R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees
The paper presents a comparison of the two languages Python and R related to the classification tools and demonstrates the differences in their syntax and graphical output. It indicates the functionality of R and Python packages {dendextend} and scipy.cluster as effective tools for the dendrogram mo...
Saved in:
| Published in | Carpathian journal of electronic and computer engineering Vol. 13; no. 1; pp. 5 - 12 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Sciendo
01.09.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2343-8908 1844-9689 2343-8908 |
| DOI | 10.2478/cjece-2020-0002 |
Cover
| Abstract | The paper presents a comparison of the two languages Python and R related to the classification tools and demonstrates the differences in their syntax and graphical output. It indicates the functionality of R and Python packages {dendextend} and scipy.cluster as effective tools for the dendrogram modelling by the algorithms of sorting and ranking datasets. R and Python programming languages have been tested on a sample dataset including marine geological measurements. The work aims to detect how bathymetric data change along the 25 bathymetric profiles digitized across the Mariana Trench. The methodology includes performed hierarchical cluster analysis with dendrograms and plotted clustermap with marginal dendrograms. The statistical libraries include Matplotlib, SciPy, NumPy, Pandas by Python and {dendextend}, {pvclust}, {magrittr} by R. The dendrograms were compared by the model-simulated clusters of the bathymetric ranges. The results show three distinct groups of the profiles sorted by the elevation ranges with maximal depths detected in a group of profiles 19-21. The dendrogram visualization in a cluster analysis demonstrates the effective representation of the data sorting, grouping and classifying by the machine learning algorithms. The programming codes presented in this study enable to sort a dataset in a similar research aimed to group data based on the similarity of attributes. Effective visualization by dendrograms is a useful modelling tool for the geospatial management where data ranking is required. Plotting dendrograms by R, comparing to Python, presented functional and sophisticated algorithms, refined design control and fine graphical data output. The interdisciplinary nature of this work consists in application of the coding algorithms for spatial data analysis. |
|---|---|
| AbstractList | The paper presents a comparison of the two languages Python and R related to the classification tools and demonstrates the differences in their syntax and graphical output. It indicates the functionality of R and Python packages {dendextend} and scipy.cluster as effective tools for the dendrogram modelling by the algorithms of sorting and ranking datasets. R and Python programming languages have been tested on a sample dataset including marine geological measurements. The work aims to detect how bathymetric data change along the 25 bathymetric profiles digitized across the Mariana Trench. The methodology includes performed hierarchical cluster analysis with dendrograms and plotted clustermap with marginal dendrograms. The statistical libraries include Matplotlib, SciPy, NumPy, Pandas by Python and {dendextend}, {pvclust}, {magrittr} by R. The dendrograms were compared by the model-simulated clusters of the bathymetric ranges. The results show three distinct groups of the profiles sorted by the elevation ranges with maximal depths detected in a group of profiles 19-21. The dendrogram visualization in a cluster analysis demonstrates the effective representation of the data sorting, grouping and classifying by the machine learning algorithms. The programming codes presented in this study enable to sort a dataset in a similar research aimed to group data based on the similarity of attributes. Effective visualization by dendrograms is a useful modelling tool for the geospatial management where data ranking is required. Plotting dendrograms by R, comparing to Python, presented functional and sophisticated algorithms, refined design control and fine graphical data output. The interdisciplinary nature of this work consists in application of the coding algorithms for spatial data analysis. |
| Author | Lemenkova, Polina |
| Author_xml | – sequence: 1 givenname: Polina orcidid: 0000-0002-5759-1089 surname: Lemenkova fullname: Lemenkova, Polina email: pauline.lemenkova@gmail.com organization: College of Marine Geo-sciences, Ocean University of China, Qingdao, China |
| BookMark | eNqlkE1LxDAQhoMo-Hn2mj9QN02aNMWTrJ-wosh6LrNpumbtJkvSRYt48J-bWg8iKIKXZIaZ52V4dtGmdVYjdJiSI5rlcqQWWumEEkoSQgjdQDuUZSyRBZGbX-ptdBDCIm4QySXN6Q56u8MTM_PgjQ74pdK20s9tfF8x2Aq_LGHuTdv6oR0369Bqb-wc34J6hLnGQZlVd6SGAXY1vu3aB2fxufP42lW6afrtUxNzYBn6hdOY7l3f4qnXOuyjrRqaoA8-_z10f342HV8mk5uLq_HJJFFUcJ4IWec8h4wLkoLgogBWpDMlKyLzGdAir2upi5ynGU0FKxQjVBRSC6pAxDlje4gMuWu7gu4JmqZcebME35UpKXuL5YfFsrdY9hYjMhoQ5V0IXtd_IPg3QpkWWuNs68E0v3DHAxfviiIrPffrLhblwq29jVp-IlPG-H_olLN3AGqxvA |
| CitedBy_id | crossref_primary_10_3390_jrfm15070279 crossref_primary_10_5937_PoljTeh2103049L crossref_primary_10_1039_D1RA07000B crossref_primary_10_2478_ouacsce_2020_0002 crossref_primary_10_2478_trser_2020_0015 crossref_primary_10_1007_s10722_024_02301_y crossref_primary_10_2478_ceer_2021_0020 crossref_primary_10_1016_j_ins_2020_12_020 crossref_primary_10_5937_AASer2152159L crossref_primary_10_5817_CPR2021_1_6 crossref_primary_10_5937_zrgfub2068099L |
| Cites_doi | 10.31223/OSF.IO/ES9KA 10.3153/AR19009 10.1016/0360-8352(88)90088-5 10.3846/gac.2019.3785 10.1093/bioinformatics/btv428 10.2478/pcr-2019-0015 10.1016/S0304-3975(01)00239-0 10.1016/j.eswa.2019.03.031 10.1016/j.ins.2019.08.048 10.1016/0360-8352(89)90160-5 10.2478/quageo-2019-0025 10.33714/masteb.486678 10.30638/eemj.2017.045 10.21163/GT_2019.142.04 10.1080/01621459.1983.10478008 10.1016/j.matcom.2017.11.003 10.26650/ASE2019547010 10.1016/j.envsoft.2010.03.029 10.1016/j.patcog.2019.106969 10.28978/nesciences.691708 10.2478/rgg-2019-0008 10.1007/978-3-642-21037-2 10.47246/CEJGSD.2020.2.1.1 10.2478/s13533-012-0120-0 10.35180/gse-2019-0020 10.1016/j.egypro.2017.05.175 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.2478/cjece-2020-0002 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2343-8908 |
| EndPage | 12 |
| ExternalDocumentID | 10.2478/cjece-2020-0002 10_2478_cjece_2020_0002 10_2478_cjece_2020_00021335 10_2478_cjece_2020_00021315 |
| GroupedDBID | .4S .DC 5VS 8G5 8R4 8R5 ADBBV ADBLJ ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BPHCQ EBS EOJEC GUQSH I-F KQ8 M2O MK~ ML~ OBODZ OK1 PADUT PROAC Q2X TUS UNMZH AAYXX CITATION 8FE 8FG ABUWG ADTOC AFKRA AIKXB ARAPS AZQEC BGLVJ BYOGL CCPQU DWQXO EJD GNUQQ HCIFZ IPNFZ P62 PHGZM PHGZT PIMPY PQGLB PQQKQ RIG SLJYH UNPAY |
| ID | FETCH-LOGICAL-c2655-68f757a45601a6569a391bc8d087ba297ff8e9751421639c302698e62ca6ba233 |
| IEDL.DBID | UNPAY |
| ISSN | 2343-8908 1844-9689 |
| IngestDate | Sun Oct 26 02:56:25 EDT 2025 Tue Jul 01 03:50:23 EDT 2025 Thu Apr 24 23:11:17 EDT 2025 Thu Jul 10 10:36:41 EDT 2025 Thu Jul 10 10:38:01 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. http://creativecommons.org/licenses/by-nc-nd/3.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2655-68f757a45601a6569a391bc8d087ba297ff8e9751421639c302698e62ca6ba233 |
| ORCID | 0000-0002-5759-1089 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciendo.com/pdf/10.2478/cjece-2020-0002 |
| PageCount | 8 |
| ParticipantIDs | unpaywall_primary_10_2478_cjece_2020_0002 crossref_primary_10_2478_cjece_2020_0002 crossref_citationtrail_10_2478_cjece_2020_0002 walterdegruyter_journals_10_2478_cjece_2020_00021335 walterdegruyter_journals_10_2478_cjece_2020_00021315 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-09-01 |
| PublicationDateYYYYMMDD | 2020-09-01 |
| PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Carpathian journal of electronic and computer engineering |
| PublicationYear | 2020 |
| Publisher | Sciendo |
| Publisher_xml | – name: Sciendo |
| References | 2022121505273823602_j_cjece-2020-0002_ref_005_w2aab3b7b3b1b6b1ab1ab5Aa 2022121505273823602_j_cjece-2020-0002_ref_060_w2aab3b7b3b1b6b1ab1ac60Aa 2022121505273823602_j_cjece-2020-0002_ref_006_w2aab3b7b3b1b6b1ab1ab6Aa 2022121505273823602_j_cjece-2020-0002_ref_034_w2aab3b7b3b1b6b1ab1ac34Aa 2022121505273823602_j_cjece-2020-0002_ref_026_w2aab3b7b3b1b6b1ab1ac26Aa 2022121505273823602_j_cjece-2020-0002_ref_004_w2aab3b7b3b1b6b1ab1ab4Aa 2022121505273823602_j_cjece-2020-0002_ref_052_w2aab3b7b3b1b6b1ab1ac52Aa 2022121505273823602_j_cjece-2020-0002_ref_021_w2aab3b7b3b1b6b1ab1ac21Aa 2022121505273823602_j_cjece-2020-0002_ref_031_w2aab3b7b3b1b6b1ab1ac31Aa 2022121505273823602_j_cjece-2020-0002_ref_003_w2aab3b7b3b1b6b1ab1ab3Aa 2022121505273823602_j_cjece-2020-0002_ref_029_w2aab3b7b3b1b6b1ab1ac29Aa 2022121505273823602_j_cjece-2020-0002_ref_044_w2aab3b7b3b1b6b1ab1ac44Aa 2022121505273823602_j_cjece-2020-0002_ref_013_w2aab3b7b3b1b6b1ab1ac13Aa 2022121505273823602_j_cjece-2020-0002_ref_065_w2aab3b7b3b1b6b1ab1ac65Aa 2022121505273823602_j_cjece-2020-0002_ref_002_w2aab3b7b3b1b6b1ab1ab2Aa 2022121505273823602_j_cjece-2020-0002_ref_047_w2aab3b7b3b1b6b1ab1ac47Aa 2022121505273823602_j_cjece-2020-0002_ref_062_w2aab3b7b3b1b6b1ab1ac62Aa 2022121505273823602_j_cjece-2020-0002_ref_016_w2aab3b7b3b1b6b1ab1ac16Aa 2022121505273823602_j_cjece-2020-0002_ref_045_w2aab3b7b3b1b6b1ab1ac45Aa 2022121505273823602_j_cjece-2020-0002_ref_032_w2aab3b7b3b1b6b1ab1ac32Aa 2022121505273823602_j_cjece-2020-0002_ref_058_w2aab3b7b3b1b6b1ab1ac58Aa 2022121505273823602_j_cjece-2020-0002_ref_019_w2aab3b7b3b1b6b1ab1ac19Aa 2022121505273823602_j_cjece-2020-0002_ref_050_w2aab3b7b3b1b6b1ab1ac50Aa 2022121505273823602_j_cjece-2020-0002_ref_009_w2aab3b7b3b1b6b1ab1ab9Aa 2022121505273823602_j_cjece-2020-0002_ref_066_w2aab3b7b3b1b6b1ab1ac66Aa 2022121505273823602_j_cjece-2020-0002_ref_063_w2aab3b7b3b1b6b1ab1ac63Aa 2022121505273823602_j_cjece-2020-0002_ref_037_w2aab3b7b3b1b6b1ab1ac37Aa 2022121505273823602_j_cjece-2020-0002_ref_048_w2aab3b7b3b1b6b1ab1ac48Aa 2022121505273823602_j_cjece-2020-0002_ref_055_w2aab3b7b3b1b6b1ab1ac55Aa 2022121505273823602_j_cjece-2020-0002_ref_024_w2aab3b7b3b1b6b1ab1ac24Aa 2022121505273823602_j_cjece-2020-0002_ref_014_w2aab3b7b3b1b6b1ab1ac14Aa 2022121505273823602_j_cjece-2020-0002_ref_027_w2aab3b7b3b1b6b1ab1ac27Aa 2022121505273823602_j_cjece-2020-0002_ref_042_w2aab3b7b3b1b6b1ab1ac42Aa 2022121505273823602_j_cjece-2020-0002_ref_007_w2aab3b7b3b1b6b1ab1ab7Aa 2022121505273823602_j_cjece-2020-0002_ref_011_w2aab3b7b3b1b6b1ab1ac11Aa 2022121505273823602_j_cjece-2020-0002_ref_043_w2aab3b7b3b1b6b1ab1ac43Aa 2022121505273823602_j_cjece-2020-0002_ref_030_w2aab3b7b3b1b6b1ab1ac30Aa 2022121505273823602_j_cjece-2020-0002_ref_012_w2aab3b7b3b1b6b1ab1ac12Aa 2022121505273823602_j_cjece-2020-0002_ref_017_w2aab3b7b3b1b6b1ab1ac17Aa 2022121505273823602_j_cjece-2020-0002_ref_061_w2aab3b7b3b1b6b1ab1ac61Aa 2022121505273823602_j_cjece-2020-0002_ref_059_w2aab3b7b3b1b6b1ab1ac59Aa 2022121505273823602_j_cjece-2020-0002_ref_035_w2aab3b7b3b1b6b1ab1ac35Aa 2022121505273823602_j_cjece-2020-0002_ref_038_w2aab3b7b3b1b6b1ab1ac38Aa 2022121505273823602_j_cjece-2020-0002_ref_025_w2aab3b7b3b1b6b1ab1ac25Aa 2022121505273823602_j_cjece-2020-0002_ref_040_w2aab3b7b3b1b6b1ab1ac40Aa 2022121505273823602_j_cjece-2020-0002_ref_053_w2aab3b7b3b1b6b1ab1ac53Aa 2022121505273823602_j_cjece-2020-0002_ref_022_w2aab3b7b3b1b6b1ab1ac22Aa 2022121505273823602_j_cjece-2020-0002_ref_056_w2aab3b7b3b1b6b1ab1ac56Aa 2022121505273823602_j_cjece-2020-0002_ref_049_w2aab3b7b3b1b6b1ab1ac49Aa 2022121505273823602_j_cjece-2020-0002_ref_023_w2aab3b7b3b1b6b1ab1ac23Aa 2022121505273823602_j_cjece-2020-0002_ref_001_w2aab3b7b3b1b6b1ab1ab1Aa 2022121505273823602_j_cjece-2020-0002_ref_054_w2aab3b7b3b1b6b1ab1ac54Aa 2022121505273823602_j_cjece-2020-0002_ref_010_w2aab3b7b3b1b6b1ab1ac10Aa 2022121505273823602_j_cjece-2020-0002_ref_015_w2aab3b7b3b1b6b1ab1ac15Aa 2022121505273823602_j_cjece-2020-0002_ref_028_w2aab3b7b3b1b6b1ab1ac28Aa 2022121505273823602_j_cjece-2020-0002_ref_041_w2aab3b7b3b1b6b1ab1ac41Aa 2022121505273823602_j_cjece-2020-0002_ref_057_w2aab3b7b3b1b6b1ab1ac57Aa 2022121505273823602_j_cjece-2020-0002_ref_033_w2aab3b7b3b1b6b1ab1ac33Aa 2022121505273823602_j_cjece-2020-0002_ref_046_w2aab3b7b3b1b6b1ab1ac46Aa 2022121505273823602_j_cjece-2020-0002_ref_020_w2aab3b7b3b1b6b1ab1ac20Aa 2022121505273823602_j_cjece-2020-0002_ref_008_w2aab3b7b3b1b6b1ab1ab8Aa 2022121505273823602_j_cjece-2020-0002_ref_018_w2aab3b7b3b1b6b1ab1ac18Aa 2022121505273823602_j_cjece-2020-0002_ref_039_w2aab3b7b3b1b6b1ab1ac39Aa 2022121505273823602_j_cjece-2020-0002_ref_064_w2aab3b7b3b1b6b1ab1ac64Aa 2022121505273823602_j_cjece-2020-0002_ref_051_w2aab3b7b3b1b6b1ab1ac51Aa 2022121505273823602_j_cjece-2020-0002_ref_036_w2aab3b7b3b1b6b1ab1ac36Aa 2022121505273823602_j_cjece-2020-0002_ref_067_w2aab3b7b3b1b6b1ab1ac67Aa |
| References_xml | – ident: 2022121505273823602_j_cjece-2020-0002_ref_019_w2aab3b7b3b1b6b1ab1ac19Aa doi: 10.31223/OSF.IO/ES9KA – ident: 2022121505273823602_j_cjece-2020-0002_ref_002_w2aab3b7b3b1b6b1ab1ab2Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_015_w2aab3b7b3b1b6b1ab1ac15Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_022_w2aab3b7b3b1b6b1ab1ac22Aa doi: 10.3153/AR19009 – ident: 2022121505273823602_j_cjece-2020-0002_ref_029_w2aab3b7b3b1b6b1ab1ac29Aa doi: 10.1016/0360-8352(88)90088-5 – ident: 2022121505273823602_j_cjece-2020-0002_ref_050_w2aab3b7b3b1b6b1ab1ac50Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_021_w2aab3b7b3b1b6b1ab1ac21Aa doi: 10.3846/gac.2019.3785 – ident: 2022121505273823602_j_cjece-2020-0002_ref_053_w2aab3b7b3b1b6b1ab1ac53Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_006_w2aab3b7b3b1b6b1ab1ab6Aa doi: 10.1093/bioinformatics/btv428 – ident: 2022121505273823602_j_cjece-2020-0002_ref_011_w2aab3b7b3b1b6b1ab1ac11Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_034_w2aab3b7b3b1b6b1ab1ac34Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_043_w2aab3b7b3b1b6b1ab1ac43Aa doi: 10.3153/AR19009 – ident: 2022121505273823602_j_cjece-2020-0002_ref_057_w2aab3b7b3b1b6b1ab1ac57Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_018_w2aab3b7b3b1b6b1ab1ac18Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_008_w2aab3b7b3b1b6b1ab1ab8Aa doi: 10.1093/bioinformatics/btv428 – ident: 2022121505273823602_j_cjece-2020-0002_ref_051_w2aab3b7b3b1b6b1ab1ac51Aa doi: 10.2478/pcr-2019-0015 – ident: 2022121505273823602_j_cjece-2020-0002_ref_065_w2aab3b7b3b1b6b1ab1ac65Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_028_w2aab3b7b3b1b6b1ab1ac28Aa doi: 10.1016/S0304-3975(01)00239-0 – ident: 2022121505273823602_j_cjece-2020-0002_ref_026_w2aab3b7b3b1b6b1ab1ac26Aa doi: 10.1016/j.eswa.2019.03.031 – ident: 2022121505273823602_j_cjece-2020-0002_ref_061_w2aab3b7b3b1b6b1ab1ac61Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_042_w2aab3b7b3b1b6b1ab1ac42Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_046_w2aab3b7b3b1b6b1ab1ac46Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_056_w2aab3b7b3b1b6b1ab1ac56Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_025_w2aab3b7b3b1b6b1ab1ac25Aa doi: 10.1016/j.ins.2019.08.048 – ident: 2022121505273823602_j_cjece-2020-0002_ref_041_w2aab3b7b3b1b6b1ab1ac41Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_030_w2aab3b7b3b1b6b1ab1ac30Aa doi: 10.1016/0360-8352(89)90160-5 – ident: 2022121505273823602_j_cjece-2020-0002_ref_037_w2aab3b7b3b1b6b1ab1ac37Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_058_w2aab3b7b3b1b6b1ab1ac58Aa doi: 10.2478/quageo-2019-0025 – ident: 2022121505273823602_j_cjece-2020-0002_ref_014_w2aab3b7b3b1b6b1ab1ac14Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_010_w2aab3b7b3b1b6b1ab1ac10Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_020_w2aab3b7b3b1b6b1ab1ac20Aa doi: 10.33714/masteb.486678 – ident: 2022121505273823602_j_cjece-2020-0002_ref_033_w2aab3b7b3b1b6b1ab1ac33Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_062_w2aab3b7b3b1b6b1ab1ac62Aa doi: 10.30638/eemj.2017.045 – ident: 2022121505273823602_j_cjece-2020-0002_ref_052_w2aab3b7b3b1b6b1ab1ac52Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_048_w2aab3b7b3b1b6b1ab1ac48Aa doi: 10.21163/GT_2019.142.04 – ident: 2022121505273823602_j_cjece-2020-0002_ref_005_w2aab3b7b3b1b6b1ab1ab5Aa doi: 10.1080/01621459.1983.10478008 – ident: 2022121505273823602_j_cjece-2020-0002_ref_027_w2aab3b7b3b1b6b1ab1ac27Aa doi: 10.1016/j.matcom.2017.11.003 – ident: 2022121505273823602_j_cjece-2020-0002_ref_045_w2aab3b7b3b1b6b1ab1ac45Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_039_w2aab3b7b3b1b6b1ab1ac39Aa doi: 10.26650/ASE2019547010 – ident: 2022121505273823602_j_cjece-2020-0002_ref_013_w2aab3b7b3b1b6b1ab1ac13Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_064_w2aab3b7b3b1b6b1ab1ac64Aa doi: 10.1016/j.envsoft.2010.03.029 – ident: 2022121505273823602_j_cjece-2020-0002_ref_040_w2aab3b7b3b1b6b1ab1ac40Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_063_w2aab3b7b3b1b6b1ab1ac63Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_009_w2aab3b7b3b1b6b1ab1ab9Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_032_w2aab3b7b3b1b6b1ab1ac32Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_023_w2aab3b7b3b1b6b1ab1ac23Aa doi: 10.1016/j.patcog.2019.106969 – ident: 2022121505273823602_j_cjece-2020-0002_ref_004_w2aab3b7b3b1b6b1ab1ab4Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_036_w2aab3b7b3b1b6b1ab1ac36Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_059_w2aab3b7b3b1b6b1ab1ac59Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_055_w2aab3b7b3b1b6b1ab1ac55Aa doi: 10.28978/nesciences.691708 – ident: 2022121505273823602_j_cjece-2020-0002_ref_038_w2aab3b7b3b1b6b1ab1ac38Aa doi: 10.33714/masteb.486678 – ident: 2022121505273823602_j_cjece-2020-0002_ref_049_w2aab3b7b3b1b6b1ab1ac49Aa doi: 10.2478/rgg-2019-0008 – ident: 2022121505273823602_j_cjece-2020-0002_ref_044_w2aab3b7b3b1b6b1ab1ac44Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_003_w2aab3b7b3b1b6b1ab1ab3Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_001_w2aab3b7b3b1b6b1ab1ab1Aa doi: 10.1007/978-3-642-21037-2 – ident: 2022121505273823602_j_cjece-2020-0002_ref_016_w2aab3b7b3b1b6b1ab1ac16Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_031_w2aab3b7b3b1b6b1ab1ac31Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_012_w2aab3b7b3b1b6b1ab1ac12Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_035_w2aab3b7b3b1b6b1ab1ac35Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_054_w2aab3b7b3b1b6b1ab1ac54Aa doi: 10.47246/CEJGSD.2020.2.1.1 – ident: 2022121505273823602_j_cjece-2020-0002_ref_060_w2aab3b7b3b1b6b1ab1ac60Aa doi: 10.2478/s13533-012-0120-0 – ident: 2022121505273823602_j_cjece-2020-0002_ref_017_w2aab3b7b3b1b6b1ab1ac17Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_067_w2aab3b7b3b1b6b1ab1ac67Aa doi: 10.35180/gse-2019-0020 – ident: 2022121505273823602_j_cjece-2020-0002_ref_066_w2aab3b7b3b1b6b1ab1ac66Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_007_w2aab3b7b3b1b6b1ab1ab7Aa – ident: 2022121505273823602_j_cjece-2020-0002_ref_024_w2aab3b7b3b1b6b1ab1ac24Aa doi: 10.1016/j.egypro.2017.05.175 – ident: 2022121505273823602_j_cjece-2020-0002_ref_047_w2aab3b7b3b1b6b1ab1ac47Aa |
| SSID | ssj0000858272 |
| Score | 2.1195006 |
| Snippet | The paper presents a comparison of the two languages Python and R related to the classification tools and demonstrates the differences in their syntax and... |
| SourceID | unpaywall crossref walterdegruyter |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 5 |
| SubjectTerms | clustering data analysis data ranking data sorting dendrogram machine learning programming language Python |
| Title | R Libraries {dendextend} and {magrittr} and Clustering Package scipy.cluster of Python For Modelling Diagrams of Dendrogram Trees |
| URI | https://www.degruyter.com/doi/10.2478/cjece-2020-0002 https://www.sciendo.com/pdf/10.2478/cjece-2020-0002 |
| UnpaywallVersion | publishedVersion |
| Volume | 13 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2343-8908 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000858272 issn: 2343-8908 databaseCode: KQ8 dateStart: 20120101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVJWN databaseName: Sciendo:Open Access customDbUrl: eissn: 2343-8908 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000858272 issn: 2343-8908 databaseCode: ADBLJ dateStart: 20180930 isFulltext: true titleUrlDefault: https://www.sciendo.com/ providerName: Sciendo |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELba5UA5AKWtSgvIhx7KIcsm8fOIgBWiLdpWuxI9RY4fiLLNrrKJ0Bb1wD_H42RRi0AVPVr2RI49Hs94Zr5B6APtGa0N92aqjFVEeE4iZQ2JnJPUCGIdlZA7_OWUHY_IyRk9a_O4Z21YZZD9Jngs96bGhXBlwsWe_mG19duahFxoL3eXGPUKeActjU4H-9_BtBKERJKFwndJStJIyJ5oAH0e-sJfd9FyXUzV_EqNxyto9Sr4qo09L-t5tfCNhiunv4aGi8k2kSaX3brKu_rXPRzHJ_7NOlptVVC83_DMS_TMFhto5Q9gwlfo5hv-vLCj8bWBZ_LwWP4bq8Lg65_qvLyoqrJpHoxrQFvwhHig9KUXUBgyfedd3XTgicODOWAU4P6kxFB9LQCB48MLBbFhMxhwaAE5AZp4WFo7e41G_aPhwXHUFmuIdMIojZhwnHJFwMJTXkmUKpVxroXpCZ6rRHLnhJXc62eJVwGlTr3xJ4VliVbM96fpG9QpJoV9i7AD57FhTMXc37Eu91RO5Sz32p6RVItN1F1sW6ZbJHMoqDHOvEUDa5uFtc1gbcG5nmyij3cE0wbE4_Ghu3d88O-x5B6fZK0AmD1GEqcx_S-ylL57wszeoxcNY0Es3BbqVGVtt73yVOU76Pmnr2KnPTK3ZlIWgw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LaxsxEBbFObQ5pI80NH2hQw7tYR3vrp7HkNSY0hoTbEhOi1aPkMZdm_UuwQ095J9Ho12bNtSU5CikWbTSaDSjmfkGoQPaM1ob7s1UGauI8JxEyhoSOSepEcQ6KiF3-PuQDSbk6xk9a_O4F21YZZD9JngsD-fGhXBlwsWh_mG19duahFxoL3e3GPUKeAdtTYajo3MwrQQhkWSh8F2SkjQSsicaQJ9_feGvu-hpXczV8lpNp9to5zr4qo29KOtltfKNhiun_xyNV5NtIk2uunWVd_WveziOD_ybF2inVUHxUcMzL9ETW7xC238AE-6i21P8bWVH4xsDz-Thsfw3VoXBNz_VRXlZVWXTPJ7WgLbgCfFI6SsvoDBk-i67uunAM4dHS8AowP1ZiaH6WgACxyeXCmLDFjDgxAJyAjTxuLR28RpN-l_Gx4OoLdYQ6YRRGjHhOOWKgIWnvJIoVSrjXAvTEzxXieTOCSu5188SrwJKnXrjTwrLEq2Y70_TPdQpZoV9g7AD57FhTMXc37Eu91RO5Sz32p6RVIt91F1tW6ZbJHMoqDHNvEUDa5uFtc1gbcG5nuyjT2uCeQPisXno5zUf_H8succnWSsAFptI4jSmjyJL6dsHzOwdetYwFsTCvUedqqztB688VfnH9rDcAeTsFY4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=R+Libraries+%7Bdendextend%7D+and+%7Bmagrittr%7D+and+Clustering+Package+scipy.cluster+of+Python+For+Modelling+Diagrams+of+Dendrogram+Trees&rft.jtitle=Carpathian+journal+of+electronic+and+computer+engineering&rft.au=Lemenkova%2C+Polina&rft.date=2020-09-01&rft.issn=2343-8908&rft.eissn=2343-8908&rft.volume=13&rft.issue=1&rft.spage=5&rft.epage=12&rft_id=info:doi/10.2478%2Fcjece-2020-0002&rft.externalDBID=n%2Fa&rft.externalDocID=10_2478_cjece_2020_0002 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2343-8908&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2343-8908&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2343-8908&client=summon |