Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem
Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The traditional particle swarm optimization algorithms often suffer from premature convergence and low efficiency when solving the MF-CHPED problem....
Saved in:
| Published in | Knowledge-based systems Vol. 248; p. 108902 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
19.07.2022
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 1872-7409 |
| DOI | 10.1016/j.knosys.2022.108902 |
Cover
| Abstract | Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The traditional particle swarm optimization algorithms often suffer from premature convergence and low efficiency when solving the MF-CHPED problem. Collective intelligence is a cutting-edge technology in the evolutionary computation. In this paper, using the concept from collective intelligence, a novel collective information-based particle swarm optimization (CIBPSO) algorithm is proposed. In CIBPSO, two new collective information (CI)-based strategies namely CI-based particle search and CI-based elite fine-tuning are developed. First, in the CI-based particle search strategy, the global best position in traditional particle update equation is replaced by a newly-defined CI-based best solutions, which helps to enhance swarm diversity and alleviate premature convergence. Second, in the CI-based elite fine-tuning strategy, more computing resources are assigned to the elite solutions by using the information of CI-based best solutions, which is beneficial to improve the search efficiency. The proposed CIBPSO algorithm is applied to solve four different MF-CHPED problems considering different operating constraints. By comparing with six well-regarded optimization algorithms, it is found that CIBPSO achieves the overall best results in terms of solution accuracy, stability and convergence. In addition, the effectiveness of the two new CI-based strategies is discussed.
•Collective information-based particle swarm optimization (CIBPSO) algorithm is proposed.•CI-based particle search and CI-based elite fine-tuning strategies are designed.•CIBPSO is applied to solve four multi-fuel combined heat and power economic dispatch problems.•Simulation results demonstrate the effectiveness of the proposed CIBPSO algorithm. |
|---|---|
| AbstractList | Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The traditional particle swarm optimization algorithms often suffer from premature convergence and low efficiency when solving the MF-CHPED problem. Collective intelligence is a cutting-edge technology in the evolutionary computation. In this paper, using the concept from collective intelligence, a novel collective information-based particle swarm optimization (CIBPSO) algorithm is proposed. In CIBPSO, two new collective information (CI)-based strategies namely CI-based particle search and CI-based elite fine-tuning are developed. First, in the CI-based particle search strategy, the global best position in traditional particle update equation is replaced by a newly-defined CI-based best solutions, which helps to enhance swarm diversity and alleviate premature convergence. Second, in the CI-based elite fine-tuning strategy, more computing resources are assigned to the elite solutions by using the information of CI-based best solutions, which is beneficial to improve the search efficiency. The proposed CIBPSO algorithm is applied to solve four different MF-CHPED problems considering different operating constraints. By comparing with six well-regarded optimization algorithms, it is found that CIBPSO achieves the overall best results in terms of solution accuracy, stability and convergence. In addition, the effectiveness of the two new CI-based strategies is discussed. Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The traditional particle swarm optimization algorithms often suffer from premature convergence and low efficiency when solving the MF-CHPED problem. Collective intelligence is a cutting-edge technology in the evolutionary computation. In this paper, using the concept from collective intelligence, a novel collective information-based particle swarm optimization (CIBPSO) algorithm is proposed. In CIBPSO, two new collective information (CI)-based strategies namely CI-based particle search and CI-based elite fine-tuning are developed. First, in the CI-based particle search strategy, the global best position in traditional particle update equation is replaced by a newly-defined CI-based best solutions, which helps to enhance swarm diversity and alleviate premature convergence. Second, in the CI-based elite fine-tuning strategy, more computing resources are assigned to the elite solutions by using the information of CI-based best solutions, which is beneficial to improve the search efficiency. The proposed CIBPSO algorithm is applied to solve four different MF-CHPED problems considering different operating constraints. By comparing with six well-regarded optimization algorithms, it is found that CIBPSO achieves the overall best results in terms of solution accuracy, stability and convergence. In addition, the effectiveness of the two new CI-based strategies is discussed. •Collective information-based particle swarm optimization (CIBPSO) algorithm is proposed.•CI-based particle search and CI-based elite fine-tuning strategies are designed.•CIBPSO is applied to solve four multi-fuel combined heat and power economic dispatch problems.•Simulation results demonstrate the effectiveness of the proposed CIBPSO algorithm. |
| ArticleNumber | 108902 |
| Author | Chen, Xu Li, Kangji |
| Author_xml | – sequence: 1 givenname: Xu surname: Chen fullname: Chen, Xu email: xuchen@ujs.edu.cn – sequence: 2 givenname: Kangji surname: Li fullname: Li, Kangji email: likangji@ujs.edu.cn |
| BookMark | eNqFkMFK5TAUhoMoeHV8AxcB172TpG2auhDkoqMgzCx0HdLTEyZ32qYmuYo-_UTryoWuDhy-_z-c74jsT35CQk45W3PG5c_t-t_k40tcCyZEXqmWiT2y4qoRRVOxdp-sWFuzomE1PyRHMW4ZyyRXK4IbPwwIyT0hdZP1YTTJ-anoTMSeziYkBwPS-GzCSP2c3Ohe3wmaWTruhuQKu8OBbm7-UAQ_-dEB7V2cTYK_dA6-G3D8QQ6sGSKefMxj8nB9db-5Ke5-_7rdXN4VIGSViq4B6CVXEkRXWVNyBsL2VkKrWN9zydpKNrYqeVcrVaMUyqDFTpVliwCNLI_J2dKb7z7uMCa99bsw5ZNaSCUFr5lsM3W-UBB8jAGtBpfen0rBuEFzpt-06q1etOo3rXrRmsPVp_Ac3GjCy3exiyWG-f0nh0FHcDgB9i5k_br37uuC_8U_mEs |
| CitedBy_id | crossref_primary_10_1016_j_asoc_2024_112060 crossref_primary_10_1016_j_energy_2024_131510 crossref_primary_10_3390_app13010283 crossref_primary_10_1016_j_isatra_2023_05_005 crossref_primary_10_1049_gtd2_13070 crossref_primary_10_1016_j_apenergy_2023_121890 crossref_primary_10_3390_en16093753 crossref_primary_10_1016_j_applthermaleng_2024_122781 crossref_primary_10_1016_j_apenergy_2024_123778 crossref_primary_10_1080_00207543_2023_2173511 crossref_primary_10_1016_j_knosys_2022_110177 crossref_primary_10_1016_j_ijepes_2023_109586 crossref_primary_10_29130_dubited_1150453 crossref_primary_10_1093_jcde_qwae058 crossref_primary_10_1093_jcde_qwad077 |
| Cites_doi | 10.1007/s00500-018-03741-2 10.1016/j.enconman.2015.09.003 10.1109/TEVC.2021.3065659 10.1007/s00521-017-2941-8 10.1016/j.apenergy.2008.10.002 10.1016/j.asoc.2016.12.046 10.1016/j.epsr.2015.10.007 10.1016/j.swevo.2019.01.003 10.1109/TCYB.2019.2944873 10.1016/j.ijepes.2015.07.031 10.1016/j.ejor.2006.09.072 10.1007/s00500-016-2307-7 10.1109/TEVC.2004.826071 10.1109/59.544642 10.1016/j.ref.2020.06.008 10.1016/j.ijepes.2016.03.004 10.1016/j.knosys.2020.106463 10.1016/j.ijepes.2013.12.006 10.1007/s00500-014-1531-2 10.1109/TEVC.2018.2875430 10.1016/j.asoc.2021.107134 10.1016/j.ins.2017.02.055 10.1016/j.ijepes.2015.06.023 10.1080/07313569808955828 10.1007/s40998-019-00280-w 10.1016/j.energy.2019.06.087 10.1109/TCYB.2019.2937565 10.1016/j.apenergy.2019.01.056 10.1016/j.egyr.2021.10.067 10.1016/j.ins.2019.08.065 10.35833/MPCE.2018.000753 10.1080/15325000902994348 10.1016/j.enconman.2013.03.013 10.1109/TCYB.2019.2943928 10.1016/j.ins.2020.05.108 10.1016/j.advengsoft.2013.12.007 10.1016/j.rser.2017.06.024 10.1109/TCYB.2019.2933499 10.1109/TCYB.2020.2977956 10.1109/TCYB.2014.2322602 10.1109/TSMCB.2012.2209115 10.1016/j.energy.2016.02.044 10.1016/j.eswa.2009.06.044 10.1016/j.epsr.2012.08.005 10.1016/j.ijepes.2012.05.016 10.1016/j.energy.2017.03.054 10.1109/TEVC.2008.919004 10.1016/j.applthermaleng.2015.12.136 10.1016/j.ijepes.2012.07.038 10.1016/j.asoc.2021.107088 10.1016/j.epsr.2015.07.011 10.1016/j.energy.2015.10.006 10.1016/j.swevo.2018.04.006 10.1016/j.applthermaleng.2019.03.095 10.1155/2013/982305 10.1016/j.energy.2016.07.138 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier Science Ltd. Jul 19, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jul 19, 2022 |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D |
| DOI | 10.1016/j.knosys.2022.108902 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10_1016_j_knosys_2022_108902 S0950705122004324 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV E3H F2A JQ2 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c264t-b7ccd6186c2b4fa310c2fdf6c980dd1609467f431b5885e628aefeb8339ecc763 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 |
| IngestDate | Fri Jul 25 06:04:15 EDT 2025 Thu Apr 24 23:01:42 EDT 2025 Sat Oct 25 05:25:58 EDT 2025 Fri Feb 23 02:40:10 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-fuel options Collective intelligence technology Combined heat and power economic dispatch Particle swarm optimization |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c264t-b7ccd6186c2b4fa310c2fdf6c980dd1609467f431b5885e628aefeb8339ecc763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2686215069 |
| PQPubID | 2035257 |
| ParticipantIDs | proquest_journals_2686215069 crossref_citationtrail_10_1016_j_knosys_2022_108902 crossref_primary_10_1016_j_knosys_2022_108902 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108902 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-19 |
| PublicationDateYYYYMMDD | 2022-07-19 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-19 day: 19 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Xia, Gui, He, Wei, Zhang, Yu, Wu, Zhan (b41) 2020; 508 Xia, Gui, Yu, Wu, Wei, Zhang, Zhan (b40) 2020; 50 Song, Xuan (b9) 1998; 26 Alomoush (b29) 2020; 8 Eberhart, Kennedy (b51) 1995 Deng, Zhang, Fu, Sun, Qiao (b53) 2020; 539 Nazari-Heris, Mohammadi-Ivatloo, Asadi, Geem (b33) 2019; 154 Peng, Zhang, Zheng, Long (b49) 2019; 23 Pattanaik, Basu, Dash (b28) 2020; 44 Guo, Henwood, Van Ooijen (b5) 1996; 11 Nazari-Heris, Mohammadi-Ivatloo, Gharehpetian (b2) 2018; 81 Chen, Tianfield, Li (b54) 2019; 45 Chen, Tianfield, Du (b52) 2021; 102 Chen, Li, Xu, Yang (b18) 2020; 208 Narang, Sharma, Dhillon (b36) 2017; 52 Wang, Zhan, Kwong, Jin, Zhang (b42) 2021; 51 Roy, Paul, Sultana (b22) 2014; 57 Meng, Mei, Yin, Peng, Guo (b32) 2015; 105 Rong, Lahdelma (b7) 2007; 183 Paul, Roy, Mukherjee (b30) 2020; 35 Nasir, Sadollah, Aydilek, Ara, Nabavi-Niaki (b35) 2021; 102 Mirjalili, Mirjalili, Lewis (b56) 2014; 69 Zheng, Zhang, Tang, Zheng (b48) 2017; 399 Abdolmohammadi, Kazemi (b3) 2013; 71 Ahmadi, Moghimi, Nezhad, Agelidis, Sharaf (b8) 2015; 129 Basu (b20) 2011; 38 Jena, Basu, Panigrahi (b13) 2016; 20 Wang, Zhan, Yu, Lin, Zhang, Gu, Zhang (b46) 2020; 50 Yang, Peng, Yang, Guo, Chen (b1) 2021; 7 Sadeghian, Ardehali (b4) 2016; 102 Sashirekha, Pasupuleti, Moin, Tan (b6) 2013; 44 Elaiw, Xia, Shehata (b14) 2013; 2013 Basu (b23) 2015; 73 Zhan, Li, Cao, Zhang, Chung, Shi (b44) 2013; 43 Meng, Li, Yin (b50) 2016; 113 Jayakumar, Subramanian, Ganesan, Elanchezhian (b27) 2016; 74 Xia, Xing, Wei, Zhang, Li, Deng, Gui (b39) 2019; 44 Ghorbani (b26) 2016; 82 Beigvand, Abdi, La Scala (b25) 2016; 133 Cheng, Jin (b60) 2015; 45 Simon (b55) 2008; 12 Basu (b21) 2012; 43 Haghrah, Nazari-Heris, Mohammadi-Ivatloo (b11) 2016; 99 Subbaraj, Rengaraj, Salivahanan (b10) 2009; 86 Liu, Zhan, Gao, Zhang, Kwong, Zhang (b45) 2019; 23 Zhan, Wang, Jin, Zhang (b61) 2020; 50 Ramesh, Jayabarathi, Shrivastava, Baska (b16) 2009; 37 Chen, Shen (b15) 2022 Chen, Tianfield, Mei, Du, Liu (b38) 2017; 21 dos Santos Coelho (b59) 2010; 37 Basu (b31) 2019; 182 Ara, Shahi, Nasir (b19) 2019; 44 Nguyen, Nguyen, Vo (b34) 2018; 30 Zhu, Kwong (b57) 2010; 217 Ratnaweera, Halgamuge, Watson (b58) 2004; 8 Jian, Chen, Zhan, Zhang (b43) 2021; 25 Mohammadi-Ivatloo, Moradi-Dalvand, Rabiee (b17) 2013; 95 Beigvand, Abdi, La Scala (b37) 2017; 126 Mellal, Williams (b24) 2015; 93 Zou, Li, Kong, Ouyang, Li (b12) 2019; 237 Zhang, Du, Zhan, Kwong, Gu, Zhang (b47) 2020; 50 Basu (10.1016/j.knosys.2022.108902_b31) 2019; 182 Ahmadi (10.1016/j.knosys.2022.108902_b8) 2015; 129 Nguyen (10.1016/j.knosys.2022.108902_b34) 2018; 30 Jena (10.1016/j.knosys.2022.108902_b13) 2016; 20 Chen (10.1016/j.knosys.2022.108902_b15) 2022 Abdolmohammadi (10.1016/j.knosys.2022.108902_b3) 2013; 71 Sadeghian (10.1016/j.knosys.2022.108902_b4) 2016; 102 Ghorbani (10.1016/j.knosys.2022.108902_b26) 2016; 82 Mirjalili (10.1016/j.knosys.2022.108902_b56) 2014; 69 Chen (10.1016/j.knosys.2022.108902_b54) 2019; 45 Yang (10.1016/j.knosys.2022.108902_b1) 2021; 7 Mohammadi-Ivatloo (10.1016/j.knosys.2022.108902_b17) 2013; 95 dos Santos Coelho (10.1016/j.knosys.2022.108902_b59) 2010; 37 Haghrah (10.1016/j.knosys.2022.108902_b11) 2016; 99 Ratnaweera (10.1016/j.knosys.2022.108902_b58) 2004; 8 Wang (10.1016/j.knosys.2022.108902_b42) 2021; 51 Zou (10.1016/j.knosys.2022.108902_b12) 2019; 237 Beigvand (10.1016/j.knosys.2022.108902_b25) 2016; 133 Basu (10.1016/j.knosys.2022.108902_b21) 2012; 43 Chen (10.1016/j.knosys.2022.108902_b38) 2017; 21 Deng (10.1016/j.knosys.2022.108902_b53) 2020; 539 Song (10.1016/j.knosys.2022.108902_b9) 1998; 26 Sashirekha (10.1016/j.knosys.2022.108902_b6) 2013; 44 Zhu (10.1016/j.knosys.2022.108902_b57) 2010; 217 Eberhart (10.1016/j.knosys.2022.108902_b51) 1995 Basu (10.1016/j.knosys.2022.108902_b20) 2011; 38 Nasir (10.1016/j.knosys.2022.108902_b35) 2021; 102 Ara (10.1016/j.knosys.2022.108902_b19) 2019; 44 Meng (10.1016/j.knosys.2022.108902_b32) 2015; 105 Xia (10.1016/j.knosys.2022.108902_b41) 2020; 508 Zhan (10.1016/j.knosys.2022.108902_b44) 2013; 43 Rong (10.1016/j.knosys.2022.108902_b7) 2007; 183 Ramesh (10.1016/j.knosys.2022.108902_b16) 2009; 37 Subbaraj (10.1016/j.knosys.2022.108902_b10) 2009; 86 Zhan (10.1016/j.knosys.2022.108902_b61) 2020; 50 Guo (10.1016/j.knosys.2022.108902_b5) 1996; 11 Simon (10.1016/j.knosys.2022.108902_b55) 2008; 12 Nazari-Heris (10.1016/j.knosys.2022.108902_b33) 2019; 154 Chen (10.1016/j.knosys.2022.108902_b18) 2020; 208 Jian (10.1016/j.knosys.2022.108902_b43) 2021; 25 Elaiw (10.1016/j.knosys.2022.108902_b14) 2013; 2013 Xia (10.1016/j.knosys.2022.108902_b40) 2020; 50 Chen (10.1016/j.knosys.2022.108902_b52) 2021; 102 Paul (10.1016/j.knosys.2022.108902_b30) 2020; 35 Meng (10.1016/j.knosys.2022.108902_b50) 2016; 113 Mellal (10.1016/j.knosys.2022.108902_b24) 2015; 93 Basu (10.1016/j.knosys.2022.108902_b23) 2015; 73 Alomoush (10.1016/j.knosys.2022.108902_b29) 2020; 8 Jayakumar (10.1016/j.knosys.2022.108902_b27) 2016; 74 Wang (10.1016/j.knosys.2022.108902_b46) 2020; 50 Xia (10.1016/j.knosys.2022.108902_b39) 2019; 44 Zhang (10.1016/j.knosys.2022.108902_b47) 2020; 50 Liu (10.1016/j.knosys.2022.108902_b45) 2019; 23 Pattanaik (10.1016/j.knosys.2022.108902_b28) 2020; 44 Zheng (10.1016/j.knosys.2022.108902_b48) 2017; 399 Nazari-Heris (10.1016/j.knosys.2022.108902_b2) 2018; 81 Narang (10.1016/j.knosys.2022.108902_b36) 2017; 52 Roy (10.1016/j.knosys.2022.108902_b22) 2014; 57 Peng (10.1016/j.knosys.2022.108902_b49) 2019; 23 Beigvand (10.1016/j.knosys.2022.108902_b37) 2017; 126 Cheng (10.1016/j.knosys.2022.108902_b60) 2015; 45 |
| References_xml | – volume: 50 start-page: 4633 year: 2020 end-page: 4647 ident: b61 article-title: Adaptive distributed differential evolution publication-title: IEEE Trans. Cybern. – volume: 102 year: 2021 ident: b35 article-title: A combination of FA and SRPSO algorithm for combined heat and power economic dispatch publication-title: Appl. Soft Comput. – volume: 74 start-page: 252 year: 2016 end-page: 264 ident: b27 article-title: Grey wolf optimization for combined heat and power dispatch with cogeneration systems publication-title: Int. J. Electr. Power Energy Syst. – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: b55 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – volume: 508 start-page: 105 year: 2020 end-page: 120 ident: b41 article-title: An expanded particle swarm optimization based on multi-exemplar and forgetting ability publication-title: Inform. Sci. – volume: 43 start-page: 445 year: 2013 end-page: 463 ident: b44 article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Trans. Cybern. – volume: 102 start-page: 10 year: 2016 end-page: 23 ident: b4 article-title: A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on benders decomposition publication-title: Energy – volume: 38 start-page: 13527 year: 2011 end-page: 13531 ident: b20 article-title: Bee colony optimization for combined heat and power economic dispatch publication-title: Expert Syst. Appl. – volume: 44 start-page: 421 year: 2013 end-page: 430 ident: b6 article-title: Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates publication-title: Int. J. Electr. Power Energy Syst. – volume: 133 start-page: 160 year: 2016 end-page: 172 ident: b25 article-title: Combined heat and power economic dispatch problem using gravitational search algorithm publication-title: Electr. Power Syst. Res. – volume: 44 start-page: 349 year: 2019 end-page: 364 ident: b39 article-title: A fitness-based multi-role particle swarm optimization publication-title: Swarm Evol. Comput. – volume: 99 start-page: 465 year: 2016 end-page: 475 ident: b11 article-title: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved smühlenbein mutation publication-title: Appl. Therm. Eng. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b56 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – volume: 8 start-page: 276 year: 2020 end-page: 286 ident: b29 article-title: Optimal combined heat and power economic dispatch using stochastic fractal search algorithm publication-title: J. Mod. Power Syst. Clean Energy – volume: 237 start-page: 646 year: 2019 end-page: 670 ident: b12 article-title: Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy publication-title: Appl. Energy – volume: 2013 year: 2013 ident: b14 article-title: Hybrid DE-SQP method for solving combined heat and power dynamic economic dispatch problem publication-title: Math. Probl. Eng. – volume: 45 start-page: 191 year: 2015 end-page: 204 ident: b60 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. – volume: 35 start-page: 56 year: 2020 end-page: 71 ident: b30 article-title: Chaotic whale optimization algorithm for optimal solution of combined heat and power economic dispatch problem incorporating wind publication-title: Renew. Energy Focus – volume: 23 start-page: 11851 year: 2019 end-page: 11866 ident: b49 article-title: Collective information-based teaching–learning-based optimization for global optimization publication-title: Soft Comput. – volume: 57 start-page: 392 year: 2014 end-page: 403 ident: b22 article-title: Oppositional teaching learning based optimization approach for combined heat and power dispatch publication-title: Int. J. Electr. Power Energy Syst. – volume: 183 start-page: 412 year: 2007 end-page: 431 ident: b7 article-title: An efficient envelope-based branch and bound algorithm for non-convex combined heat and power production planning publication-title: European J. Oper. Res. – volume: 182 start-page: 296 year: 2019 end-page: 305 ident: b31 article-title: Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources publication-title: Energy – volume: 50 start-page: 2715 year: 2020 end-page: 2729 ident: b46 article-title: Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling publication-title: IEEE Trans. Cybern. – year: 2022 ident: b15 article-title: Self-adaptive differential evolution with Gaussian–Cauchy mutation for large-scale CHP economic dispatch problem publication-title: Neural Comput. Appl. – start-page: 39 year: 1995 end-page: 43 ident: b51 article-title: A new optimizer using particle swarm theory publication-title: MHS’95. Proceedings of the Sixth International Symposium on Micro Machine and Human Science – volume: 11 start-page: 1778 year: 1996 end-page: 1784 ident: b5 article-title: An algorithm for combined heat and power economic dispatch publication-title: IEEE Trans. Power Syst. – volume: 95 start-page: 9 year: 2013 end-page: 18 ident: b17 article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients publication-title: Electr. Power Syst. Res. – volume: 23 start-page: 587 year: 2019 end-page: 602 ident: b45 article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization publication-title: IEEE Trans. Evol. Comput. – volume: 129 start-page: 32 year: 2015 end-page: 43 ident: b8 article-title: Multi-objective economic emission dispatch considering combined heat and power by normal boundary intersection method publication-title: Electr. Power Syst. Res. – volume: 208 year: 2020 ident: b18 article-title: Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem publication-title: Knowl.-Based Syst. – volume: 86 start-page: 915 year: 2009 end-page: 921 ident: b10 article-title: Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm publication-title: Appl. Energy – volume: 25 start-page: 779 year: 2021 end-page: 793 ident: b43 article-title: Region encoding helps evolutionary computation evolve faster: A new solution encoding scheme in particle swarm for large-scale optimization publication-title: IEEE Trans. Evol. Comput. – volume: 82 start-page: 58 year: 2016 end-page: 66 ident: b26 article-title: Combined heat and power economic dispatch using exchange market algorithm publication-title: Int. J. Electr. Power Energy Syst. – volume: 21 start-page: 7519 year: 2017 end-page: 7541 ident: b38 article-title: Biogeography-based learning particle swarm optimization publication-title: Soft Comput. – volume: 113 start-page: 1147 year: 2016 end-page: 1161 ident: b50 article-title: An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects publication-title: Energy – volume: 126 start-page: 841 year: 2017 end-page: 853 ident: b37 article-title: Hybrid gravitational search algorithm-particle swarm optimization with time varying acceleration coefficients for large scale CHPED problem publication-title: Energy – volume: 50 start-page: 4862 year: 2020 end-page: 4875 ident: b40 article-title: Triple archives particle swarm optimization publication-title: IEEE Trans. Cybern. – volume: 45 start-page: 70 year: 2019 end-page: 91 ident: b54 article-title: Self-adaptive differential artificial bee colony algorithm for global optimization problems publication-title: Swarm Evol. Comput. – volume: 217 start-page: 3166 year: 2010 end-page: 3173 ident: b57 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. – volume: 105 start-page: 1303 year: 2015 end-page: 1317 ident: b32 article-title: Crisscross optimization algorithm for solving combined heat and power economic dispatch problem publication-title: Energy Convers. Manage. – volume: 43 start-page: 1 year: 2012 end-page: 5 ident: b21 article-title: Artificial immune system for combined heat and power economic dispatch publication-title: Int. J. Electr. Power Energy Syst. – volume: 93 start-page: 1711 year: 2015 end-page: 1718 ident: b24 article-title: Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem publication-title: Energy – volume: 37 start-page: 1231 year: 2009 end-page: 1240 ident: b16 article-title: A novel selective particle swarm optimization approach for combined heat and power economic dispatch publication-title: Electr. Power Compon. Syst. – volume: 7 start-page: 7015 year: 2021 end-page: 7029 ident: b1 article-title: An enhanced exploratory whale optimization algorithm for dynamic economic dispatch publication-title: Energy Rep. – volume: 44 start-page: 963 year: 2020 end-page: 978 ident: b28 article-title: Heat transfer search algorithm for combined heat and power economic dispatch publication-title: Iran. J. Sci. Technol., Trans. Electr. Eng. – volume: 8 start-page: 240 year: 2004 end-page: 255 ident: b58 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. – volume: 26 start-page: 363 year: 1998 end-page: 372 ident: b9 article-title: Combined heat and power economic dispatch using genetic algorithm based penalty function method publication-title: Electr. Mach. Power Syst. – volume: 52 start-page: 190 year: 2017 end-page: 202 ident: b36 article-title: Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell’s pattern search method publication-title: Appl. Soft Comput. – volume: 539 start-page: 81 year: 2020 end-page: 103 ident: b53 article-title: ERG-DE: An elites regeneration framework for differential evolution publication-title: Inform. Sci. – volume: 73 start-page: 819 year: 2015 end-page: 829 ident: b23 article-title: Combined heat and power economic dispatch using opposition-based group search optimization publication-title: Int. J. Electr. Power Energy Syst. – volume: 37 start-page: 1676 year: 2010 end-page: 1683 ident: b59 article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems publication-title: Expert Syst. Appl. – volume: 50 start-page: 4454 year: 2020 end-page: 4468 ident: b47 article-title: Cooperative coevolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties publication-title: IEEE Trans. Cybern. – volume: 20 start-page: 681 year: 2016 end-page: 688 ident: b13 article-title: Differential evolution with Gaussian mutation for combined heat and power economic dispatch publication-title: Soft Comput. – volume: 71 start-page: 21 year: 2013 end-page: 31 ident: b3 article-title: A benders decomposition approach for a combined heat and power economic dispatch publication-title: Energy Convers. Manage. – volume: 399 start-page: 13 year: 2017 end-page: 29 ident: b48 article-title: Differential evolution powered by collective information publication-title: Inform. Sci. – volume: 154 start-page: 493 year: 2019 end-page: 504 ident: b33 article-title: Large-scale combined heat and power economic dispatch using a novel multi-player harmony search method publication-title: Appl. Therm. Eng. – volume: 102 year: 2021 ident: b52 article-title: Bee-foraging learning particle swarm optimization publication-title: Appl. Soft Comput. – volume: 44 start-page: 1 year: 2019 end-page: 18 ident: b19 article-title: CHP economic dispatch considering prohibited zones to sustainable energy using self-regulating particle swarm optimization algorithm publication-title: Iran. J. Sci. Technol., Trans. Electr. Eng. – volume: 30 start-page: 3545 year: 2018 end-page: 3564 ident: b34 article-title: An effective cuckoo search algorithm for large-scale combined heat and power economic dispatch problem publication-title: Neural Comput. Appl. – volume: 51 start-page: 1175 year: 2021 end-page: 1188 ident: b42 article-title: Adaptive granularity learning distributed particle swarm optimization for large-scale optimization publication-title: IEEE Trans. Cybern. – volume: 81 start-page: 2128 year: 2018 end-page: 2143 ident: b2 article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives publication-title: Renew. Sustain. Energy Rev. – volume: 23 start-page: 11851 issue: 22 year: 2019 ident: 10.1016/j.knosys.2022.108902_b49 article-title: Collective information-based teaching–learning-based optimization for global optimization publication-title: Soft Comput. doi: 10.1007/s00500-018-03741-2 – year: 2022 ident: 10.1016/j.knosys.2022.108902_b15 article-title: Self-adaptive differential evolution with Gaussian–Cauchy mutation for large-scale CHP economic dispatch problem publication-title: Neural Comput. Appl. – volume: 105 start-page: 1303 year: 2015 ident: 10.1016/j.knosys.2022.108902_b32 article-title: Crisscross optimization algorithm for solving combined heat and power economic dispatch problem publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2015.09.003 – volume: 25 start-page: 779 issue: 4 year: 2021 ident: 10.1016/j.knosys.2022.108902_b43 article-title: Region encoding helps evolutionary computation evolve faster: A new solution encoding scheme in particle swarm for large-scale optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2021.3065659 – volume: 30 start-page: 3545 issue: 11 year: 2018 ident: 10.1016/j.knosys.2022.108902_b34 article-title: An effective cuckoo search algorithm for large-scale combined heat and power economic dispatch problem publication-title: Neural Comput. Appl. doi: 10.1007/s00521-017-2941-8 – volume: 86 start-page: 915 issue: 6 year: 2009 ident: 10.1016/j.knosys.2022.108902_b10 article-title: Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.10.002 – volume: 52 start-page: 190 year: 2017 ident: 10.1016/j.knosys.2022.108902_b36 article-title: Combined heat and power economic dispatch using integrated civilized swarm optimization and Powell’s pattern search method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.12.046 – volume: 133 start-page: 160 year: 2016 ident: 10.1016/j.knosys.2022.108902_b25 article-title: Combined heat and power economic dispatch problem using gravitational search algorithm publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.10.007 – volume: 45 start-page: 70 year: 2019 ident: 10.1016/j.knosys.2022.108902_b54 article-title: Self-adaptive differential artificial bee colony algorithm for global optimization problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2019.01.003 – volume: 50 start-page: 4633 issue: 11 year: 2020 ident: 10.1016/j.knosys.2022.108902_b61 article-title: Adaptive distributed differential evolution publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2944873 – volume: 74 start-page: 252 year: 2016 ident: 10.1016/j.knosys.2022.108902_b27 article-title: Grey wolf optimization for combined heat and power dispatch with cogeneration systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.07.031 – volume: 183 start-page: 412 issue: 1 year: 2007 ident: 10.1016/j.knosys.2022.108902_b7 article-title: An efficient envelope-based branch and bound algorithm for non-convex combined heat and power production planning publication-title: European J. Oper. Res. doi: 10.1016/j.ejor.2006.09.072 – volume: 38 start-page: 13527 issue: 11 year: 2011 ident: 10.1016/j.knosys.2022.108902_b20 article-title: Bee colony optimization for combined heat and power economic dispatch publication-title: Expert Syst. Appl. – volume: 44 start-page: 1 year: 2019 ident: 10.1016/j.knosys.2022.108902_b19 article-title: CHP economic dispatch considering prohibited zones to sustainable energy using self-regulating particle swarm optimization algorithm publication-title: Iran. J. Sci. Technol., Trans. Electr. Eng. – volume: 217 start-page: 3166 issue: 7 year: 2010 ident: 10.1016/j.knosys.2022.108902_b57 article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization publication-title: Appl. Math. Comput. – volume: 21 start-page: 7519 issue: 24 year: 2017 ident: 10.1016/j.knosys.2022.108902_b38 article-title: Biogeography-based learning particle swarm optimization publication-title: Soft Comput. doi: 10.1007/s00500-016-2307-7 – volume: 8 start-page: 240 issue: 3 year: 2004 ident: 10.1016/j.knosys.2022.108902_b58 article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2004.826071 – volume: 11 start-page: 1778 issue: 4 year: 1996 ident: 10.1016/j.knosys.2022.108902_b5 article-title: An algorithm for combined heat and power economic dispatch publication-title: IEEE Trans. Power Syst. doi: 10.1109/59.544642 – volume: 35 start-page: 56 year: 2020 ident: 10.1016/j.knosys.2022.108902_b30 article-title: Chaotic whale optimization algorithm for optimal solution of combined heat and power economic dispatch problem incorporating wind publication-title: Renew. Energy Focus doi: 10.1016/j.ref.2020.06.008 – volume: 82 start-page: 58 year: 2016 ident: 10.1016/j.knosys.2022.108902_b26 article-title: Combined heat and power economic dispatch using exchange market algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2016.03.004 – volume: 208 year: 2020 ident: 10.1016/j.knosys.2022.108902_b18 article-title: Biogeography-based learning particle swarm optimization for combined heat and power economic dispatch problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106463 – volume: 57 start-page: 392 year: 2014 ident: 10.1016/j.knosys.2022.108902_b22 article-title: Oppositional teaching learning based optimization approach for combined heat and power dispatch publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2013.12.006 – volume: 20 start-page: 681 issue: 2 year: 2016 ident: 10.1016/j.knosys.2022.108902_b13 article-title: Differential evolution with Gaussian mutation for combined heat and power economic dispatch publication-title: Soft Comput. doi: 10.1007/s00500-014-1531-2 – volume: 23 start-page: 587 issue: 4 year: 2019 ident: 10.1016/j.knosys.2022.108902_b45 article-title: Coevolutionary particle swarm optimization with bottleneck objective learning strategy for many-objective optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2018.2875430 – volume: 102 year: 2021 ident: 10.1016/j.knosys.2022.108902_b52 article-title: Bee-foraging learning particle swarm optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107134 – volume: 399 start-page: 13 year: 2017 ident: 10.1016/j.knosys.2022.108902_b48 article-title: Differential evolution powered by collective information publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.02.055 – volume: 73 start-page: 819 year: 2015 ident: 10.1016/j.knosys.2022.108902_b23 article-title: Combined heat and power economic dispatch using opposition-based group search optimization publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.06.023 – volume: 26 start-page: 363 issue: 4 year: 1998 ident: 10.1016/j.knosys.2022.108902_b9 article-title: Combined heat and power economic dispatch using genetic algorithm based penalty function method publication-title: Electr. Mach. Power Syst. doi: 10.1080/07313569808955828 – volume: 44 start-page: 963 issue: 2 year: 2020 ident: 10.1016/j.knosys.2022.108902_b28 article-title: Heat transfer search algorithm for combined heat and power economic dispatch publication-title: Iran. J. Sci. Technol., Trans. Electr. Eng. doi: 10.1007/s40998-019-00280-w – volume: 182 start-page: 296 year: 2019 ident: 10.1016/j.knosys.2022.108902_b31 article-title: Squirrel search algorithm for multi-region combined heat and power economic dispatch incorporating renewable energy sources publication-title: Energy doi: 10.1016/j.energy.2019.06.087 – volume: 50 start-page: 4454 issue: 10 year: 2020 ident: 10.1016/j.knosys.2022.108902_b47 article-title: Cooperative coevolutionary bare-bones particle swarm optimization with function independent decomposition for large-scale supply chain network design with uncertainties publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2937565 – volume: 237 start-page: 646 year: 2019 ident: 10.1016/j.knosys.2022.108902_b12 article-title: Solving the combined heat and power economic dispatch problems by an improved genetic algorithm and a new constraint handling strategy publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.056 – volume: 7 start-page: 7015 year: 2021 ident: 10.1016/j.knosys.2022.108902_b1 article-title: An enhanced exploratory whale optimization algorithm for dynamic economic dispatch publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.10.067 – volume: 508 start-page: 105 year: 2020 ident: 10.1016/j.knosys.2022.108902_b41 article-title: An expanded particle swarm optimization based on multi-exemplar and forgetting ability publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.08.065 – volume: 8 start-page: 276 issue: 2 year: 2020 ident: 10.1016/j.knosys.2022.108902_b29 article-title: Optimal combined heat and power economic dispatch using stochastic fractal search algorithm publication-title: J. Mod. Power Syst. Clean Energy doi: 10.35833/MPCE.2018.000753 – volume: 37 start-page: 1231 issue: 11 year: 2009 ident: 10.1016/j.knosys.2022.108902_b16 article-title: A novel selective particle swarm optimization approach for combined heat and power economic dispatch publication-title: Electr. Power Compon. Syst. doi: 10.1080/15325000902994348 – volume: 71 start-page: 21 year: 2013 ident: 10.1016/j.knosys.2022.108902_b3 article-title: A benders decomposition approach for a combined heat and power economic dispatch publication-title: Energy Convers. Manage. doi: 10.1016/j.enconman.2013.03.013 – volume: 50 start-page: 4862 issue: 12 year: 2020 ident: 10.1016/j.knosys.2022.108902_b40 article-title: Triple archives particle swarm optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2943928 – start-page: 39 year: 1995 ident: 10.1016/j.knosys.2022.108902_b51 article-title: A new optimizer using particle swarm theory – volume: 539 start-page: 81 year: 2020 ident: 10.1016/j.knosys.2022.108902_b53 article-title: ERG-DE: An elites regeneration framework for differential evolution publication-title: Inform. Sci. doi: 10.1016/j.ins.2020.05.108 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.knosys.2022.108902_b56 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 81 start-page: 2128 year: 2018 ident: 10.1016/j.knosys.2022.108902_b2 article-title: A comprehensive review of heuristic optimization algorithms for optimal combined heat and power dispatch from economic and environmental perspectives publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2017.06.024 – volume: 50 start-page: 2715 issue: 6 year: 2020 ident: 10.1016/j.knosys.2022.108902_b46 article-title: Dynamic group learning distributed particle swarm optimization for large-scale optimization and its application in cloud workflow scheduling publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2019.2933499 – volume: 51 start-page: 1175 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.108902_b42 article-title: Adaptive granularity learning distributed particle swarm optimization for large-scale optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2020.2977956 – volume: 45 start-page: 191 issue: 2 year: 2015 ident: 10.1016/j.knosys.2022.108902_b60 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2322602 – volume: 43 start-page: 445 issue: 2 year: 2013 ident: 10.1016/j.knosys.2022.108902_b44 article-title: Multiple populations for multiple objectives: A coevolutionary technique for solving multiobjective optimization problems publication-title: IEEE Trans. Cybern. doi: 10.1109/TSMCB.2012.2209115 – volume: 102 start-page: 10 year: 2016 ident: 10.1016/j.knosys.2022.108902_b4 article-title: A novel approach for optimal economic dispatch scheduling of integrated combined heat and power systems for maximum economic profit and minimum environmental emissions based on benders decomposition publication-title: Energy doi: 10.1016/j.energy.2016.02.044 – volume: 37 start-page: 1676 issue: 2 year: 2010 ident: 10.1016/j.knosys.2022.108902_b59 article-title: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2009.06.044 – volume: 95 start-page: 9 year: 2013 ident: 10.1016/j.knosys.2022.108902_b17 article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2012.08.005 – volume: 43 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.knosys.2022.108902_b21 article-title: Artificial immune system for combined heat and power economic dispatch publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.05.016 – volume: 126 start-page: 841 year: 2017 ident: 10.1016/j.knosys.2022.108902_b37 article-title: Hybrid gravitational search algorithm-particle swarm optimization with time varying acceleration coefficients for large scale CHPED problem publication-title: Energy doi: 10.1016/j.energy.2017.03.054 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.knosys.2022.108902_b55 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 99 start-page: 465 year: 2016 ident: 10.1016/j.knosys.2022.108902_b11 article-title: Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved smühlenbein mutation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2015.12.136 – volume: 44 start-page: 421 issue: 1 year: 2013 ident: 10.1016/j.knosys.2022.108902_b6 article-title: Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.07.038 – volume: 102 year: 2021 ident: 10.1016/j.knosys.2022.108902_b35 article-title: A combination of FA and SRPSO algorithm for combined heat and power economic dispatch publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107088 – volume: 129 start-page: 32 year: 2015 ident: 10.1016/j.knosys.2022.108902_b8 article-title: Multi-objective economic emission dispatch considering combined heat and power by normal boundary intersection method publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2015.07.011 – volume: 93 start-page: 1711 year: 2015 ident: 10.1016/j.knosys.2022.108902_b24 article-title: Cuckoo optimization algorithm with penalty function for combined heat and power economic dispatch problem publication-title: Energy doi: 10.1016/j.energy.2015.10.006 – volume: 44 start-page: 349 year: 2019 ident: 10.1016/j.knosys.2022.108902_b39 article-title: A fitness-based multi-role particle swarm optimization publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2018.04.006 – volume: 154 start-page: 493 year: 2019 ident: 10.1016/j.knosys.2022.108902_b33 article-title: Large-scale combined heat and power economic dispatch using a novel multi-player harmony search method publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2019.03.095 – volume: 2013 year: 2013 ident: 10.1016/j.knosys.2022.108902_b14 article-title: Hybrid DE-SQP method for solving combined heat and power dynamic economic dispatch problem publication-title: Math. Probl. Eng. doi: 10.1155/2013/982305 – volume: 113 start-page: 1147 year: 2016 ident: 10.1016/j.knosys.2022.108902_b50 article-title: An efficient crisscross optimization solution to large-scale non-convex economic load dispatch with multiple fuel types and valve-point effects publication-title: Energy doi: 10.1016/j.energy.2016.07.138 |
| SSID | ssj0002218 |
| Score | 2.444955 |
| Snippet | Multi-fuel combined heat and power economic dispatch (MF-CHPED) is a highly non-convex and challenging optimization problem in power system operation. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108902 |
| SubjectTerms | Algorithms Cogeneration Collective intelligence technology Combined heat and power economic dispatch Convergence Evolutionary computation Fuels Intelligence (information) Multi-fuel options Optimization algorithms Particle swarm optimization Power dispatch Search methods Swarm intelligence |
| Title | Collective information-based particle swarm optimization for multi-fuel CHP economic dispatch problem |
| URI | https://dx.doi.org/10.1016/j.knosys.2022.108902 https://www.proquest.com/docview/2686215069 |
| Volume | 248 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier E-journals (Freedom Collection) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA6lXrz4Fqu15OA1ts2-ssdSLKtCEbTQ25JsEqj2RR-IF3-7M9msogiCx92dLLszk28mwzwIuRIq6iiZKBbZSLFQy4DJILYMJ73oyIKHbVy2xTDORuHdOBrXSL-qhcG0So_9JaY7tPZ32p6b7eVk0n4E5wD0FQwWL_vKYQV7mOAUg-v3rzQPzl2MD4kZUlflcy7H62W-WL9h027OMdku9cGVX8zTD6B21mdwQPa820h75ZcdkpqZH5H9aiQD9Tv0mBgXCHAYRn1PVOQ8Q2Ol6dL_GV2_ytWMLgAuZr4OkwItddmFzG7NlPazB2p80TLVE8AdEC_142dOyGhw89TPmJ-kwApweDZMJUWhsTN-wVVoJbh0BbfaxkUqOlp3YzjjxYkFX0JFQkQm5kIaa5QIghREDBB0SurzxdycESpCDQyX3Ggp4GiXpFLFiZES6Cw3QjZIUDEwL3ybcZx2Mc2rfLLnvGR7jmzPS7Y3CPtctSzbbPxBn1Syyb-pSw6W4I-VzUqUud-u8BzrZLDXYnr-7xdfkF28wrhvN22S-ma1NZfgsGxUy2lki-z0bu-z4Qcy3O3T |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA61HvTiW6xWzcFrbJt9ZY9SLFVrEWyht5BsEqj2RR-IF3-7k2xWUYSC181k2Z2ZfDMZ5oHQFZNRXYpEkshEkoRKBEQEsSF20ouKDHjY2mVbdON2P7wfRIMSaha1MDat0mN_jukOrf2TmudmbTYc1p7BOQB9BYNF875yG2gzjGhib2DXH995HpS6IJ-lJpa8qJ9zSV6vk-ni3XbtptRm26U-uvKHffqF1M78tPbQjvcb8U3-afuopCcHaLeYyYD9ET1E2kUCHIhh3xTVsp5Ya6XwzP8aXryJ-RhPAS_GvhATAy126YXErPQIN9tPWPuqZayGADwgX-znzxyhfuu212wTP0qBZODxLIlMskzZ1vgZlaER4NNl1CgTZymrK9WI4ZIXJwacCRkxFumYMqGNliwIUpAxYNAxKk-mE32CMAsVcFxQrQSDu12SChknWgigM1QzUUFBwUCe-T7jdtzFiBcJZS88Zzu3bOc52yuIfO2a5X021tAnhWz4D33hYArW7KwWouT-vMK6LZSxzRbT03-_-BJttXuPHd656z6coW27YoPAjbSKysv5Sp-D97KUF047PwG6Tu9o |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Collective+information-based+particle+swarm+optimization+for+multi-fuel+CHP+economic+dispatch+problem&rft.jtitle=Knowledge-based+systems&rft.au=Chen%2C+Xu&rft.au=Li%2C+Kangji&rft.date=2022-07-19&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=248&rft_id=info:doi/10.1016%2Fj.knosys.2022.108902&rft.externalDocID=S0950705122004324 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |