Dynamic data reconciliation based on elman neural network and particle filter

In the process of modern industries, complex nonlinear dynamic systems present high requirements for measured data. In the actual industrial process system, the measurement data obtained by sensors will inevitably be subject to noise disturbances from the equipment itself or from the outside environ...

Full description

Saved in:
Bibliographic Details
Published inEngineering Research Express Vol. 6; no. 3; pp. 35328 - 35346
Main Authors Ye, Jiaqi, He, Yijia, Chen, Chong, Zhang, Zhengjiang, Zhao, Sheng, Wu, Guichu, Guo, Fengyi
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2024
Subjects
Online AccessGet full text
ISSN2631-8695
2631-8695
DOI10.1088/2631-8695/ad6af0

Cover

Abstract In the process of modern industries, complex nonlinear dynamic systems present high requirements for measured data. In the actual industrial process system, the measurement data obtained by sensors will inevitably be subject to noise disturbances from the equipment itself or from the outside environment. These noise disturbances will deteriorate the dynamic performance of the system to a certain extent and affect the industrial production. Particle filter (PF) can be used to infer the accurate outputs of nonlinear dynamic system from the contaminated measurement data, but PF is limited to the pre-known state space model. In the actual industrial process, it is difficult to summarize the internal behavior of the system and obtain the pre-known state space model. Therefore, it is impossible to directly use PF in the nonlinear dynamic system with unknown model. In order to solve the above problems, this paper proposes a dynamic data reconciliation method called ENN-PF, which combines Elman neural network (ENN) data-driven modeling with PF. In this method, ENN is used for data-driven modeling, that is, the system model is dynamically identified by using the input and output data of the system, and then the dynamic data reconciliation is carried out by using PF according to the model identified by ENN. Finally, the proposed ENN-PF method is validated by simulations and practical experiments to effectively reduce the interference of measurement noise and improve the dynamic performance of the system.
AbstractList In the process of modern industries, complex nonlinear dynamic systems present high requirements for measured data. In the actual industrial process system, the measurement data obtained by sensors will inevitably be subject to noise disturbances from the equipment itself or from the outside environment. These noise disturbances will deteriorate the dynamic performance of the system to a certain extent and affect the industrial production. Particle filter (PF) can be used to infer the accurate outputs of nonlinear dynamic system from the contaminated measurement data, but PF is limited to the pre-known state space model. In the actual industrial process, it is difficult to summarize the internal behavior of the system and obtain the pre-known state space model. Therefore, it is impossible to directly use PF in the nonlinear dynamic system with unknown model. In order to solve the above problems, this paper proposes a dynamic data reconciliation method called ENN-PF, which combines Elman neural network (ENN) data-driven modeling with PF. In this method, ENN is used for data-driven modeling, that is, the system model is dynamically identified by using the input and output data of the system, and then the dynamic data reconciliation is carried out by using PF according to the model identified by ENN. Finally, the proposed ENN-PF method is validated by simulations and practical experiments to effectively reduce the interference of measurement noise and improve the dynamic performance of the system.
Author Chen, Chong
Zhao, Sheng
Zhang, Zhengjiang
Wu, Guichu
Guo, Fengyi
Ye, Jiaqi
He, Yijia
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Ye
  fullname: Ye, Jiaqi
  organization: Wenzhou University The National-Local Joint Engineering Research Center of Electrical Digital Design Technology, Zhejiang, Wenzhou, 325000, People’s Republic of China
– sequence: 2
  givenname: Yijia
  surname: He
  fullname: He, Yijia
  organization: Wenzhou University The National-Local Joint Engineering Research Center of Electrical Digital Design Technology, Zhejiang, Wenzhou, 325000, People’s Republic of China
– sequence: 3
  givenname: Chong
  surname: Chen
  fullname: Chen, Chong
  organization: Wenzhou University The Key Laboratory of Low-Voltage Apparatus Intellectual Technology of Zhejiang, Wenzhou, 325000, People’s Republic of China
– sequence: 4
  givenname: Zhengjiang
  orcidid: 0000-0001-6018-5527
  surname: Zhang
  fullname: Zhang, Zhengjiang
  organization: Wenzhou University The National-Local Joint Engineering Research Center of Electrical Digital Design Technology, Zhejiang, Wenzhou, 325000, People’s Republic of China
– sequence: 5
  givenname: Sheng
  surname: Zhao
  fullname: Zhao, Sheng
  organization: Wenzhou University The Key Laboratory of Low-Voltage Apparatus Intellectual Technology of Zhejiang, Wenzhou, 325000, People’s Republic of China
– sequence: 6
  givenname: Guichu
  surname: Wu
  fullname: Wu, Guichu
  organization: Zhejiang Juchuang Intelligent Technology Company Limited, Wenzhou, 325000, People’s Republic of China
– sequence: 7
  givenname: Fengyi
  surname: Guo
  fullname: Guo, Fengyi
  organization: Wenzhou University The Key Laboratory of Low-Voltage Apparatus Intellectual Technology of Zhejiang, Wenzhou, 325000, People’s Republic of China
BookMark eNp1UD1PwzAUtFCRKKU7oycmQh07dtIRlU-piAVm6_lLMqR25KSC_nscBSEG0Bvu9HR3eu9O0SzEYBE6L8lVSZpmRQUri0as-QqMAEeO0PxnNfvFT9Cy770ilRClqMt6jp5uDgF2XmMDA-BkdQzatx4GHwNW0FuDM7HtDgIOdp-gzTB8xPSOIRjcQRq8bi12vh1sOkPHDtreLr9xgV7vbl82D8X2-f5xc70tNBXVUCgHlTGOG7oWROdxhDnKuaLMkIqAqRtNGs2N1VVVW16TjMpQRYEyqixbIDLl6hT7Plknu-R3kA6yJHJsRI4vy_FlOTWSLReTxcdOvsV9CvlAadOnFJJJwjijjeyMy8LLP4T_5n4Btrxylw
CODEN ERENBL
Cites_doi 10.1007/BF00114844
10.1109/TPWRS.2023.3263203
10.1016/j.autcon.2013.03.001
10.1016/j.jtice.2019.10.015
10.1016/j.neucom.2019.02.063
10.1016/j.energy.2020.117664
10.1016/j.ijepes.2023.109420
10.3390/pr11041080
10.1016/j.automatica.2016.04.019
10.1016/j.energy.2021.122630
10.1016/j.isatra.2017.03.021
10.1162/neco_a_01199
10.1016/j.est.2023.107987
10.1016/j.isatra.2023.01.015
10.1016/j.sna.2023.114764
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
DOI 10.1088/2631-8695/ad6af0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
EISSN 2631-8695
ExternalDocumentID 10_1088_2631_8695_ad6af0
erxad6af0
GrantInformation_xml – fundername: Open Research Project of the State Key Laboratory of Industrial Control Technology
  grantid: ICT2023B37
– fundername: Science and Technology Planning Project of Wenzhou City
  grantid: H20220006; ZG2023049
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY22F030008; Y24E070017
  funderid: https://doi.org/10.13039/501100004731
– fundername: National Natural Science Foundation of China
  grantid: 52077158
  funderid: https://doi.org/10.13039/501100001809
GroupedDBID ABJNI
ALMA_UNASSIGNED_HOLDINGS
AAYXX
CITATION
ID FETCH-LOGICAL-c264t-bfa4ddf5d2960c0c0f03f255b23d040ad78c08c5dec447e570c44bd2b2a232be3
IEDL.DBID IOP
ISSN 2631-8695
IngestDate Wed Oct 01 05:55:00 EDT 2025
Tue Jun 17 22:16:46 EDT 2025
Tue Aug 20 22:16:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License This article is available under the terms of the IOP-Standard License.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-bfa4ddf5d2960c0c0f03f255b23d040ad78c08c5dec447e570c44bd2b2a232be3
Notes ERX-104858.R2
ORCID 0000-0001-6018-5527
PageCount 19
ParticipantIDs crossref_primary_10_1088_2631_8695_ad6af0
iop_journals_10_1088_2631_8695_ad6af0
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-09-01
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Engineering Research Express
PublicationTitleAbbrev ERX
PublicationTitleAlternate Eng. Res. Express
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Xie (erxad6af0bib13) 2020; 416
Zhu (erxad6af0bib3) 2017; 69
Elman (erxad6af0bib15) 1991; 7
Yu (erxad6af0bib10) 2019; 31
Meng (erxad6af0bib12) 2023; 11
Yang (erxad6af0bib2) 2020; 201
Jia (erxad6af0bib7) 2023; 363
Dey (erxad6af0bib9) 2017
Abolmasoumi (erxad6af0bib6) 2024; 39
Yang (erxad6af0bib4) 2016; 71
Ding (erxad6af0bib8) 2022; 244
Zhu (erxad6af0bib16) 2023; 137
Hu (erxad6af0bib1) 2020; 106
Zhou (erxad6af0bib14) 2013; 36
Yun (erxad6af0bib5) 2023; 70
Chen (erxad6af0bib11) 2023; 154
References_xml – volume: 7
  start-page: 195
  year: 1991
  ident: erxad6af0bib15
  article-title: Distributed representations simple recurrent networks and grammatical structure
  publication-title: Mach. Learn.
  doi: 10.1007/BF00114844
– volume: 39
  start-page: 1810
  year: 2024
  ident: erxad6af0bib6
  article-title: Robust particle filter design with an application to power system state estimation
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/TPWRS.2023.3263203
– volume: 36
  start-page: 208
  year: 2013
  ident: erxad6af0bib14
  article-title: PSO-based Elman neural network model for predictive control of air chamber pressure in slurry shield tunneling under Yangtze River
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.03.001
– volume: 106
  start-page: 20
  year: 2020
  ident: erxad6af0bib1
  article-title: Robust extended kalman filter based state estimation for nonlinear dynamic processes with measurements corrupted by gross errors
  publication-title: J. Taiwan Inst. Chem. Eng.
  doi: 10.1016/j.jtice.2019.10.015
– volume: 416
  start-page: 136
  year: 2020
  ident: erxad6af0bib13
  article-title: Short-term power load forecasting based on Elman neural network with particle swarm optimization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.02.063
– volume: 201
  year: 2020
  ident: erxad6af0bib2
  article-title: State-of-charge estimation of lithium-ion batteries using LSTM and UKF
  publication-title: Energy
  doi: 10.1016/j.energy.2020.117664
– volume: 154
  year: 2023
  ident: erxad6af0bib11
  article-title: Low-carbon economic dispatch of integrated energy system containing electric hydrogen production based on VMD-GRU short-term wind power prediction International
  publication-title: Journal of Electrical Power & Energy Systems
  doi: 10.1016/j.ijepes.2023.109420
– volume: 11
  year: 2023
  ident: erxad6af0bib12
  article-title: RNN-LSTM-based model predictive control for a corn-to-sugar process
  publication-title: Processes
  doi: 10.3390/pr11041080
– volume: 71
  start-page: 10
  year: 2016
  ident: erxad6af0bib4
  article-title: Multivariable feedback particle filter
  publication-title: Automatica
  doi: 10.1016/j.automatica.2016.04.019
– volume: 244
  year: 2022
  ident: erxad6af0bib8
  article-title: Predicting short wind speed with a hybrid model based on a piecewise error correction method and Elman neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2021.122630
– volume: 69
  start-page: 281
  year: 2017
  ident: erxad6af0bib3
  article-title: Robust particle filter for state estimation using measurements with different types of gross errors
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.03.021
– volume: 31
  start-page: 1235
  year: 2019
  ident: erxad6af0bib10
  article-title: A review of recurrent neural networks: lstm cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– start-page: 1597
  year: 2017
  ident: erxad6af0bib9
  article-title: Gate-variants of Gated Recurrent Unit (GRU) neural networks
– volume: 70
  year: 2023
  ident: erxad6af0bib5
  article-title: Online parameters identification and state of charge estimation for lithium-ion batteries based on improved central difference particle filter
  publication-title: Journal of Energy Storage
  doi: 10.1016/j.est.2023.107987
– volume: 137
  start-page: 544
  year: 2023
  ident: erxad6af0bib16
  article-title: Using dynamic data reconciliation to improve the performance of PID feedback control systems with Gaussian/non-Gaussian distributed disturbance and measurement noise
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2023.01.015
– volume: 363
  year: 2023
  ident: erxad6af0bib7
  article-title: Quantitative recognition of electrical parameters of transformer oil based on nondestructive ultrasound and the combined KPCA-WOA-Elman neural network
  publication-title: Sensors and Actuators A-Physical
  doi: 10.1016/j.sna.2023.114764
SSID ssib046616717
ssib037096498
ssib052001916
Score 2.2689092
Snippet In the process of modern industries, complex nonlinear dynamic systems present high requirements for measured data. In the actual industrial process system,...
SourceID crossref
iop
SourceType Index Database
Enrichment Source
Publisher
StartPage 35328
SubjectTerms data-driven modeling
dynamic data reconciliation
elman neural network
particle filter
Title Dynamic data reconciliation based on elman neural network and particle filter
URI https://iopscience.iop.org/article/10.1088/2631-8695/ad6af0
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: Institute of Physics Open Access Journal Titles
  customDbUrl:
  eissn: 2631-8695
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssib037096498
  issn: 2631-8695
  databaseCode: O3W
  dateStart: 20190711
  isFulltext: true
  titleUrlDefault: http://iopscience.iop.org/
  providerName: IOP Publishing
– providerCode: PRVIOP
  databaseName: IOP_英国物理学会现刊(含NSTL购买的14种刊)
  customDbUrl:
  eissn: 2631-8695
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssib037096498
  issn: 2631-8695
  databaseCode: IOP
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LS8MwGA9zXrz4QMX5zEEPHrp1TZOmeBJ1DGHOg8MdhJBXYTi7MjcQ_3q_LJ1uIiJSSHMIafIl6ff78T2C0GmUsiylJg0U6IcgTowKuHRWeID2TRsyTZULTu7csXYvvu3TfgVdfMbCjIry11-Hqk8U7EVYOsTxRsRIM-AspQ1pmMyAr68SDsDYRe917-ebiSQAzuMvLhGDImIL3MWlGwKuMjdd_tTxkqpageEsaJ7WBnqaj9k7nDzXpxNV1-_f0jn-c1KbaL1EpPjSN91CFZtvo861v6keOw9SPGPNejD0y4id5jMYKnb4InPsUmJCB7l3KMcyN7goP4yzgbPG76Be6-bhqh2UNy8EGgDSJFCZjI3JqIGlDDU8WUgyIB8qIgZOvTQJ1yHX1Fgdx4mlSQhvZSIVSUBoypJdVM1Hud1DGAgozIgmxEoZh1anHDBLoomJmIJdQWvofC5kUfgEG2JmGOdcOKEIJxThhVJDZyA_UZ6y11_anSy1s-M3wQQRIaEk4qIw2f4fezpAaxGgGO9Udoiqk_HUHgEKmajj2W6DsksePwCQJNWV
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA62gnjxgYr11Rz04GHb7WaTzR7FWuqj2oOCt5jXQrFuS21B_PVONlu0IiLIHjaHMJt8mex8w0wmCB1HKctSatJAgX0I4sSogEsXhQdq37Ih01S5w8m9W9Z9iK8e6WN5z2lxFmY0Ln_9DWj6QsEewjIhjjcjRloBZyltSsNkFjbHJqug5aJOiTvBd9efKxRJgKDHn_5EDMaIffFfXMkh8Ffm4cufhC-YqwoM6Yv16ayjp_m4fdLJc2M2VQ39_q2k4z8mtoHWSmaKz3z3TbRk8y3Ua_sb67HLJMWF96wHQ7-c2FlAg6Fhhy8yx640JgjIfWI5lrnB4_LjOBu4qPw2euhc3J93g_IGhkADUZoGKpOxMRk1sKShhicLSQZOiIqIgd0vTcJ1yDU1VsdxYmkSwluZSEUSmJqyZAdV81FudxEGRxRmRRNipYxDq1MO3CXRxERMgXbQGjqdAy3GvtCGKALknAsHjHDACA9MDZ0AhqLcba-_9Ksv9LOTN8EEESGhJOIC4N37o6Q6Wum3O-Lm8vZ6H61GQGx8ntkBqk4nM3sIxGSqjgrl-wCld9n8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+data+reconciliation+based+on+elman+neural+network+and+particle+filter&rft.jtitle=Engineering+Research+Express&rft.au=Ye%2C+Jiaqi&rft.au=He%2C+Yijia&rft.au=Chen%2C+Chong&rft.au=Zhang%2C+Zhengjiang&rft.date=2024-09-01&rft.pub=IOP+Publishing&rft.eissn=2631-8695&rft.volume=6&rft.issue=3&rft_id=info:doi/10.1088%2F2631-8695%2Fad6af0&rft.externalDocID=erxad6af0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2631-8695&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2631-8695&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2631-8695&client=summon