Dynamic data reconciliation based on elman neural network and particle filter
In the process of modern industries, complex nonlinear dynamic systems present high requirements for measured data. In the actual industrial process system, the measurement data obtained by sensors will inevitably be subject to noise disturbances from the equipment itself or from the outside environ...
        Saved in:
      
    
          | Published in | Engineering Research Express Vol. 6; no. 3; pp. 35328 - 35346 | 
|---|---|
| Main Authors | , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IOP Publishing
    
        01.09.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2631-8695 2631-8695  | 
| DOI | 10.1088/2631-8695/ad6af0 | 
Cover
| Abstract | In the process of modern industries, complex nonlinear dynamic systems present high requirements for measured data. In the actual industrial process system, the measurement data obtained by sensors will inevitably be subject to noise disturbances from the equipment itself or from the outside environment. These noise disturbances will deteriorate the dynamic performance of the system to a certain extent and affect the industrial production. Particle filter (PF) can be used to infer the accurate outputs of nonlinear dynamic system from the contaminated measurement data, but PF is limited to the pre-known state space model. In the actual industrial process, it is difficult to summarize the internal behavior of the system and obtain the pre-known state space model. Therefore, it is impossible to directly use PF in the nonlinear dynamic system with unknown model. In order to solve the above problems, this paper proposes a dynamic data reconciliation method called ENN-PF, which combines Elman neural network (ENN) data-driven modeling with PF. In this method, ENN is used for data-driven modeling, that is, the system model is dynamically identified by using the input and output data of the system, and then the dynamic data reconciliation is carried out by using PF according to the model identified by ENN. Finally, the proposed ENN-PF method is validated by simulations and practical experiments to effectively reduce the interference of measurement noise and improve the dynamic performance of the system. | 
    
|---|---|
| AbstractList | In the process of modern industries, complex nonlinear dynamic systems present high requirements for measured data. In the actual industrial process system, the measurement data obtained by sensors will inevitably be subject to noise disturbances from the equipment itself or from the outside environment. These noise disturbances will deteriorate the dynamic performance of the system to a certain extent and affect the industrial production. Particle filter (PF) can be used to infer the accurate outputs of nonlinear dynamic system from the contaminated measurement data, but PF is limited to the pre-known state space model. In the actual industrial process, it is difficult to summarize the internal behavior of the system and obtain the pre-known state space model. Therefore, it is impossible to directly use PF in the nonlinear dynamic system with unknown model. In order to solve the above problems, this paper proposes a dynamic data reconciliation method called ENN-PF, which combines Elman neural network (ENN) data-driven modeling with PF. In this method, ENN is used for data-driven modeling, that is, the system model is dynamically identified by using the input and output data of the system, and then the dynamic data reconciliation is carried out by using PF according to the model identified by ENN. Finally, the proposed ENN-PF method is validated by simulations and practical experiments to effectively reduce the interference of measurement noise and improve the dynamic performance of the system. | 
    
| Author | Chen, Chong Zhao, Sheng Zhang, Zhengjiang Wu, Guichu Guo, Fengyi Ye, Jiaqi He, Yijia  | 
    
| Author_xml | – sequence: 1 givenname: Jiaqi surname: Ye fullname: Ye, Jiaqi organization: Wenzhou University The National-Local Joint Engineering Research Center of Electrical Digital Design Technology, Zhejiang, Wenzhou, 325000, People’s Republic of China – sequence: 2 givenname: Yijia surname: He fullname: He, Yijia organization: Wenzhou University The National-Local Joint Engineering Research Center of Electrical Digital Design Technology, Zhejiang, Wenzhou, 325000, People’s Republic of China – sequence: 3 givenname: Chong surname: Chen fullname: Chen, Chong organization: Wenzhou University The Key Laboratory of Low-Voltage Apparatus Intellectual Technology of Zhejiang, Wenzhou, 325000, People’s Republic of China – sequence: 4 givenname: Zhengjiang orcidid: 0000-0001-6018-5527 surname: Zhang fullname: Zhang, Zhengjiang organization: Wenzhou University The National-Local Joint Engineering Research Center of Electrical Digital Design Technology, Zhejiang, Wenzhou, 325000, People’s Republic of China – sequence: 5 givenname: Sheng surname: Zhao fullname: Zhao, Sheng organization: Wenzhou University The Key Laboratory of Low-Voltage Apparatus Intellectual Technology of Zhejiang, Wenzhou, 325000, People’s Republic of China – sequence: 6 givenname: Guichu surname: Wu fullname: Wu, Guichu organization: Zhejiang Juchuang Intelligent Technology Company Limited, Wenzhou, 325000, People’s Republic of China – sequence: 7 givenname: Fengyi surname: Guo fullname: Guo, Fengyi organization: Wenzhou University The Key Laboratory of Low-Voltage Apparatus Intellectual Technology of Zhejiang, Wenzhou, 325000, People’s Republic of China  | 
    
| BookMark | eNp1UD1PwzAUtFCRKKU7oycmQh07dtIRlU-piAVm6_lLMqR25KSC_nscBSEG0Bvu9HR3eu9O0SzEYBE6L8lVSZpmRQUri0as-QqMAEeO0PxnNfvFT9Cy770ilRClqMt6jp5uDgF2XmMDA-BkdQzatx4GHwNW0FuDM7HtDgIOdp-gzTB8xPSOIRjcQRq8bi12vh1sOkPHDtreLr9xgV7vbl82D8X2-f5xc70tNBXVUCgHlTGOG7oWROdxhDnKuaLMkIqAqRtNGs2N1VVVW16TjMpQRYEyqixbIDLl6hT7Plknu-R3kA6yJHJsRI4vy_FlOTWSLReTxcdOvsV9CvlAadOnFJJJwjijjeyMy8LLP4T_5n4Btrxylw | 
    
| CODEN | ERENBL | 
    
| Cites_doi | 10.1007/BF00114844 10.1109/TPWRS.2023.3263203 10.1016/j.autcon.2013.03.001 10.1016/j.jtice.2019.10.015 10.1016/j.neucom.2019.02.063 10.1016/j.energy.2020.117664 10.1016/j.ijepes.2023.109420 10.3390/pr11041080 10.1016/j.automatica.2016.04.019 10.1016/j.energy.2021.122630 10.1016/j.isatra.2017.03.021 10.1162/neco_a_01199 10.1016/j.est.2023.107987 10.1016/j.isatra.2023.01.015 10.1016/j.sna.2023.114764  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. | 
    
| Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1088/2631-8695/ad6af0 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| EISSN | 2631-8695 | 
    
| ExternalDocumentID | 10_1088_2631_8695_ad6af0 erxad6af0  | 
    
| GrantInformation_xml | – fundername: Open Research Project of the State Key Laboratory of Industrial Control Technology grantid: ICT2023B37 – fundername: Science and Technology Planning Project of Wenzhou City grantid: H20220006; ZG2023049 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY22F030008; Y24E070017 funderid: https://doi.org/10.13039/501100004731 – fundername: National Natural Science Foundation of China grantid: 52077158 funderid: https://doi.org/10.13039/501100001809  | 
    
| GroupedDBID | ABJNI ALMA_UNASSIGNED_HOLDINGS AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c264t-bfa4ddf5d2960c0c0f03f255b23d040ad78c08c5dec447e570c44bd2b2a232be3 | 
    
| IEDL.DBID | IOP | 
    
| ISSN | 2631-8695 | 
    
| IngestDate | Wed Oct 01 05:55:00 EDT 2025 Tue Jun 17 22:16:46 EDT 2025 Tue Aug 20 22:16:38 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Language | English | 
    
| License | This article is available under the terms of the IOP-Standard License. | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c264t-bfa4ddf5d2960c0c0f03f255b23d040ad78c08c5dec447e570c44bd2b2a232be3 | 
    
| Notes | ERX-104858.R2 | 
    
| ORCID | 0000-0001-6018-5527 | 
    
| PageCount | 19 | 
    
| ParticipantIDs | crossref_primary_10_1088_2631_8695_ad6af0 iop_journals_10_1088_2631_8695_ad6af0  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-09-01 | 
    
| PublicationDateYYYYMMDD | 2024-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Engineering Research Express | 
    
| PublicationTitleAbbrev | ERX | 
    
| PublicationTitleAlternate | Eng. Res. Express | 
    
| PublicationYear | 2024 | 
    
| Publisher | IOP Publishing | 
    
| Publisher_xml | – name: IOP Publishing | 
    
| References | Xie (erxad6af0bib13) 2020; 416 Zhu (erxad6af0bib3) 2017; 69 Elman (erxad6af0bib15) 1991; 7 Yu (erxad6af0bib10) 2019; 31 Meng (erxad6af0bib12) 2023; 11 Yang (erxad6af0bib2) 2020; 201 Jia (erxad6af0bib7) 2023; 363 Dey (erxad6af0bib9) 2017 Abolmasoumi (erxad6af0bib6) 2024; 39 Yang (erxad6af0bib4) 2016; 71 Ding (erxad6af0bib8) 2022; 244 Zhu (erxad6af0bib16) 2023; 137 Hu (erxad6af0bib1) 2020; 106 Zhou (erxad6af0bib14) 2013; 36 Yun (erxad6af0bib5) 2023; 70 Chen (erxad6af0bib11) 2023; 154  | 
    
| References_xml | – volume: 7 start-page: 195 year: 1991 ident: erxad6af0bib15 article-title: Distributed representations simple recurrent networks and grammatical structure publication-title: Mach. Learn. doi: 10.1007/BF00114844 – volume: 39 start-page: 1810 year: 2024 ident: erxad6af0bib6 article-title: Robust particle filter design with an application to power system state estimation publication-title: IEEE Trans. Power Syst. doi: 10.1109/TPWRS.2023.3263203 – volume: 36 start-page: 208 year: 2013 ident: erxad6af0bib14 article-title: PSO-based Elman neural network model for predictive control of air chamber pressure in slurry shield tunneling under Yangtze River publication-title: Autom. Constr. doi: 10.1016/j.autcon.2013.03.001 – volume: 106 start-page: 20 year: 2020 ident: erxad6af0bib1 article-title: Robust extended kalman filter based state estimation for nonlinear dynamic processes with measurements corrupted by gross errors publication-title: J. Taiwan Inst. Chem. Eng. doi: 10.1016/j.jtice.2019.10.015 – volume: 416 start-page: 136 year: 2020 ident: erxad6af0bib13 article-title: Short-term power load forecasting based on Elman neural network with particle swarm optimization publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.02.063 – volume: 201 year: 2020 ident: erxad6af0bib2 article-title: State-of-charge estimation of lithium-ion batteries using LSTM and UKF publication-title: Energy doi: 10.1016/j.energy.2020.117664 – volume: 154 year: 2023 ident: erxad6af0bib11 article-title: Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction International publication-title: Journal of Electrical Power & Energy Systems doi: 10.1016/j.ijepes.2023.109420 – volume: 11 year: 2023 ident: erxad6af0bib12 article-title: RNN-LSTM-based model predictive control for a corn-to-sugar process publication-title: Processes doi: 10.3390/pr11041080 – volume: 71 start-page: 10 year: 2016 ident: erxad6af0bib4 article-title: Multivariable feedback particle filter publication-title: Automatica doi: 10.1016/j.automatica.2016.04.019 – volume: 244 year: 2022 ident: erxad6af0bib8 article-title: Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network publication-title: Energy doi: 10.1016/j.energy.2021.122630 – volume: 69 start-page: 281 year: 2017 ident: erxad6af0bib3 article-title: Robust particle filter for state estimation using measurements with different types of gross errors publication-title: ISA Trans. doi: 10.1016/j.isatra.2017.03.021 – volume: 31 start-page: 1235 year: 2019 ident: erxad6af0bib10 article-title: A review of recurrent neural networks: lstm cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – start-page: 1597 year: 2017 ident: erxad6af0bib9 article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks – volume: 70 year: 2023 ident: erxad6af0bib5 article-title: Online parameters identification and state of charge estimation for lithium-ion batteries based on improved central difference particle filter publication-title: Journal of Energy Storage doi: 10.1016/j.est.2023.107987 – volume: 137 start-page: 544 year: 2023 ident: erxad6af0bib16 article-title: Using dynamic data reconciliation to improve the performance of PID feedback control systems with Gaussian/non-Gaussian distributed disturbance and measurement noise publication-title: ISA Trans. doi: 10.1016/j.isatra.2023.01.015 – volume: 363 year: 2023 ident: erxad6af0bib7 article-title: Quantitative recognition of electrical parameters of transformer oil based on nondestructive ultrasound and the combined KPCA-WOA-Elman neural network publication-title: Sensors and Actuators A-Physical doi: 10.1016/j.sna.2023.114764  | 
    
| SSID | ssib046616717 ssib037096498 ssib052001916  | 
    
| Score | 2.2689092 | 
    
| Snippet | In the process of modern industries, complex nonlinear dynamic systems present high requirements for measured data. In the actual industrial process system,... | 
    
| SourceID | crossref iop  | 
    
| SourceType | Index Database Enrichment Source Publisher  | 
    
| StartPage | 35328 | 
    
| SubjectTerms | data-driven modeling dynamic data reconciliation elman neural network particle filter  | 
    
| Title | Dynamic data reconciliation based on elman neural network and particle filter | 
    
| URI | https://iopscience.iop.org/article/10.1088/2631-8695/ad6af0 | 
    
| Volume | 6 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: Institute of Physics Open Access Journal Titles customDbUrl: eissn: 2631-8695 dateEnd: 99991231 omitProxy: true ssIdentifier: ssib037096498 issn: 2631-8695 databaseCode: O3W dateStart: 20190711 isFulltext: true titleUrlDefault: http://iopscience.iop.org/ providerName: IOP Publishing – providerCode: PRVIOP databaseName: IOP_英国物理学会现刊(含NSTL购买的14种刊) customDbUrl: eissn: 2631-8695 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib037096498 issn: 2631-8695 databaseCode: IOP dateStart: 20190101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9zXrz4QMX5zEEPHrp1TZOmeBJ1DGHOg8MdhJBXYTi7MjcQ_3q_LJ1uIiJSSHMIafIl6ff78T2C0GmUsiylJg0U6IcgTowKuHRWeID2TRsyTZULTu7csXYvvu3TfgVdfMbCjIry11-Hqk8U7EVYOsTxRsRIM-AspQ1pmMyAr68SDsDYRe917-ebiSQAzuMvLhGDImIL3MWlGwKuMjdd_tTxkqpageEsaJ7WBnqaj9k7nDzXpxNV1-_f0jn-c1KbaL1EpPjSN91CFZtvo861v6keOw9SPGPNejD0y4id5jMYKnb4InPsUmJCB7l3KMcyN7goP4yzgbPG76Be6-bhqh2UNy8EGgDSJFCZjI3JqIGlDDU8WUgyIB8qIgZOvTQJ1yHX1Fgdx4mlSQhvZSIVSUBoypJdVM1Hud1DGAgozIgmxEoZh1anHDBLoomJmIJdQWvofC5kUfgEG2JmGOdcOKEIJxThhVJDZyA_UZ6y11_anSy1s-M3wQQRIaEk4qIw2f4fezpAaxGgGO9Udoiqk_HUHgEKmajj2W6DsksePwCQJNWV | 
    
| linkProvider | IOP Publishing | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA62gnjxgYr11Rz04GHb7WaTzR7FWuqj2oOCt5jXQrFuS21B_PVONlu0IiLIHjaHMJt8mex8w0wmCB1HKctSatJAgX0I4sSogEsXhQdq37Ih01S5w8m9W9Z9iK8e6WN5z2lxFmY0Ln_9DWj6QsEewjIhjjcjRloBZyltSsNkFjbHJqug5aJOiTvBd9efKxRJgKDHn_5EDMaIffFfXMkh8Ffm4cufhC-YqwoM6Yv16ayjp_m4fdLJc2M2VQ39_q2k4z8mtoHWSmaKz3z3TbRk8y3Ua_sb67HLJMWF96wHQ7-c2FlAg6Fhhy8yx640JgjIfWI5lrnB4_LjOBu4qPw2euhc3J93g_IGhkADUZoGKpOxMRk1sKShhicLSQZOiIqIgd0vTcJ1yDU1VsdxYmkSwluZSEUSmJqyZAdV81FudxEGRxRmRRNipYxDq1MO3CXRxERMgXbQGjqdAy3GvtCGKALknAsHjHDACA9MDZ0AhqLcba-_9Ksv9LOTN8EEESGhJOIC4N37o6Q6Wum3O-Lm8vZ6H61GQGx8ntkBqk4nM3sIxGSqjgrl-wCld9n8 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+data+reconciliation+based+on+elman+neural+network+and+particle+filter&rft.jtitle=Engineering+Research+Express&rft.au=Ye%2C+Jiaqi&rft.au=He%2C+Yijia&rft.au=Chen%2C+Chong&rft.au=Zhang%2C+Zhengjiang&rft.date=2024-09-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1088%2F2631-8695%2Fad6af0&rft.externalDocID=erxad6af0 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon |