Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem

Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The traditional particle swarm optimization algorithms often suffer from premature convergence and low efficiency when solving the MF-CHPED problem....

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 248; p. 108902
Main Authors Chen, Xu, Li, Kangji
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 19.07.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
DOI10.1016/j.knosys.2022.108902

Cover

Abstract Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The traditional particle swarm optimization algorithms often suffer from premature convergence and low efficiency when solving the MF-CHPED problem. Collective intelligence is a cutting-edge technology in the evolutionary computation. In this paper, using the concept from collective intelligence, a novel collective information-based particle swarm optimization (CIBPSO) algorithm is proposed. In CIBPSO, two new collective information (CI)-based strategies namely CI-based particle search and CI-based elite fine-tuning are developed. First, in the CI-based particle search strategy, the global best position in traditional particle update equation is replaced by a newly-defined CI-based best solutions, which helps to enhance swarm diversity and alleviate premature convergence. Second, in the CI-based elite fine-tuning strategy, more computing resources are assigned to the elite solutions by using the information of CI-based best solutions, which is beneficial to improve the search efficiency. The proposed CIBPSO algorithm is applied to solve four different MF-CHPED problems considering different operating constraints. By comparing with six well-regarded optimization algorithms, it is found that CIBPSO achieves the overall best results in terms of solution accuracy, stability and convergence. In addition, the effectiveness of the two new CI-based strategies is discussed. •Collective information-based particle swarm optimization (CIBPSO) algorithm is proposed.•CI-based particle search and CI-based elite fine-tuning strategies are designed.•CIBPSO is applied to solve four multi-fuel combined heat and power economic dispatch problems.•Simulation results demonstrate the effectiveness of the proposed CIBPSO algorithm.
AbstractList Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The traditional particle swarm optimization algorithms often suffer from premature convergence and low efficiency when solving the MF-CHPED problem. Collective intelligence is a cutting-edge technology in the evolutionary computation. In this paper, using the concept from collective intelligence, a novel collective information-based particle swarm optimization (CIBPSO) algorithm is proposed. In CIBPSO, two new collective information (CI)-based strategies namely CI-based particle search and CI-based elite fine-tuning are developed. First, in the CI-based particle search strategy, the global best position in traditional particle update equation is replaced by a newly-defined CI-based best solutions, which helps to enhance swarm diversity and alleviate premature convergence. Second, in the CI-based elite fine-tuning strategy, more computing resources are assigned to the elite solutions by using the information of CI-based best solutions, which is beneficial to improve the search efficiency. The proposed CIBPSO algorithm is applied to solve four different MF-CHPED problems considering different operating constraints. By comparing with six well-regarded optimization algorithms, it is found that CIBPSO achieves the overall best results in terms of solution accuracy, stability and convergence. In addition, the effectiveness of the two new CI-based strategies is discussed.
Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The traditional particle swarm optimization algorithms often suffer from premature convergence and low efficiency when solving the MF-CHPED problem. Collective intelligence is a cutting-edge technology in the evolutionary computation. In this paper, using the concept from collective intelligence, a novel collective information-based particle swarm optimization (CIBPSO) algorithm is proposed. In CIBPSO, two new collective information (CI)-based strategies namely CI-based particle search and CI-based elite fine-tuning are developed. First, in the CI-based particle search strategy, the global best position in traditional particle update equation is replaced by a newly-defined CI-based best solutions, which helps to enhance swarm diversity and alleviate premature convergence. Second, in the CI-based elite fine-tuning strategy, more computing resources are assigned to the elite solutions by using the information of CI-based best solutions, which is beneficial to improve the search efficiency. The proposed CIBPSO algorithm is applied to solve four different MF-CHPED problems considering different operating constraints. By comparing with six well-regarded optimization algorithms, it is found that CIBPSO achieves the overall best results in terms of solution accuracy, stability and convergence. In addition, the effectiveness of the two new CI-based strategies is discussed. •Collective information-based particle swarm optimization (CIBPSO) algorithm is proposed.•CI-based particle search and CI-based elite fine-tuning strategies are designed.•CIBPSO is applied to solve four multi-fuel combined heat and power economic dispatch problems.•Simulation results demonstrate the effectiveness of the proposed CIBPSO algorithm.
ArticleNumber 108902
Author Chen, Xu
Li, Kangji
Author_xml – sequence: 1
  givenname: Xu
  surname: Chen
  fullname: Chen, Xu
  email: xuchen@ujs.edu.cn
– sequence: 2
  givenname: Kangji
  surname: Li
  fullname: Li, Kangji
  email: likangji@ujs.edu.cn
BookMark eNqFkMFK5TAUhoMoeHV8AxcB172TpG2auhDkoqMgzCx0HdLTEyZ32qYmuYo-_UTryoWuDhy-_z-c74jsT35CQk45W3PG5c_t-t_k40tcCyZEXqmWiT2y4qoRRVOxdp-sWFuzomE1PyRHMW4ZyyRXK4IbPwwIyT0hdZP1YTTJ-anoTMSeziYkBwPS-GzCSP2c3Ohe3wmaWTruhuQKu8OBbm7-UAQ_-dEB7V2cTYK_dA6-G3D8QQ6sGSKefMxj8nB9db-5Ke5-_7rdXN4VIGSViq4B6CVXEkRXWVNyBsL2VkKrWN9zydpKNrYqeVcrVaMUyqDFTpVliwCNLI_J2dKb7z7uMCa99bsw5ZNaSCUFr5lsM3W-UBB8jAGtBpfen0rBuEFzpt-06q1etOo3rXrRmsPVp_Ac3GjCy3exiyWG-f0nh0FHcDgB9i5k_br37uuC_8U_mEs
CitedBy_id crossref_primary_10_1016_j_asoc_2024_112060
crossref_primary_10_1016_j_energy_2024_131510
crossref_primary_10_3390_app13010283
crossref_primary_10_1016_j_isatra_2023_05_005
crossref_primary_10_1049_gtd2_13070
crossref_primary_10_1016_j_apenergy_2023_121890
crossref_primary_10_3390_en16093753
crossref_primary_10_1016_j_applthermaleng_2024_122781
crossref_primary_10_1016_j_apenergy_2024_123778
crossref_primary_10_1080_00207543_2023_2173511
crossref_primary_10_1016_j_knosys_2022_110177
crossref_primary_10_1016_j_ijepes_2023_109586
crossref_primary_10_29130_dubited_1150453
crossref_primary_10_1093_jcde_qwae058
crossref_primary_10_1093_jcde_qwad077
Cites_doi 10.1007/s00500-018-03741-2
10.1016/j.enconman.2015.09.003
10.1109/TEVC.2021.3065659
10.1007/s00521-017-2941-8
10.1016/j.apenergy.2008.10.002
10.1016/j.asoc.2016.12.046
10.1016/j.epsr.2015.10.007
10.1016/j.swevo.2019.01.003
10.1109/TCYB.2019.2944873
10.1016/j.ijepes.2015.07.031
10.1016/j.ejor.2006.09.072
10.1007/s00500-016-2307-7
10.1109/TEVC.2004.826071
10.1109/59.544642
10.1016/j.ref.2020.06.008
10.1016/j.ijepes.2016.03.004
10.1016/j.knosys.2020.106463
10.1016/j.ijepes.2013.12.006
10.1007/s00500-014-1531-2
10.1109/TEVC.2018.2875430
10.1016/j.asoc.2021.107134
10.1016/j.ins.2017.02.055
10.1016/j.ijepes.2015.06.023
10.1080/07313569808955828
10.1007/s40998-019-00280-w
10.1016/j.energy.2019.06.087
10.1109/TCYB.2019.2937565
10.1016/j.apenergy.2019.01.056
10.1016/j.egyr.2021.10.067
10.1016/j.ins.2019.08.065
10.35833/MPCE.2018.000753
10.1080/15325000902994348
10.1016/j.enconman.2013.03.013
10.1109/TCYB.2019.2943928
10.1016/j.ins.2020.05.108
10.1016/j.advengsoft.2013.12.007
10.1016/j.rser.2017.06.024
10.1109/TCYB.2019.2933499
10.1109/TCYB.2020.2977956
10.1109/TCYB.2014.2322602
10.1109/TSMCB.2012.2209115
10.1016/j.energy.2016.02.044
10.1016/j.eswa.2009.06.044
10.1016/j.epsr.2012.08.005
10.1016/j.ijepes.2012.05.016
10.1016/j.energy.2017.03.054
10.1109/TEVC.2008.919004
10.1016/j.applthermaleng.2015.12.136
10.1016/j.ijepes.2012.07.038
10.1016/j.asoc.2021.107088
10.1016/j.epsr.2015.07.011
10.1016/j.energy.2015.10.006
10.1016/j.swevo.2018.04.006
10.1016/j.applthermaleng.2019.03.095
10.1155/2013/982305
10.1016/j.energy.2016.07.138
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jul 19, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jul 19, 2022
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
DOI 10.1016/j.knosys.2022.108902
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10_1016_j_knosys_2022_108902
S0950705122004324
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
E3H
F2A
JQ2
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c264t-b7ccd6186c2b4fa310c2fdf6c980dd1609467f431b5885e628aefeb8339ecc763
IEDL.DBID .~1
ISSN 0950-7051
IngestDate Fri Jul 25 06:04:15 EDT 2025
Thu Apr 24 23:01:42 EDT 2025
Sat Oct 25 05:25:58 EDT 2025
Fri Feb 23 02:40:10 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-fuel options
Collective intelligence technology
Combined heat and power economic dispatch
Particle swarm optimization
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-b7ccd6186c2b4fa310c2fdf6c980dd1609467f431b5885e628aefeb8339ecc763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2686215069
PQPubID 2035257
ParticipantIDs proquest_journals_2686215069
crossref_citationtrail_10_1016_j_knosys_2022_108902
crossref_primary_10_1016_j_knosys_2022_108902
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108902
PublicationCentury 2000
PublicationDate 2022-07-19
PublicationDateYYYYMMDD 2022-07-19
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-19
  day: 19
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Xia, Gui, He, Wei, Zhang, Yu, Wu, Zhan (b41) 2020; 508
Xia, Gui, Yu, Wu, Wei, Zhang, Zhan (b40) 2020; 50
Song, Xuan (b9) 1998; 26
Alomoush (b29) 2020; 8
Eberhart, Kennedy (b51) 1995
Deng, Zhang, Fu, Sun, Qiao (b53) 2020; 539
Nazari-Heris, Mohammadi-Ivatloo, Asadi, Geem (b33) 2019; 154
Peng, Zhang, Zheng, Long (b49) 2019; 23
Pattanaik, Basu, Dash (b28) 2020; 44
Guo, Henwood, Van Ooijen (b5) 1996; 11
Nazari-Heris, Mohammadi-Ivatloo, Gharehpetian (b2) 2018; 81
Chen, Tianfield, Li (b54) 2019; 45
Chen, Tianfield, Du (b52) 2021; 102
Chen, Li, Xu, Yang (b18) 2020; 208
Narang, Sharma, Dhillon (b36) 2017; 52
Wang, Zhan, Kwong, Jin, Zhang (b42) 2021; 51
Roy, Paul, Sultana (b22) 2014; 57
Meng, Mei, Yin, Peng, Guo (b32) 2015; 105
Rong, Lahdelma (b7) 2007; 183
Paul, Roy, Mukherjee (b30) 2020; 35
Nasir, Sadollah, Aydilek, Ara, Nabavi-Niaki (b35) 2021; 102
Mirjalili, Mirjalili, Lewis (b56) 2014; 69
Zheng, Zhang, Tang, Zheng (b48) 2017; 399
Abdolmohammadi, Kazemi (b3) 2013; 71
Ahmadi, Moghimi, Nezhad, Agelidis, Sharaf (b8) 2015; 129
Basu (b20) 2011; 38
Jena, Basu, Panigrahi (b13) 2016; 20
Wang, Zhan, Yu, Lin, Zhang, Gu, Zhang (b46) 2020; 50
Yang, Peng, Yang, Guo, Chen (b1) 2021; 7
Sadeghian, Ardehali (b4) 2016; 102
Sashirekha, Pasupuleti, Moin, Tan (b6) 2013; 44
Elaiw, Xia, Shehata (b14) 2013; 2013
Basu (b23) 2015; 73
Zhan, Li, Cao, Zhang, Chung, Shi (b44) 2013; 43
Meng, Li, Yin (b50) 2016; 113
Jayakumar, Subramanian, Ganesan, Elanchezhian (b27) 2016; 74
Xia, Xing, Wei, Zhang, Li, Deng, Gui (b39) 2019; 44
Ghorbani (b26) 2016; 82
Beigvand, Abdi, La Scala (b25) 2016; 133
Cheng, Jin (b60) 2015; 45
Simon (b55) 2008; 12
Basu (b21) 2012; 43
Haghrah, Nazari-Heris, Mohammadi-Ivatloo (b11) 2016; 99
Subbaraj, Rengaraj, Salivahanan (b10) 2009; 86
Liu, Zhan, Gao, Zhang, Kwong, Zhang (b45) 2019; 23
Zhan, Wang, Jin, Zhang (b61) 2020; 50
Ramesh, Jayabarathi, Shrivastava, Baska (b16) 2009; 37
Chen, Shen (b15) 2022
Chen, Tianfield, Mei, Du, Liu (b38) 2017; 21
dos Santos Coelho (b59) 2010; 37
Basu (b31) 2019; 182
Ara, Shahi, Nasir (b19) 2019; 44
Nguyen, Nguyen, Vo (b34) 2018; 30
Zhu, Kwong (b57) 2010; 217
Ratnaweera, Halgamuge, Watson (b58) 2004; 8
Jian, Chen, Zhan, Zhang (b43) 2021; 25
Mohammadi-Ivatloo, Moradi-Dalvand, Rabiee (b17) 2013; 95
Beigvand, Abdi, La Scala (b37) 2017; 126
Mellal, Williams (b24) 2015; 93
Zou, Li, Kong, Ouyang, Li (b12) 2019; 237
Zhang, Du, Zhan, Kwong, Gu, Zhang (b47) 2020; 50
Basu (10.1016/j.knosys.2022.108902_b31) 2019; 182
Ahmadi (10.1016/j.knosys.2022.108902_b8) 2015; 129
Nguyen (10.1016/j.knosys.2022.108902_b34) 2018; 30
Jena (10.1016/j.knosys.2022.108902_b13) 2016; 20
Chen (10.1016/j.knosys.2022.108902_b15) 2022
Abdolmohammadi (10.1016/j.knosys.2022.108902_b3) 2013; 71
Sadeghian (10.1016/j.knosys.2022.108902_b4) 2016; 102
Ghorbani (10.1016/j.knosys.2022.108902_b26) 2016; 82
Mirjalili (10.1016/j.knosys.2022.108902_b56) 2014; 69
Chen (10.1016/j.knosys.2022.108902_b54) 2019; 45
Yang (10.1016/j.knosys.2022.108902_b1) 2021; 7
Mohammadi-Ivatloo (10.1016/j.knosys.2022.108902_b17) 2013; 95
dos Santos Coelho (10.1016/j.knosys.2022.108902_b59) 2010; 37
Haghrah (10.1016/j.knosys.2022.108902_b11) 2016; 99
Ratnaweera (10.1016/j.knosys.2022.108902_b58) 2004; 8
Wang (10.1016/j.knosys.2022.108902_b42) 2021; 51
Zou (10.1016/j.knosys.2022.108902_b12) 2019; 237
Beigvand (10.1016/j.knosys.2022.108902_b25) 2016; 133
Basu (10.1016/j.knosys.2022.108902_b21) 2012; 43
Chen (10.1016/j.knosys.2022.108902_b38) 2017; 21
Deng (10.1016/j.knosys.2022.108902_b53) 2020; 539
Song (10.1016/j.knosys.2022.108902_b9) 1998; 26
Sashirekha (10.1016/j.knosys.2022.108902_b6) 2013; 44
Zhu (10.1016/j.knosys.2022.108902_b57) 2010; 217
Eberhart (10.1016/j.knosys.2022.108902_b51) 1995
Basu (10.1016/j.knosys.2022.108902_b20) 2011; 38
Nasir (10.1016/j.knosys.2022.108902_b35) 2021; 102
Ara (10.1016/j.knosys.2022.108902_b19) 2019; 44
Meng (10.1016/j.knosys.2022.108902_b32) 2015; 105
Xia (10.1016/j.knosys.2022.108902_b41) 2020; 508
Zhan (10.1016/j.knosys.2022.108902_b44) 2013; 43
Rong (10.1016/j.knosys.2022.108902_b7) 2007; 183
Ramesh (10.1016/j.knosys.2022.108902_b16) 2009; 37
Subbaraj (10.1016/j.knosys.2022.108902_b10) 2009; 86
Zhan (10.1016/j.knosys.2022.108902_b61) 2020; 50
Guo (10.1016/j.knosys.2022.108902_b5) 1996; 11
Simon (10.1016/j.knosys.2022.108902_b55) 2008; 12
Nazari-Heris (10.1016/j.knosys.2022.108902_b33) 2019; 154
Chen (10.1016/j.knosys.2022.108902_b18) 2020; 208
Jian (10.1016/j.knosys.2022.108902_b43) 2021; 25
Elaiw (10.1016/j.knosys.2022.108902_b14) 2013; 2013
Xia (10.1016/j.knosys.2022.108902_b40) 2020; 50
Chen (10.1016/j.knosys.2022.108902_b52) 2021; 102
Paul (10.1016/j.knosys.2022.108902_b30) 2020; 35
Meng (10.1016/j.knosys.2022.108902_b50) 2016; 113
Mellal (10.1016/j.knosys.2022.108902_b24) 2015; 93
Basu (10.1016/j.knosys.2022.108902_b23) 2015; 73
Alomoush (10.1016/j.knosys.2022.108902_b29) 2020; 8
Jayakumar (10.1016/j.knosys.2022.108902_b27) 2016; 74
Wang (10.1016/j.knosys.2022.108902_b46) 2020; 50
Xia (10.1016/j.knosys.2022.108902_b39) 2019; 44
Zhang (10.1016/j.knosys.2022.108902_b47) 2020; 50
Liu (10.1016/j.knosys.2022.108902_b45) 2019; 23
Pattanaik (10.1016/j.knosys.2022.108902_b28) 2020; 44
Zheng (10.1016/j.knosys.2022.108902_b48) 2017; 399
Nazari-Heris (10.1016/j.knosys.2022.108902_b2) 2018; 81
Narang (10.1016/j.knosys.2022.108902_b36) 2017; 52
Roy (10.1016/j.knosys.2022.108902_b22) 2014; 57
Peng (10.1016/j.knosys.2022.108902_b49) 2019; 23
Beigvand (10.1016/j.knosys.2022.108902_b37) 2017; 126
Cheng (10.1016/j.knosys.2022.108902_b60) 2015; 45
References_xml – volume: 50
  start-page: 4633
  year: 2020
  end-page: 4647
  ident: b61
  article-title: Adaptive distributed differential evolution
  publication-title: IEEE Trans. Cybern.
– volume: 102
  year: 2021
  ident: b35
  article-title: A combination of FA and SRPSO algorithm for combined heat and power economic dispatch
  publication-title: Appl. Soft Comput.
– volume: 74
  start-page: 252
  year: 2016
  end-page: 264
  ident: b27
  article-title: Grey wolf optimization for combined heat and power dispatch with cogeneration systems
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b55
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 508
  start-page: 105
  year: 2020
  end-page: 120
  ident: b41
  article-title: An expanded particle swarm optimization based on multi-exemplar and forgetting ability
  publication-title: Inform. Sci.
– volume: 43
  start-page: 445
  year: 2013
  end-page: 463
  ident: b44
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
– volume: 102
  start-page: 10
  year: 2016
  end-page: 23
  ident: b4
  article-title: A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on benders decomposition
  publication-title: Energy
– volume: 38
  start-page: 13527
  year: 2011
  end-page: 13531
  ident: b20
  article-title: Bee colony optimization for combined heat and power economic dispatch
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 421
  year: 2013
  end-page: 430
  ident: b6
  article-title: Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 133
  start-page: 160
  year: 2016
  end-page: 172
  ident: b25
  article-title: Combined heat and power economic dispatch problem using gravitational search algorithm
  publication-title: Electr. Power Syst. Res.
– volume: 44
  start-page: 349
  year: 2019
  end-page: 364
  ident: b39
  article-title: A fitness-based multi-role particle swarm optimization
  publication-title: Swarm Evol. Comput.
– volume: 99
  start-page: 465
  year: 2016
  end-page: 475
  ident: b11
  article-title: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved smühlenbein mutation
  publication-title: Appl. Therm. Eng.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b56
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– volume: 8
  start-page: 276
  year: 2020
  end-page: 286
  ident: b29
  article-title: Optimal combined heat and power economic dispatch using stochastic fractal search algorithm
  publication-title: J. Mod. Power Syst. Clean Energy
– volume: 237
  start-page: 646
  year: 2019
  end-page: 670
  ident: b12
  article-title: Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy
  publication-title: Appl. Energy
– volume: 2013
  year: 2013
  ident: b14
  article-title: Hybrid DE-SQP method for solving combined heat and power dynamic economic dispatch problem
  publication-title: Math. Probl. Eng.
– volume: 45
  start-page: 191
  year: 2015
  end-page: 204
  ident: b60
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
– volume: 35
  start-page: 56
  year: 2020
  end-page: 71
  ident: b30
  article-title: Chaotic whale optimization algorithm for optimal solution of combined heat and power economic dispatch problem incorporating wind
  publication-title: Renew. Energy Focus
– volume: 23
  start-page: 11851
  year: 2019
  end-page: 11866
  ident: b49
  article-title: Collective information-based teaching–learning-based optimization for global optimization
  publication-title: Soft Comput.
– volume: 57
  start-page: 392
  year: 2014
  end-page: 403
  ident: b22
  article-title: Oppositional teaching learning based optimization approach for combined heat and power dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 183
  start-page: 412
  year: 2007
  end-page: 431
  ident: b7
  article-title: An efficient envelope-based branch and bound algorithm for non-convex combined heat and power production planning
  publication-title: European J. Oper. Res.
– volume: 182
  start-page: 296
  year: 2019
  end-page: 305
  ident: b31
  article-title: Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources
  publication-title: Energy
– volume: 50
  start-page: 2715
  year: 2020
  end-page: 2729
  ident: b46
  article-title: Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling
  publication-title: IEEE Trans. Cybern.
– year: 2022
  ident: b15
  article-title: Self-adaptive differential evolution with Gaussian–Cauchy mutation for large-scale CHP economic dispatch problem
  publication-title: Neural Comput. Appl.
– start-page: 39
  year: 1995
  end-page: 43
  ident: b51
  article-title: A new optimizer using particle swarm theory
  publication-title: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science
– volume: 11
  start-page: 1778
  year: 1996
  end-page: 1784
  ident: b5
  article-title: An algorithm for combined heat and power economic dispatch
  publication-title: IEEE Trans. Power Syst.
– volume: 95
  start-page: 9
  year: 2013
  end-page: 18
  ident: b17
  article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients
  publication-title: Electr. Power Syst. Res.
– volume: 23
  start-page: 587
  year: 2019
  end-page: 602
  ident: b45
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 129
  start-page: 32
  year: 2015
  end-page: 43
  ident: b8
  article-title: Multi-objective economic emission dispatch considering combined heat and power by normal boundary intersection method
  publication-title: Electr. Power Syst. Res.
– volume: 208
  year: 2020
  ident: b18
  article-title: Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem
  publication-title: Knowl.-Based Syst.
– volume: 86
  start-page: 915
  year: 2009
  end-page: 921
  ident: b10
  article-title: Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm
  publication-title: Appl. Energy
– volume: 25
  start-page: 779
  year: 2021
  end-page: 793
  ident: b43
  article-title: Region encoding helps evolutionary computation evolve faster: A new solution encoding scheme in particle swarm for large-scale optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 82
  start-page: 58
  year: 2016
  end-page: 66
  ident: b26
  article-title: Combined heat and power economic dispatch using exchange market algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 21
  start-page: 7519
  year: 2017
  end-page: 7541
  ident: b38
  article-title: Biogeography-based learning particle swarm optimization
  publication-title: Soft Comput.
– volume: 113
  start-page: 1147
  year: 2016
  end-page: 1161
  ident: b50
  article-title: An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects
  publication-title: Energy
– volume: 126
  start-page: 841
  year: 2017
  end-page: 853
  ident: b37
  article-title: Hybrid gravitational search algorithm-particle swarm optimization with time varying acceleration coefficients for large scale CHPED problem
  publication-title: Energy
– volume: 50
  start-page: 4862
  year: 2020
  end-page: 4875
  ident: b40
  article-title: Triple archives particle swarm optimization
  publication-title: IEEE Trans. Cybern.
– volume: 45
  start-page: 70
  year: 2019
  end-page: 91
  ident: b54
  article-title: Self-adaptive differential artificial bee colony algorithm for global optimization problems
  publication-title: Swarm Evol. Comput.
– volume: 217
  start-page: 3166
  year: 2010
  end-page: 3173
  ident: b57
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– volume: 105
  start-page: 1303
  year: 2015
  end-page: 1317
  ident: b32
  article-title: Crisscross optimization algorithm for solving combined heat and power economic dispatch problem
  publication-title: Energy Convers. Manage.
– volume: 43
  start-page: 1
  year: 2012
  end-page: 5
  ident: b21
  article-title: Artificial immune system for combined heat and power economic dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 93
  start-page: 1711
  year: 2015
  end-page: 1718
  ident: b24
  article-title: Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem
  publication-title: Energy
– volume: 37
  start-page: 1231
  year: 2009
  end-page: 1240
  ident: b16
  article-title: A novel selective particle swarm optimization approach for combined heat and power economic dispatch
  publication-title: Electr. Power Compon. Syst.
– volume: 7
  start-page: 7015
  year: 2021
  end-page: 7029
  ident: b1
  article-title: An enhanced exploratory whale optimization algorithm for dynamic economic dispatch
  publication-title: Energy Rep.
– volume: 44
  start-page: 963
  year: 2020
  end-page: 978
  ident: b28
  article-title: Heat transfer search algorithm for combined heat and power economic dispatch
  publication-title: Iran. J. Sci. Technol., Trans. Electr. Eng.
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: b58
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
– volume: 26
  start-page: 363
  year: 1998
  end-page: 372
  ident: b9
  article-title: Combined heat and power economic dispatch using genetic algorithm based penalty function method
  publication-title: Electr. Mach. Power Syst.
– volume: 52
  start-page: 190
  year: 2017
  end-page: 202
  ident: b36
  article-title: Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell’s pattern search method
  publication-title: Appl. Soft Comput.
– volume: 539
  start-page: 81
  year: 2020
  end-page: 103
  ident: b53
  article-title: ERG-DE: An elites regeneration framework for differential evolution
  publication-title: Inform. Sci.
– volume: 73
  start-page: 819
  year: 2015
  end-page: 829
  ident: b23
  article-title: Combined heat and power economic dispatch using opposition-based group search optimization
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 37
  start-page: 1676
  year: 2010
  end-page: 1683
  ident: b59
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Syst. Appl.
– volume: 50
  start-page: 4454
  year: 2020
  end-page: 4468
  ident: b47
  article-title: Cooperative coevolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties
  publication-title: IEEE Trans. Cybern.
– volume: 20
  start-page: 681
  year: 2016
  end-page: 688
  ident: b13
  article-title: Differential evolution with Gaussian mutation for combined heat and power economic dispatch
  publication-title: Soft Comput.
– volume: 71
  start-page: 21
  year: 2013
  end-page: 31
  ident: b3
  article-title: A benders decomposition approach for a combined heat and power economic dispatch
  publication-title: Energy Convers. Manage.
– volume: 399
  start-page: 13
  year: 2017
  end-page: 29
  ident: b48
  article-title: Differential evolution powered by collective information
  publication-title: Inform. Sci.
– volume: 154
  start-page: 493
  year: 2019
  end-page: 504
  ident: b33
  article-title: Large-scale combined heat and power economic dispatch using a novel multi-player harmony search method
  publication-title: Appl. Therm. Eng.
– volume: 102
  year: 2021
  ident: b52
  article-title: Bee-foraging learning particle swarm optimization
  publication-title: Appl. Soft Comput.
– volume: 44
  start-page: 1
  year: 2019
  end-page: 18
  ident: b19
  article-title: CHP economic dispatch considering prohibited zones to sustainable energy using self-regulating particle swarm optimization algorithm
  publication-title: Iran. J. Sci. Technol., Trans. Electr. Eng.
– volume: 30
  start-page: 3545
  year: 2018
  end-page: 3564
  ident: b34
  article-title: An effective cuckoo search algorithm for large-scale combined heat and power economic dispatch problem
  publication-title: Neural Comput. Appl.
– volume: 51
  start-page: 1175
  year: 2021
  end-page: 1188
  ident: b42
  article-title: Adaptive granularity learning distributed particle swarm optimization for large-scale optimization
  publication-title: IEEE Trans. Cybern.
– volume: 81
  start-page: 2128
  year: 2018
  end-page: 2143
  ident: b2
  article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives
  publication-title: Renew. Sustain. Energy Rev.
– volume: 23
  start-page: 11851
  issue: 22
  year: 2019
  ident: 10.1016/j.knosys.2022.108902_b49
  article-title: Collective information-based teaching–learning-based optimization for global optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-03741-2
– year: 2022
  ident: 10.1016/j.knosys.2022.108902_b15
  article-title: Self-adaptive differential evolution with Gaussian–Cauchy mutation for large-scale CHP economic dispatch problem
  publication-title: Neural Comput. Appl.
– volume: 105
  start-page: 1303
  year: 2015
  ident: 10.1016/j.knosys.2022.108902_b32
  article-title: Crisscross optimization algorithm for solving combined heat and power economic dispatch problem
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2015.09.003
– volume: 25
  start-page: 779
  issue: 4
  year: 2021
  ident: 10.1016/j.knosys.2022.108902_b43
  article-title: Region encoding helps evolutionary computation evolve faster: A new solution encoding scheme in particle swarm for large-scale optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2021.3065659
– volume: 30
  start-page: 3545
  issue: 11
  year: 2018
  ident: 10.1016/j.knosys.2022.108902_b34
  article-title: An effective cuckoo search algorithm for large-scale combined heat and power economic dispatch problem
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2941-8
– volume: 86
  start-page: 915
  issue: 6
  year: 2009
  ident: 10.1016/j.knosys.2022.108902_b10
  article-title: Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.10.002
– volume: 52
  start-page: 190
  year: 2017
  ident: 10.1016/j.knosys.2022.108902_b36
  article-title: Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell’s pattern search method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.12.046
– volume: 133
  start-page: 160
  year: 2016
  ident: 10.1016/j.knosys.2022.108902_b25
  article-title: Combined heat and power economic dispatch problem using gravitational search algorithm
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.10.007
– volume: 45
  start-page: 70
  year: 2019
  ident: 10.1016/j.knosys.2022.108902_b54
  article-title: Self-adaptive differential artificial bee colony algorithm for global optimization problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2019.01.003
– volume: 50
  start-page: 4633
  issue: 11
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b61
  article-title: Adaptive distributed differential evolution
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2944873
– volume: 74
  start-page: 252
  year: 2016
  ident: 10.1016/j.knosys.2022.108902_b27
  article-title: Grey wolf optimization for combined heat and power dispatch with cogeneration systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.07.031
– volume: 183
  start-page: 412
  issue: 1
  year: 2007
  ident: 10.1016/j.knosys.2022.108902_b7
  article-title: An efficient envelope-based branch and bound algorithm for non-convex combined heat and power production planning
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2006.09.072
– volume: 38
  start-page: 13527
  issue: 11
  year: 2011
  ident: 10.1016/j.knosys.2022.108902_b20
  article-title: Bee colony optimization for combined heat and power economic dispatch
  publication-title: Expert Syst. Appl.
– volume: 44
  start-page: 1
  year: 2019
  ident: 10.1016/j.knosys.2022.108902_b19
  article-title: CHP economic dispatch considering prohibited zones to sustainable energy using self-regulating particle swarm optimization algorithm
  publication-title: Iran. J. Sci. Technol., Trans. Electr. Eng.
– volume: 217
  start-page: 3166
  issue: 7
  year: 2010
  ident: 10.1016/j.knosys.2022.108902_b57
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– volume: 21
  start-page: 7519
  issue: 24
  year: 2017
  ident: 10.1016/j.knosys.2022.108902_b38
  article-title: Biogeography-based learning particle swarm optimization
  publication-title: Soft Comput.
  doi: 10.1007/s00500-016-2307-7
– volume: 8
  start-page: 240
  issue: 3
  year: 2004
  ident: 10.1016/j.knosys.2022.108902_b58
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
– volume: 11
  start-page: 1778
  issue: 4
  year: 1996
  ident: 10.1016/j.knosys.2022.108902_b5
  article-title: An algorithm for combined heat and power economic dispatch
  publication-title: IEEE Trans. Power Syst.
  doi: 10.1109/59.544642
– volume: 35
  start-page: 56
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b30
  article-title: Chaotic whale optimization algorithm for optimal solution of combined heat and power economic dispatch problem incorporating wind
  publication-title: Renew. Energy Focus
  doi: 10.1016/j.ref.2020.06.008
– volume: 82
  start-page: 58
  year: 2016
  ident: 10.1016/j.knosys.2022.108902_b26
  article-title: Combined heat and power economic dispatch using exchange market algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.03.004
– volume: 208
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b18
  article-title: Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106463
– volume: 57
  start-page: 392
  year: 2014
  ident: 10.1016/j.knosys.2022.108902_b22
  article-title: Oppositional teaching learning based optimization approach for combined heat and power dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2013.12.006
– volume: 20
  start-page: 681
  issue: 2
  year: 2016
  ident: 10.1016/j.knosys.2022.108902_b13
  article-title: Differential evolution with Gaussian mutation for combined heat and power economic dispatch
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1531-2
– volume: 23
  start-page: 587
  issue: 4
  year: 2019
  ident: 10.1016/j.knosys.2022.108902_b45
  article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2018.2875430
– volume: 102
  year: 2021
  ident: 10.1016/j.knosys.2022.108902_b52
  article-title: Bee-foraging learning particle swarm optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107134
– volume: 399
  start-page: 13
  year: 2017
  ident: 10.1016/j.knosys.2022.108902_b48
  article-title: Differential evolution powered by collective information
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.02.055
– volume: 73
  start-page: 819
  year: 2015
  ident: 10.1016/j.knosys.2022.108902_b23
  article-title: Combined heat and power economic dispatch using opposition-based group search optimization
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.06.023
– volume: 26
  start-page: 363
  issue: 4
  year: 1998
  ident: 10.1016/j.knosys.2022.108902_b9
  article-title: Combined heat and power economic dispatch using genetic algorithm based penalty function method
  publication-title: Electr. Mach. Power Syst.
  doi: 10.1080/07313569808955828
– volume: 44
  start-page: 963
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b28
  article-title: Heat transfer search algorithm for combined heat and power economic dispatch
  publication-title: Iran. J. Sci. Technol., Trans. Electr. Eng.
  doi: 10.1007/s40998-019-00280-w
– volume: 182
  start-page: 296
  year: 2019
  ident: 10.1016/j.knosys.2022.108902_b31
  article-title: Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.087
– volume: 50
  start-page: 4454
  issue: 10
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b47
  article-title: Cooperative coevolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2937565
– volume: 237
  start-page: 646
  year: 2019
  ident: 10.1016/j.knosys.2022.108902_b12
  article-title: Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.056
– volume: 7
  start-page: 7015
  year: 2021
  ident: 10.1016/j.knosys.2022.108902_b1
  article-title: An enhanced exploratory whale optimization algorithm for dynamic economic dispatch
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.10.067
– volume: 508
  start-page: 105
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b41
  article-title: An expanded particle swarm optimization based on multi-exemplar and forgetting ability
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.08.065
– volume: 8
  start-page: 276
  issue: 2
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b29
  article-title: Optimal combined heat and power economic dispatch using stochastic fractal search algorithm
  publication-title: J. Mod. Power Syst. Clean Energy
  doi: 10.35833/MPCE.2018.000753
– volume: 37
  start-page: 1231
  issue: 11
  year: 2009
  ident: 10.1016/j.knosys.2022.108902_b16
  article-title: A novel selective particle swarm optimization approach for combined heat and power economic dispatch
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325000902994348
– volume: 71
  start-page: 21
  year: 2013
  ident: 10.1016/j.knosys.2022.108902_b3
  article-title: A benders decomposition approach for a combined heat and power economic dispatch
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2013.03.013
– volume: 50
  start-page: 4862
  issue: 12
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b40
  article-title: Triple archives particle swarm optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2943928
– start-page: 39
  year: 1995
  ident: 10.1016/j.knosys.2022.108902_b51
  article-title: A new optimizer using particle swarm theory
– volume: 539
  start-page: 81
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b53
  article-title: ERG-DE: An elites regeneration framework for differential evolution
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2020.05.108
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.knosys.2022.108902_b56
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 81
  start-page: 2128
  year: 2018
  ident: 10.1016/j.knosys.2022.108902_b2
  article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2017.06.024
– volume: 50
  start-page: 2715
  issue: 6
  year: 2020
  ident: 10.1016/j.knosys.2022.108902_b46
  article-title: Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2019.2933499
– volume: 51
  start-page: 1175
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2022.108902_b42
  article-title: Adaptive granularity learning distributed particle swarm optimization for large-scale optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2020.2977956
– volume: 45
  start-page: 191
  issue: 2
  year: 2015
  ident: 10.1016/j.knosys.2022.108902_b60
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2322602
– volume: 43
  start-page: 445
  issue: 2
  year: 2013
  ident: 10.1016/j.knosys.2022.108902_b44
  article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TSMCB.2012.2209115
– volume: 102
  start-page: 10
  year: 2016
  ident: 10.1016/j.knosys.2022.108902_b4
  article-title: A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on benders decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2016.02.044
– volume: 37
  start-page: 1676
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2022.108902_b59
  article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.06.044
– volume: 95
  start-page: 9
  year: 2013
  ident: 10.1016/j.knosys.2022.108902_b17
  article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2012.08.005
– volume: 43
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2022.108902_b21
  article-title: Artificial immune system for combined heat and power economic dispatch
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.05.016
– volume: 126
  start-page: 841
  year: 2017
  ident: 10.1016/j.knosys.2022.108902_b37
  article-title: Hybrid gravitational search algorithm-particle swarm optimization with time varying acceleration coefficients for large scale CHPED problem
  publication-title: Energy
  doi: 10.1016/j.energy.2017.03.054
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.knosys.2022.108902_b55
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 99
  start-page: 465
  year: 2016
  ident: 10.1016/j.knosys.2022.108902_b11
  article-title: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved smühlenbein mutation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2015.12.136
– volume: 44
  start-page: 421
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2022.108902_b6
  article-title: Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.07.038
– volume: 102
  year: 2021
  ident: 10.1016/j.knosys.2022.108902_b35
  article-title: A combination of FA and SRPSO algorithm for combined heat and power economic dispatch
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107088
– volume: 129
  start-page: 32
  year: 2015
  ident: 10.1016/j.knosys.2022.108902_b8
  article-title: Multi-objective economic emission dispatch considering combined heat and power by normal boundary intersection method
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2015.07.011
– volume: 93
  start-page: 1711
  year: 2015
  ident: 10.1016/j.knosys.2022.108902_b24
  article-title: Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem
  publication-title: Energy
  doi: 10.1016/j.energy.2015.10.006
– volume: 44
  start-page: 349
  year: 2019
  ident: 10.1016/j.knosys.2022.108902_b39
  article-title: A fitness-based multi-role particle swarm optimization
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.04.006
– volume: 154
  start-page: 493
  year: 2019
  ident: 10.1016/j.knosys.2022.108902_b33
  article-title: Large-scale combined heat and power economic dispatch using a novel multi-player harmony search method
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2019.03.095
– volume: 2013
  year: 2013
  ident: 10.1016/j.knosys.2022.108902_b14
  article-title: Hybrid DE-SQP method for solving combined heat and power dynamic economic dispatch problem
  publication-title: Math. Probl. Eng.
  doi: 10.1155/2013/982305
– volume: 113
  start-page: 1147
  year: 2016
  ident: 10.1016/j.knosys.2022.108902_b50
  article-title: An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects
  publication-title: Energy
  doi: 10.1016/j.energy.2016.07.138
SSID ssj0002218
Score 2.444955
Snippet Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108902
SubjectTerms Algorithms
Cogeneration
Collective intelligence technology
Combined heat and power economic dispatch
Convergence
Evolutionary computation
Fuels
Intelligence (information)
Multi-fuel options
Optimization algorithms
Particle swarm optimization
Power dispatch
Search methods
Swarm intelligence
Title Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem
URI https://dx.doi.org/10.1016/j.knosys.2022.108902
https://www.proquest.com/docview/2686215069
Volume 248
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier E-journals (Freedom Collection)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fqu15OA1ts2-ssdSLKtCEbTQ25JsEqj2RR-IF3-7M9msogiCx92dLLszk28mwzwIuRIq6iiZKBbZSLFQy4DJILYMJ73oyIKHbVy2xTDORuHdOBrXSL-qhcG0So_9JaY7tPZ32p6b7eVk0n4E5wD0FQwWL_vKYQV7mOAUg-v3rzQPzl2MD4kZUlflcy7H62W-WL9h027OMdku9cGVX8zTD6B21mdwQPa820h75ZcdkpqZH5H9aiQD9Tv0mBgXCHAYRn1PVOQ8Q2Ol6dL_GV2_ytWMLgAuZr4OkwItddmFzG7NlPazB2p80TLVE8AdEC_142dOyGhw89TPmJ-kwApweDZMJUWhsTN-wVVoJbh0BbfaxkUqOlp3YzjjxYkFX0JFQkQm5kIaa5QIghREDBB0SurzxdycESpCDQyX3Ggp4GiXpFLFiZES6Cw3QjZIUDEwL3ybcZx2Mc2rfLLnvGR7jmzPS7Y3CPtctSzbbPxBn1Syyb-pSw6W4I-VzUqUud-u8BzrZLDXYnr-7xdfkF28wrhvN22S-ma1NZfgsGxUy2lki-z0bu-z4Qcy3O3T
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6xWzcFrbJt9ZY9SLFVrEWyht5BsEqj2RR-IF3-7k2xWUYSC181k2Z2ZfDMZ5oHQFZNRXYpEkshEkoRKBEQEsSF20ouKDHjY2mVbdON2P7wfRIMSaha1MDat0mN_jukOrf2TmudmbTYc1p7BOQB9BYNF875yG2gzjGhib2DXH995HpS6IJ-lJpa8qJ9zSV6vk-ni3XbtptRm26U-uvKHffqF1M78tPbQjvcb8U3-afuopCcHaLeYyYD9ET1E2kUCHIhh3xTVsp5Ya6XwzP8aXryJ-RhPAS_GvhATAy126YXErPQIN9tPWPuqZayGADwgX-znzxyhfuu212wTP0qBZODxLIlMskzZ1vgZlaER4NNl1CgTZymrK9WI4ZIXJwacCRkxFumYMqGNliwIUpAxYNAxKk-mE32CMAsVcFxQrQSDu12SChknWgigM1QzUUFBwUCe-T7jdtzFiBcJZS88Zzu3bOc52yuIfO2a5X021tAnhWz4D33hYArW7KwWouT-vMK6LZSxzRbT03-_-BJttXuPHd656z6coW27YoPAjbSKysv5Sp-D97KUF047PwG6Tu9o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collective+information-based+particle+swarm+optimization+for+multi-fuel+CHP+economic+dispatch+problem&rft.jtitle=Knowledge-based+systems&rft.au=Chen%2C+Xu&rft.au=Li%2C+Kangji&rft.date=2022-07-19&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=248&rft_id=info:doi/10.1016%2Fj.knosys.2022.108902&rft.externalDocID=S0950705122004324
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon