Robust data-driven Kalman filtering for unknown linear systems using maximum likelihood optimization

This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalma...

Full description

Saved in:
Bibliographic Details
Published inAutomatica (Oxford) Vol. 180; p. 112474
Main Authors Duan, Peihu, Liu, Tao, Xing, Yu, Johansson, Karl Henrik
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.10.2025
Subjects
Online AccessGet full text
ISSN0005-1098
DOI10.1016/j.automatica.2025.112474

Cover

Abstract This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is designed, which can estimate the state of a given but unknown state-space model. The performance gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified through a sample complexity bound. In particular, when the number of the pre-collected states tends to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated by numerical simulations.
AbstractList This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output trajectory sampled at a higher frequency and a prior state trajectory sampled at a lower frequency, we propose a novel robust data-driven Kalman filter (RDKF) that integrates model identification with state estimation for the unknown system. Specifically, the state estimation problem is formulated as a non-convex maximum likelihood optimization problem. Then, we slightly modify the optimization problem to get a problem solvable with a recursive algorithm. Based on the optimal solution to this new problem, the RDKF is designed, which can estimate the state of a given but unknown state-space model. The performance gap between the RDKF and the optimal Kalman filter based on known system matrices is quantified through a sample complexity bound. In particular, when the number of the pre-collected states tends to infinity, this gap converges to zero. Finally, the effectiveness of the theoretical results is illustrated by numerical simulations.
ArticleNumber 112474
Author Xing, Yu
Johansson, Karl Henrik
Duan, Peihu
Liu, Tao
Author_xml – sequence: 1
  givenname: Peihu
  surname: Duan
  fullname: Duan, Peihu
  email: duanpeihu@bit.edu.cn
  organization: State Key Laboratory of Environment Characteristics and Effects for Near-Space, Beijing Institute of Technology, Beijing, China
– sequence: 2
  givenname: Tao
  surname: Liu
  fullname: Liu, Tao
  email: taoliu@eee.hku.hk
  organization: Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong Special Administrative Region of China
– sequence: 3
  givenname: Yu
  surname: Xing
  fullname: Xing, Yu
  email: yuxing2@kth.se
  organization: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
– sequence: 4
  givenname: Karl Henrik
  surname: Johansson
  fullname: Johansson, Karl Henrik
  email: kallej@kth.se
  organization: School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden
BookMark eNqFkMtOwzAQRb0oEm3hH_wDCXbqPLqEipeohIRgbU3sCbiN7cp2CuXrSVUklqxGo5l7dXRmZOK8Q0IoZzlnvLra5DAkbyEZBXnBijLnvBC1mJApY6zMOFs252QW42ZcBW-KKdEvvh1iohoSZDqYPTr6BL0FRzvTJwzGvdPOBzq4rfOfjvbGIQQaDzGhjXSIxwcLX8YOdjxusTcf3mvqd8lY8z2yeHdBzjroI17-zjl5u7t9XT1k6-f7x9X1OlNFVaasEF3dtiNwowSgbgVoUY3IrFZKLDXwttJ1KYqFZqpsaqGgrkouurISTaMWuJiT5tSrgo8xYCd3wVgIB8mZPBqSG_lnSB4NyZOhMXpziuLItzcYZFQGnUJtAqoktTf_l_wAtGl7Iw
Cites_doi 10.1109/TAC.2024.3409749
10.1109/LCSYS.2021.3102821
10.23919/ECC.2019.8795639
10.2514/3.3166
10.1109/TAC.2024.3371373
10.1109/TAC.2023.3335797
10.1016/j.ins.2012.07.014
10.1109/TAC.1970.1099422
10.1007/s10208-019-09426-y
10.1109/TAC.2010.2053060
10.1109/9.935054
10.1109/TSP.2022.3158588
10.1109/TSP.2015.2440220
10.1016/j.automatica.2023.111385
10.1115/1.3662552
10.1016/j.sysconle.2004.09.003
10.1016/j.arcontrol.2021.09.005
10.23919/ECC55457.2022.9838494
10.1109/TIE.2012.2236994
10.1016/j.apenergy.2013.03.041
10.1109/CDC40024.2019.9029499
10.1109/LCSYS.2020.3042924
10.1016/j.automatica.2010.07.001
10.23919/ACC.2019.8814438
10.1109/TPWRS.2018.2846744
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.automatica.2025.112474
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_automatica_2025_112474
S0005109825003693
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
23N
3R3
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
77I
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABWVN
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADIYS
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFFNX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHJVU
AHPGS
AI.
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APLSM
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HAMUX
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
K-O
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
T9H
TAE
TN5
VH1
WH7
WUQ
X6Y
XPP
ZMT
~G-
~HD
AAYXX
ACLOT
CITATION
ID FETCH-LOGICAL-c265t-24f7bb2478c4aedb4ad4609807cc49da1b6d75423d0c5874ca76514f56488c3e3
IEDL.DBID .~1
ISSN 0005-1098
IngestDate Wed Oct 01 05:34:50 EDT 2025
Sat Sep 20 17:13:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Unknown system matrices
Sample complexity
Performance analysis
Robust data-driven Kalman filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c265t-24f7bb2478c4aedb4ad4609807cc49da1b6d75423d0c5874ca76514f56488c3e3
ParticipantIDs crossref_primary_10_1016_j_automatica_2025_112474
elsevier_sciencedirect_doi_10_1016_j_automatica_2025_112474
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate October 2025
2025-10-00
PublicationDateYYYYMMDD 2025-10-01
PublicationDate_xml – month: 10
  year: 2025
  text: October 2025
PublicationDecade 2020
PublicationTitle Automatica (Oxford)
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bequette (b6) 2003
Wolff, Lopez, Müller (b32) 2024; 69
Sayed (b24) 2001; 46
(pp. 3648–3654).
Hou, Wang (b11) 2013; 235
(pp. 307–312).
Turan, Ferrari-Trecate (b29) 2021; 6
Marelli, Fu, Ninness (b16) 2015; 63
Lv, Li, Duan (b15) 2024; 159
Adachi, R., & Wakasa, Y. (2021). Dual system representation and prediction method for data-driven estimation. In
(pp. 1245–1250).
Poncela, Poncela, Perán (b21) 2013; 108
Shafieezadeh Abadeh, Nguyen, Kuhn, Mohajerin Esfahani (b25) 2018; 31
Coulson, J., Lygeros, J., & Dörfler, F. (2019). Data-enabled predictive control: In the shallows of the DeePC. In
Auger, Hilairet, Guerrero, Monmasson, Orlowska-Kowalska, Katsura (b5) 2013; 60
Markovsky, Dörfler (b17) 2021; 52
Liu, Wang, Sun, Bullo, Chen (b13) 2024; 69
Mehra (b18) 1970; 15
Anderson, Moore (b4) 2005
Xian, Zhao, Wen, Chen (b33) 2024; 69
Netto, Mili (b19) 2018; 33
Oymak, S., & Ozay, N. (2019). Non-asymptotic identification of LTI systems from a single trajectory. In
Verhaegen, Verdult (b30) 2007
(pp. 5655–5661).
Dean, Mania, Matni, Recht, Tu (b9) 2020; 20
Ljung (b14) 1999
Alanwar, A., Berndt, A., Johansson, K. H., & Sandberg, H. (2022). Data-driven set-based estimation using matrix zonotopes with set containment guarantees. In
Revach, Shlezinger, Ni, Escoriza, van Sloun, Eldar (b23) 2022; 70
Zheng, Li (b34) 2020; 5
(pp. 875–881).
Tsiamis, Matni, Pappas (b27) 2020
Tsiamis, A., & Pappas, G. J. (2019). Finite sample analysis of stochastic system identification. In
Rauch, Tung, Striebel (b22) 1965; 3
Kalman (b12) 1960
Alessandri, Baglietto, Battistelli (b3) 2010; 46
Duan, Liu, Xing, Johansson (b10) 2024
Sui, Johansen, Feng (b26) 2010; 55
Chen (b7) 1984
Willems, Rapisarda, Markovsky, De Moor (b31) 2005; 54
Alessandri (10.1016/j.automatica.2025.112474_b3) 2010; 46
Hou (10.1016/j.automatica.2025.112474_b11) 2013; 235
Rauch (10.1016/j.automatica.2025.112474_b22) 1965; 3
10.1016/j.automatica.2025.112474_b28
Ljung (10.1016/j.automatica.2025.112474_b14) 1999
Tsiamis (10.1016/j.automatica.2025.112474_b27) 2020
Markovsky (10.1016/j.automatica.2025.112474_b17) 2021; 52
10.1016/j.automatica.2025.112474_b20
Lv (10.1016/j.automatica.2025.112474_b15) 2024; 159
Xian (10.1016/j.automatica.2025.112474_b33) 2024; 69
Bequette (10.1016/j.automatica.2025.112474_b6) 2003
Poncela (10.1016/j.automatica.2025.112474_b21) 2013; 108
10.1016/j.automatica.2025.112474_b8
Shafieezadeh Abadeh (10.1016/j.automatica.2025.112474_b25) 2018; 31
Verhaegen (10.1016/j.automatica.2025.112474_b30) 2007
10.1016/j.automatica.2025.112474_b2
Wolff (10.1016/j.automatica.2025.112474_b32) 2024; 69
10.1016/j.automatica.2025.112474_b1
Anderson (10.1016/j.automatica.2025.112474_b4) 2005
Mehra (10.1016/j.automatica.2025.112474_b18) 1970; 15
Dean (10.1016/j.automatica.2025.112474_b9) 2020; 20
Kalman (10.1016/j.automatica.2025.112474_b12) 1960
Netto (10.1016/j.automatica.2025.112474_b19) 2018; 33
Revach (10.1016/j.automatica.2025.112474_b23) 2022; 70
Sui (10.1016/j.automatica.2025.112474_b26) 2010; 55
Auger (10.1016/j.automatica.2025.112474_b5) 2013; 60
Liu (10.1016/j.automatica.2025.112474_b13) 2024; 69
Sayed (10.1016/j.automatica.2025.112474_b24) 2001; 46
Willems (10.1016/j.automatica.2025.112474_b31) 2005; 54
Zheng (10.1016/j.automatica.2025.112474_b34) 2020; 5
Turan (10.1016/j.automatica.2025.112474_b29) 2021; 6
Duan (10.1016/j.automatica.2025.112474_b10) 2024
Chen (10.1016/j.automatica.2025.112474_b7) 1984
Marelli (10.1016/j.automatica.2025.112474_b16) 2015; 63
References_xml – year: 2005
  ident: b4
  article-title: Optimal filtering
– volume: 159
  year: 2024
  ident: b15
  article-title: Minimal-order specified-time unknown input observers
  publication-title: Automatica
– volume: 69
  start-page: 8526
  year: 2024
  end-page: 8538
  ident: b13
  article-title: Learning robust data-based LQG controllers from noisy data
  publication-title: IEEE Transactions on Automatic Control
– volume: 15
  start-page: 175
  year: 1970
  end-page: 184
  ident: b18
  article-title: On the identification of variances and adaptive Kalman filtering
  publication-title: IEEE Transactions on Automatic Control
– start-page: 435
  year: 2020
  end-page: 444
  ident: b27
  article-title: Sample complexity of Kalman filtering for unknown systems
  publication-title: Learning for dynamics and control
– volume: 46
  start-page: 998
  year: 2001
  end-page: 1013
  ident: b24
  article-title: A framework for state-space estimation with uncertain models
  publication-title: IEEE Transactions on Automatic Control
– reference: (pp. 5655–5661).
– volume: 6
  start-page: 1424
  year: 2021
  end-page: 1429
  ident: b29
  article-title: Data-driven unknown-input observers and state estimation
  publication-title: IEEE Control Systems Letters
– reference: Coulson, J., Lygeros, J., & Dörfler, F. (2019). Data-enabled predictive control: In the shallows of the DeePC. In
– volume: 69
  start-page: 4522
  year: 2024
  end-page: 4537
  ident: b33
  article-title: Robust event-triggered distributed optimal coordination of heterogeneous systems over directed networks
  publication-title: IEEE Transactions on Automatic Control
– volume: 20
  start-page: 633
  year: 2020
  end-page: 679
  ident: b9
  article-title: On the sample complexity of the linear quadratic regulator
  publication-title: Foundations of Computational Mathematics
– reference: Adachi, R., & Wakasa, Y. (2021). Dual system representation and prediction method for data-driven estimation. In
– start-page: 35
  year: 1960
  end-page: 45
  ident: b12
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Transaction of the ASME-Journal of Basic Engineering
– volume: 33
  start-page: 7228
  year: 2018
  end-page: 7237
  ident: b19
  article-title: A robust data-driven Koopman Kalman filter for power systems dynamic state estimation
  publication-title: IEEE Transactions on Power Systems
– reference: (pp. 307–312).
– volume: 63
  start-page: 4502
  year: 2015
  end-page: 4515
  ident: b16
  article-title: Asymptotic optimality of the maximum-likelihood Kalman filter for Bayesian tracking with multiple nonlinear sensors
  publication-title: IEEE Transactions on Signal Processing
– volume: 235
  start-page: 3
  year: 2013
  end-page: 35
  ident: b11
  article-title: From model-based control to data-driven control: Survey, classification and perspective
  publication-title: Information Sciences
– reference: (pp. 3648–3654).
– volume: 52
  start-page: 42
  year: 2021
  end-page: 64
  ident: b17
  article-title: Behavioral systems theory in data-driven analysis, signal processing, and control
  publication-title: Annual Reviews in Control
– reference: Oymak, S., & Ozay, N. (2019). Non-asymptotic identification of LTI systems from a single trajectory. In
– volume: 108
  start-page: 349
  year: 2013
  end-page: 362
  ident: b21
  article-title: Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting
  publication-title: Applied Energy
– volume: 70
  start-page: 1532
  year: 2022
  end-page: 1547
  ident: b23
  article-title: KalmanNet: Neural network aided Kalman filtering for partially known dynamics
  publication-title: IEEE Transactions on Signal Processing
– volume: 46
  start-page: 1870
  year: 2010
  end-page: 1876
  ident: b3
  article-title: A maximum-likelihood Kalman filter for switching discrete-time linear systems
  publication-title: Automatica
– year: 2024
  ident: b10
  article-title: Robust data-driven Kalman filtering for unknown linear systems using maximum likelihood optimization
– year: 1999
  ident: b14
  article-title: System identification: Theory for the user
– volume: 60
  start-page: 5458
  year: 2013
  end-page: 5471
  ident: b5
  article-title: Industrial applications of the Kalman filter: A review
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 3
  start-page: 1445
  year: 1965
  end-page: 1450
  ident: b22
  article-title: Maximum likelihood estimates of linear dynamic systems
  publication-title: Journal of the American Institute of Aeronautics and Astronautics
– year: 2003
  ident: b6
  article-title: Process control: Modeling, design, and simulation
– volume: 69
  start-page: 5598
  year: 2024
  end-page: 5604
  ident: b32
  article-title: Robust data-driven moving horizon estimation for linear discrete-time systems
  publication-title: IEEE Transactions on Automatic Control
– reference: Alanwar, A., Berndt, A., Johansson, K. H., & Sandberg, H. (2022). Data-driven set-based estimation using matrix zonotopes with set containment guarantees. In
– year: 2007
  ident: b30
  article-title: Filtering and system identification: A least squares approach
– volume: 54
  start-page: 325
  year: 2005
  end-page: 329
  ident: b31
  article-title: A note on persistency of excitation
  publication-title: Systems & Control Letters
– volume: 5
  start-page: 1693
  year: 2020
  end-page: 1698
  ident: b34
  article-title: Non-asymptotic identification of linear dynamical systems using multiple trajectories
  publication-title: IEEE Control Systems Letters
– reference: (pp. 1245–1250).
– year: 1984
  ident: b7
  article-title: Linear System Theory and Design
– volume: 31
  year: 2018
  ident: b25
  article-title: Wasserstein distributionally robust Kalman filtering
  publication-title: Advances in Neural Information Processing Systems
– volume: 55
  start-page: 2363
  year: 2010
  end-page: 2368
  ident: b26
  article-title: Linear moving horizon estimation with pre-estimating observer
  publication-title: IEEE Transactions on Automatic Control
– reference: Tsiamis, A., & Pappas, G. J. (2019). Finite sample analysis of stochastic system identification. In
– reference: (pp. 875–881).
– volume: 69
  start-page: 8526
  issue: 12
  year: 2024
  ident: 10.1016/j.automatica.2025.112474_b13
  article-title: Learning robust data-based LQG controllers from noisy data
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2024.3409749
– volume: 6
  start-page: 1424
  year: 2021
  ident: 10.1016/j.automatica.2025.112474_b29
  article-title: Data-driven unknown-input observers and state estimation
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2021.3102821
– ident: 10.1016/j.automatica.2025.112474_b8
  doi: 10.23919/ECC.2019.8795639
– volume: 3
  start-page: 1445
  issue: 8
  year: 1965
  ident: 10.1016/j.automatica.2025.112474_b22
  article-title: Maximum likelihood estimates of linear dynamic systems
  publication-title: Journal of the American Institute of Aeronautics and Astronautics
  doi: 10.2514/3.3166
– volume: 69
  start-page: 5598
  issue: 8
  year: 2024
  ident: 10.1016/j.automatica.2025.112474_b32
  article-title: Robust data-driven moving horizon estimation for linear discrete-time systems
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2024.3371373
– volume: 69
  start-page: 4522
  issue: 7
  year: 2024
  ident: 10.1016/j.automatica.2025.112474_b33
  article-title: Robust event-triggered distributed optimal coordination of heterogeneous systems over directed networks
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2023.3335797
– volume: 235
  start-page: 3
  year: 2013
  ident: 10.1016/j.automatica.2025.112474_b11
  article-title: From model-based control to data-driven control: Survey, classification and perspective
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2012.07.014
– start-page: 435
  year: 2020
  ident: 10.1016/j.automatica.2025.112474_b27
  article-title: Sample complexity of Kalman filtering for unknown systems
– year: 2024
  ident: 10.1016/j.automatica.2025.112474_b10
– volume: 15
  start-page: 175
  issue: 2
  year: 1970
  ident: 10.1016/j.automatica.2025.112474_b18
  article-title: On the identification of variances and adaptive Kalman filtering
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1970.1099422
– year: 2005
  ident: 10.1016/j.automatica.2025.112474_b4
– volume: 20
  start-page: 633
  issue: 4
  year: 2020
  ident: 10.1016/j.automatica.2025.112474_b9
  article-title: On the sample complexity of the linear quadratic regulator
  publication-title: Foundations of Computational Mathematics
  doi: 10.1007/s10208-019-09426-y
– volume: 55
  start-page: 2363
  issue: 10
  year: 2010
  ident: 10.1016/j.automatica.2025.112474_b26
  article-title: Linear moving horizon estimation with pre-estimating observer
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.2010.2053060
– volume: 46
  start-page: 998
  issue: 7
  year: 2001
  ident: 10.1016/j.automatica.2025.112474_b24
  article-title: A framework for state-space estimation with uncertain models
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/9.935054
– volume: 70
  start-page: 1532
  year: 2022
  ident: 10.1016/j.automatica.2025.112474_b23
  article-title: KalmanNet: Neural network aided Kalman filtering for partially known dynamics
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2022.3158588
– volume: 63
  start-page: 4502
  issue: 17
  year: 2015
  ident: 10.1016/j.automatica.2025.112474_b16
  article-title: Asymptotic optimality of the maximum-likelihood Kalman filter for Bayesian tracking with multiple nonlinear sensors
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2015.2440220
– year: 2007
  ident: 10.1016/j.automatica.2025.112474_b30
– volume: 159
  year: 2024
  ident: 10.1016/j.automatica.2025.112474_b15
  article-title: Minimal-order specified-time unknown input observers
  publication-title: Automatica
  doi: 10.1016/j.automatica.2023.111385
– start-page: 35
  year: 1960
  ident: 10.1016/j.automatica.2025.112474_b12
  article-title: A new approach to linear filtering and prediction problems
  publication-title: Transaction of the ASME-Journal of Basic Engineering
  doi: 10.1115/1.3662552
– volume: 54
  start-page: 325
  issue: 4
  year: 2005
  ident: 10.1016/j.automatica.2025.112474_b31
  article-title: A note on persistency of excitation
  publication-title: Systems & Control Letters
  doi: 10.1016/j.sysconle.2004.09.003
– ident: 10.1016/j.automatica.2025.112474_b1
– year: 1999
  ident: 10.1016/j.automatica.2025.112474_b14
– volume: 52
  start-page: 42
  year: 2021
  ident: 10.1016/j.automatica.2025.112474_b17
  article-title: Behavioral systems theory in data-driven analysis, signal processing, and control
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2021.09.005
– volume: 31
  year: 2018
  ident: 10.1016/j.automatica.2025.112474_b25
  article-title: Wasserstein distributionally robust Kalman filtering
  publication-title: Advances in Neural Information Processing Systems
– ident: 10.1016/j.automatica.2025.112474_b2
  doi: 10.23919/ECC55457.2022.9838494
– volume: 60
  start-page: 5458
  issue: 12
  year: 2013
  ident: 10.1016/j.automatica.2025.112474_b5
  article-title: Industrial applications of the Kalman filter: A review
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2012.2236994
– volume: 108
  start-page: 349
  year: 2013
  ident: 10.1016/j.automatica.2025.112474_b21
  article-title: Automatic tuning of Kalman filters by maximum likelihood methods for wind energy forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2013.03.041
– ident: 10.1016/j.automatica.2025.112474_b28
  doi: 10.1109/CDC40024.2019.9029499
– volume: 5
  start-page: 1693
  issue: 5
  year: 2020
  ident: 10.1016/j.automatica.2025.112474_b34
  article-title: Non-asymptotic identification of linear dynamical systems using multiple trajectories
  publication-title: IEEE Control Systems Letters
  doi: 10.1109/LCSYS.2020.3042924
– volume: 46
  start-page: 1870
  issue: 11
  year: 2010
  ident: 10.1016/j.automatica.2025.112474_b3
  article-title: A maximum-likelihood Kalman filter for switching discrete-time linear systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2010.07.001
– year: 1984
  ident: 10.1016/j.automatica.2025.112474_b7
– year: 2003
  ident: 10.1016/j.automatica.2025.112474_b6
– ident: 10.1016/j.automatica.2025.112474_b20
  doi: 10.23919/ACC.2019.8814438
– volume: 33
  start-page: 7228
  issue: 6
  year: 2018
  ident: 10.1016/j.automatica.2025.112474_b19
  article-title: A robust data-driven Koopman Kalman filter for power systems dynamic state estimation
  publication-title: IEEE Transactions on Power Systems
  doi: 10.1109/TPWRS.2018.2846744
SSID ssj0004182
Score 2.4896767
Snippet This paper investigates the state estimation problem for unknown linear systems subject to both process and measurement noise. Based on a prior input–output...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112474
SubjectTerms Performance analysis
Robust data-driven Kalman filter
Sample complexity
Unknown system matrices
Title Robust data-driven Kalman filtering for unknown linear systems using maximum likelihood optimization
URI https://dx.doi.org/10.1016/j.automatica.2025.112474
Volume 180
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0005-1098
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004182
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0005-1098
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004182
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0005-1098
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004182
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0005-1098
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004182
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0005-1098
  databaseCode: AKRWK
  dateStart: 19630101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004182
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8NAGB1KvehBXLEuZQ5eY9NklgRPpViqhR7EQm9htki0SUqbgCd_u_NloQqCB49ZBjJvJm--Sd73PoRuXeoZyZnrxK6xGxTjBY4wsYBaL8rnLjWuqtw-52y6IE9LuuygcZsLA7LKhvtrTq_YujkzaNAcrJMEcnxhQoV2iwOmKiE4fhLCoYrB3edO5kGGQe0YXjluhkGj5qk1XqIs8soZFRyIPAr5NIST35eob8vO5AgdNvEiHtWPdIw6JjtBB99cBE-Rfs5luS0wiD0dvQH6wjOxSkWG4wR-htu7sI1NcZnBF7QMQ2QpNrg2cd5ikL6_4lR8JGmZ2ovvZpWA2THOLZ2kTZ7mGVpMHl7GU6cpnuAoj9HC8UjMpbTdCRQRRksiNGG2_y5XioRaDCXTUP3W166iASdKcGaDp5gy-0or3_jnqJvlmblA2FUBFdKXLDSSxFoJ5TM7qJwqErMgMD00bPGK1rVHRtSKx96iHcYRYBzVGPfQfQts9GO8I0vlf7a-_FfrK7QPR7Uk7xp1i01pbmxoUch-NXf6aG_0OJvOvwAS9tH2
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT4MwGG7mPKgH42ecnz14xTHoB8STWVymmzuYLdmNtKUYdMCyQeLJ325fYNlMTDx4pTShT8vTt_C8z4vQrU0dLTmzrcjW5oCiHc8SOhJQ60W53KbaVqXb54j1J-R5SqcN1F3lwoCssub-itNLtq6vtGs02_M4hhxfWFC-OeKAqYrvbqFtQh0OJ7C7r7XOg3S8yjK8tNz0vVrOU4m8RJFnpTUqWBA5FBJqCCe_71Eb-07vAO3XASN-qJ7pEDV0eoT2NmwEj1H4mslimWNQe1rhAvgLD8QsESmOYvgbbu7CJjjFRQqf0FIMoaVY4MrFeYlB-_6GE_EZJ0ViGj_0LAa3Y5wZPknqRM0TNOk9jrt9q66eYCmH0dxySMSlNMPxFBE6lESEhJnx21wp4oeiI1kI5W_d0FbU40QJzkz0FFFm3mnlavcUNdMs1WcI28qjQrqS-VqSKFRCuczMKqeKRMzzdAt1VngF88okI1ipx96DNcYBYBxUGLfQ_QrY4MeEB4bL_-x9_q_eN2inP34ZBsOn0eAC7UJLpc-7RM18UegrE2fk8rpcR98YRdOL
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+data-driven+Kalman+filtering+for+unknown+linear+systems+using+maximum+likelihood+optimization&rft.jtitle=Automatica+%28Oxford%29&rft.au=Duan%2C+Peihu&rft.au=Liu%2C+Tao&rft.au=Xing%2C+Yu&rft.au=Johansson%2C+Karl+Henrik&rft.date=2025-10-01&rft.issn=0005-1098&rft.volume=180&rft.spage=112474&rft_id=info:doi/10.1016%2Fj.automatica.2025.112474&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_automatica_2025_112474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0005-1098&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0005-1098&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0005-1098&client=summon