from noisy data publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2024.3409749 – volume: 6 start-page: 1424 year: 2021 ident: 10.1016/j.automatica.2025.112474_b29 article-title: Data-driven unknown-input observers and state estimation publication-title: IEEE Control Systems Letters doi: 10.1109/LCSYS.2021.3102821 – ident: 10.1016/j.automatica.2025.112474_b8 doi: 10.23919/ECC.2019.8795639 – volume: 3 start-page: 1445 issue: 8 year: 1965 ident: 10.1016/j.automatica.2025.112474_b22 article-title: Maximum likelihood estimates of linear dynamic systems publication-title: Journal of the American Institute of Aeronautics and Astronautics doi: 10.2514/3.3166 – volume: 69 start-page: 5598 issue: 8 year: 2024 ident: 10.1016/j.automatica.2025.112474_b32 article-title: Robust data-driven moving horizon estimation for linear discrete-time systems publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2024.3371373 – volume: 69 start-page: 4522 issue: 7 year: 2024 ident: 10.1016/j.automatica.2025.112474_b33 article-title: Robust event-triggered distributed optimal coordination of heterogeneous systems over directed networks publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2023.3335797 – volume: 235 start-page: 3 year: 2013 ident: 10.1016/j.automatica.2025.112474_b11 article-title: From model-based control to data-driven control: Survey, classification and perspective publication-title: Information Sciences doi: 10.1016/j.ins.2012.07.014 – start-page: 435 year: 2020 ident: 10.1016/j.automatica.2025.112474_b27 article-title: Sample complexity of Kalman filtering for unknown systems – year: 2024 ident: 10.1016/j.automatica.2025.112474_b10 – volume: 15 start-page: 175 issue: 2 year: 1970 ident: 10.1016/j.automatica.2025.112474_b18 article-title: On the identification of variances and adaptive Kalman filtering publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1970.1099422 – year: 2005 ident: 10.1016/j.automatica.2025.112474_b4 – volume: 20 start-page: 633 issue: 4 year: 2020 ident: 10.1016/j.automatica.2025.112474_b9 article-title: On the sample complexity of the linear quadratic regulator publication-title: Foundations of Computational Mathematics doi: 10.1007/s10208-019-09426-y – volume: 55 start-page: 2363 issue: 10 year: 2010 ident: 10.1016/j.automatica.2025.112474_b26 article-title: Linear moving horizon estimation with pre-estimating observer publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.2010.2053060 – volume: 46 start-page: 998 issue: 7 year: 2001 ident: 10.1016/j.automatica.2025.112474_b24 article-title: A framework for state-space estimation with uncertain models publication-title: IEEE Transactions on Automatic Control doi: 10.1109/9.935054 – volume: 70 start-page: 1532 year: 2022 ident: 10.1016/j.automatica.2025.112474_b23 article-title: KalmanNet: Neural network aided Kalman filtering for partially known dynamics publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2022.3158588 – volume: 63 start-page: 4502 issue: 17 year: 2015 ident: 10.1016/j.automatica.2025.112474_b16 article-title: Asymptotic optimality of the maximum-likelihood Kalman filter for Bayesian tracking with multiple nonlinear sensors publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2015.2440220 – year: 2007 ident: 10.1016/j.automatica.2025.112474_b30 – volume: 159 year: 2024 ident: 10.1016/j.automatica.2025.112474_b15 article-title: Minimal-order specified-time unknown input observers publication-title: Automatica doi: 10.1016/j.automatica.2023.111385 – start-page: 35 year: 1960 ident: 10.1016/j.automatica.2025.112474_b12 article-title: A new approach to linear filtering and prediction problems publication-title: Transaction of the ASME-Journal of Basic Engineering doi: 10.1115/1.3662552 – volume: 54 start-page: 325 issue: 4 year: 2005 ident: 10.1016/j.automatica.2025.112474_b31 article-title: A note on persistency of excitation publication-title: Systems & Control Letters doi: 10.1016/j.sysconle.2004.09.003 – ident: 10.1016/j.automatica.2025.112474_b1 – year: 1999 ident: 10.1016/j.automatica.2025.112474_b14 – volume: 52 start-page: 42 year: 2021 ident: 10.1016/j.automatica.2025.112474_b17 article-title: Behavioral systems theory in data-driven analysis, signal processing, and control publication-title: Annual Reviews in Control doi: 10.1016/j.arcontrol.2021.09.005 – volume: 31 year: 2018 ident: 10.1016/j.automatica.2025.112474_b25 article-title: Wasserstein distributionally robust Kalman filtering publication-title: Advances in Neural Information Processing Systems – ident: 10.1016/j.automatica.2025.112474_b2 doi: 10.23919/ECC55457.2022.9838494 – volume: 60 start-page: 5458 issue: 12 year: 2013 ident: 10.1016/j.automatica.2025.112474_b5 article-title: Industrial applications of the Kalman filter: A review publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2012.2236994 – volume: 108 start-page: 349 year: 2013 ident: 10.1016/j.automatica.2025.112474_b21 article-title: Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2013.03.041 – ident: 10.1016/j.automatica.2025.112474_b28 doi: 10.1109/CDC40024.2019.9029499 – volume: 5 start-page: 1693 issue: 5 year: 2020 ident: 10.1016/j.automatica.2025.112474_b34 article-title: Non-asymptotic identification of linear dynamical systems using multiple trajectories publication-title: IEEE Control Systems Letters doi: 10.1109/LCSYS.2020.3042924 – volume: 46 start-page: 1870 issue: 11 year: 2010 ident: 10.1016/j.automatica.2025.112474_b3 article-title: A maximum-likelihood Kalman filter for switching discrete-time linear systems publication-title: Automatica doi: 10.1016/j.automatica.2010.07.001 – year: 1984 ident: 10.1016/j.automatica.2025.112474_b7 – year: 2003 ident: 10.1016/j.automatica.2025.112474_b6 – ident: 10.1016/j.automatica.2025.112474_b20 doi: 10.23919/ACC.2019.8814438 – volume: 33 start-page: 7228 issue: 6 year: 2018 ident: 10.1016/j.automatica.2025.112474_b19 article-title: A robust data-driven Koopman Kalman filter for power systems dynamic state estimation publication-title: IEEE Transactions on Power Systems doi: 10.1109/TPWRS.2018.2846744 |
| SSID | ssj0004182 |
| Score | 2.4896767 |
| Snippet | This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 112474 |
| SubjectTerms | Performance analysis Robust data-driven Kalman filter Sample complexity Unknown system matrices |
| Title | Robust data-driven Kalman filtering for unknown linear systems using maximum likelihood optimization |
| URI | https://dx.doi.org/10.1016/j.automatica.2025.112474 |
| Volume | 180 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0005-1098 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004182 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0005-1098 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004182 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0005-1098 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004182 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0005-1098 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004182 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0005-1098 databaseCode: AKRWK dateStart: 19630101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004182 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAGB1KvehBXLEuZQ5eY9NklgRPpViqhR7EQm9htki0SUqbgCd_u_NloQqCB49ZBjJvJm--Sd73PoRuXeoZyZnrxK6xGxTjBY4wsYBaL8rnLjWuqtw-52y6IE9LuuygcZsLA7LKhvtrTq_YujkzaNAcrJMEcnxhQoV2iwOmKiE4fhLCoYrB3edO5kGGQe0YXjluhkGj5qk1XqIs8soZFRyIPAr5NIST35eob8vO5AgdNvEiHtWPdIw6JjtBB99cBE-Rfs5luS0wiD0dvQH6wjOxSkWG4wR-htu7sI1NcZnBF7QMQ2QpNrg2cd5ikL6_4lR8JGmZ2ovvZpWA2THOLZ2kTZ7mGVpMHl7GU6cpnuAoj9HC8UjMpbTdCRQRRksiNGG2_y5XioRaDCXTUP3W166iASdKcGaDp5gy-0or3_jnqJvlmblA2FUBFdKXLDSSxFoJ5TM7qJwqErMgMD00bPGK1rVHRtSKx96iHcYRYBzVGPfQfQts9GO8I0vlf7a-_FfrK7QPR7Uk7xp1i01pbmxoUch-NXf6aG_0OJvOvwAS9tH2 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4MwGG7mPKgH42ecnz14xTHoB8STWVymmzuYLdmNtKUYdMCyQeLJ325fYNlMTDx4pTShT8vTt_C8z4vQrU0dLTmzrcjW5oCiHc8SOhJQ60W53KbaVqXb54j1J-R5SqcN1F3lwoCssub-itNLtq6vtGs02_M4hhxfWFC-OeKAqYrvbqFtQh0OJ7C7r7XOg3S8yjK8tNz0vVrOU4m8RJFnpTUqWBA5FBJqCCe_71Eb-07vAO3XASN-qJ7pEDV0eoT2NmwEj1H4mslimWNQe1rhAvgLD8QsESmOYvgbbu7CJjjFRQqf0FIMoaVY4MrFeYlB-_6GE_EZJ0ViGj_0LAa3Y5wZPknqRM0TNOk9jrt9q66eYCmH0dxySMSlNMPxFBE6lESEhJnx21wp4oeiI1kI5W_d0FbU40QJzkz0FFFm3mnlavcUNdMs1WcI28qjQrqS-VqSKFRCuczMKqeKRMzzdAt1VngF88okI1ipx96DNcYBYBxUGLfQ_QrY4MeEB4bL_-x9_q_eN2inP34ZBsOn0eAC7UJLpc-7RM18UegrE2fk8rpcR98YRdOL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+data-driven+Kalman+filtering+for+unknown+linear+systems+using+maximum+likelihood+optimization&rft.jtitle=Automatica+%28Oxford%29&rft.au=Duan%2C+Peihu&rft.au=Liu%2C+Tao&rft.au=Xing%2C+Yu&rft.au=Johansson%2C+Karl+Henrik&rft.date=2025-10-01&rft.issn=0005-1098&rft.volume=180&rft.spage=112474&rft_id=info:doi/10.1016%2Fj.automatica.2025.112474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2025_112474 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon |