Speeding up the Sphere Decoder With H^ and SDP Inspired Lower Bounds

It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 56; no. 2; pp. 712 - 726
Main Authors Stojnic, M., Vikalo, H., Hassibi, B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2007.906697

Cover

Abstract It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find the exact ML solution with an expected complexity that is often less than N 3 . However, the computational complexity of sphere decoding becomes prohibitive if the SNR is too low and/or if the dimension of the problem is too large. In this paper, we target these two regimes and attempt to find faster algorithms by pruning the search tree beyond what is done in the standard sphere decoding algorithm. The search tree is pruned by computing lower bounds on the optimal value of the objective function as the algorithm proceeds to descend down the search tree. We observe a tradeoff between the computational complexity required to compute a lower bound and the size of the pruned tree: the more effort we spend in computing a tight lower bound, the more branches that can be eliminated in the tree. Using ideas from semidefinite program (SDP)-duality theory and H infin estimation theory, we propose general frameworks for computing lower bounds on integer least-squares problems. We propose two families of algorithms, one that is appropriate for large problem dimensions and binary modulation, and the other that is appropriate for moderate-size dimensions yet high-order constellations. We then show how in each case these bounds can be efficiently incorporated in the sphere decoding algorithm, often resulting in significant improvement of the expected complexity of solving the ML decoding problem, while maintaining the exact ML-performance.
AbstractList It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find the exact ML solution with an expected complexity that is often less than N 3 . However, the computational complexity of sphere decoding becomes prohibitive if the SNR is too low and/or if the dimension of the problem is too large. In this paper, we target these two regimes and attempt to find faster algorithms by pruning the search tree beyond what is done in the standard sphere decoding algorithm. The search tree is pruned by computing lower bounds on the optimal value of the objective function as the algorithm proceeds to descend down the search tree. We observe a tradeoff between the computational complexity required to compute a lower bound and the size of the pruned tree: the more effort we spend in computing a tight lower bound, the more branches that can be eliminated in the tree. Using ideas from semidefinite program (SDP)-duality theory and H infin estimation theory, we propose general frameworks for computing lower bounds on integer least-squares problems. We propose two families of algorithms, one that is appropriate for large problem dimensions and binary modulation, and the other that is appropriate for moderate-size dimensions yet high-order constellations. We then show how in each case these bounds can be efficiently incorporated in the sphere decoding algorithm, often resulting in significant improvement of the expected complexity of solving the ML decoding problem, while maintaining the exact ML-performance.
[...] it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find the exact ML solution with an expected complexity that is often less than N3.
Author Vikalo, H.
Stojnic, M.
Hassibi, B.
Author_xml – sequence: 1
  givenname: M.
  surname: Stojnic
  fullname: Stojnic, M.
  organization: California Inst. of Technol., Pasadena
– sequence: 2
  givenname: H.
  surname: Vikalo
  fullname: Vikalo, H.
  organization: California Inst. of Technol., Pasadena
– sequence: 3
  givenname: B.
  surname: Hassibi
  fullname: Hassibi, B.
  organization: California Inst. of Technol., Pasadena
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20020834$$DView record in Pascal Francis
BookMark eNp9kM1LJDEQxYMo-LGePXgJgnvrMemkk85RHb9gQGEUPdmkk2on0ia9STey__1mGPHgYU9VUL_36vH20bYPHhA6omRGKVFnj8uHWUmInCkihJJbaI8qTgvCpdjOO6lYUdXyZRftp_ROCOVciT00Xw4A1vk3PA14XAFeDiuIgOdggoWIn924wrevWHuLl_MHfOfT4CJYvAif-XwRJm_TL7TT6T7B4dc8QE_XV4-Xt8Xi_ubu8nxRmFLwsShBCGCGk061trSkAiJ1a1ldVpZ3oJlQTGgBprRKEKVZ1dK2AqmZbVtugB2g3xvfIYY_E6Sx-XDJQN9rD2FKDePZgBKewZMf4HuYos_ZmlqwHEbIOkOnX5BORvdd1N641AzRfej4t8ldlqRma7OzDWdiSClC941Q0qyrb3L1a1w2m-qzovqhMG7Uowt-jNr1_9Edb3QOAL6_cM5KWVP2DygGkIY
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TIT_2021_3129767
crossref_primary_10_1109_TSP_2021_3100929
crossref_primary_10_1109_COMST_2015_2475242
crossref_primary_10_1016_j_sigpro_2020_107661
crossref_primary_10_1016_j_sigpro_2022_108509
crossref_primary_10_1109_TWC_2012_051512_111220
crossref_primary_10_1109_TIT_2011_2177590
crossref_primary_10_1109_LCOMM_2010_093010_100918
crossref_primary_10_1109_OJCOMS_2024_3510535
crossref_primary_10_1002_ett_2538
crossref_primary_10_1109_TSP_2014_2307836
crossref_primary_10_1016_j_mejo_2016_08_001
crossref_primary_10_1016_j_sigpro_2013_11_041
crossref_primary_10_1109_JSTSP_2009_2038210
crossref_primary_10_1016_j_sigpro_2016_02_006
crossref_primary_10_1109_TVT_2016_2570942
crossref_primary_10_1109_TMBMC_2016_2640306
crossref_primary_10_1016_j_sigpro_2017_11_010
crossref_primary_10_1109_TIT_2010_2059730
Cites_doi 10.1109/TSP.2006.890912
10.1109/ICASSP.2005.1415739
10.1109/TSP.2005.850352
10.1109/4234.846498
10.1109/JSAC.2005.862402
10.1007/BF01100205
10.1145/227683.227684
10.1109/ICASSP.2005.1415738
10.1109/TWC.2006.256975
10.1109/SPAWC.2005.1505872
10.1109/TSP.2003.818210
10.1137/S1052623494240456
10.1109/TSP.2005.843746
10.1109/78.992139
10.1007/978-3-642-78240-4
10.1109/ISIT.2005.1523632
10.1109/WIRLES.2005.1549632
10.1090/S0025-5718-1985-0777278-8
10.1109/TCOMM.2003.809789
10.1109/LSP.2005.853044
10.1109/LSP.2002.800508
10.1007/978-1-4615-4381-7
10.1016/S0166-218X(00)00263-8
10.1109/JSSC.2005.847505
10.1109/TIT.2005.864418
10.1109/ICASSP.2006.1661027
10.1137/1.9781611970760
10.1109/TIT.2003.817829
10.1109/ICASSP.2003.1202528
10.1109/ACSSC.2005.1599816
10.1109/TIT.2002.800499
10.1109/TWC.2006.1576534
10.1109/49.942507
10.1109/LSP.2005.843779
10.1109/TWC.2004.837271
10.1109/VETECS.2004.1388918
ContentType Journal Article
Copyright 2008 INIST-CNRS
Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
Copyright_xml – notice: 2008 INIST-CNRS
– notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008
DBID 97E
RIA
RIE
AAYXX
CITATION
IQODW
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
DOI 10.1109/TSP.2007.906697
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList
Technology Research Database
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1941-0476
EndPage 726
ExternalDocumentID 2328864421
20020834
10_1109_TSP_2007_906697
4432781
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
IQODW
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
F28
FR3
ID FETCH-LOGICAL-c264t-2e66e3c40f9bd2d05e07abd3825d4fea36936a6ec2d9609a35b1b5e7a3dbb4ce3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Thu Oct 02 11:40:09 EDT 2025
Mon Jun 30 10:22:07 EDT 2025
Mon Jul 21 09:17:06 EDT 2025
Thu Apr 24 22:54:19 EDT 2025
Wed Oct 01 01:57:58 EDT 2025
Tue Aug 26 16:47:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Performance evaluation
Worst case method
Convex programming
sphere decoding
Binary modulation
Least squares method
Digital communication
expected complexity
Branch-and-bound algorithm
H infinite optimization
Lower bound
maximum-likelihood (ML) detection
Branch and bound method
integer least-squares
Least squares problem
H∞ estimation
Estimation theory
Algorithm
Computational complexity
Maximum likelihood decoding
Exact solution
NP hard problem
convex optimization
Search tree
Objective function
Maximum likelihood
Signal to noise ratio
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c264t-2e66e3c40f9bd2d05e07abd3825d4fea36936a6ec2d9609a35b1b5e7a3dbb4ce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 863264678
PQPubID 85478
PageCount 15
ParticipantIDs pascalfrancis_primary_20020834
crossref_citationtrail_10_1109_TSP_2007_906697
proquest_miscellaneous_34936104
crossref_primary_10_1109_TSP_2007_906697
ieee_primary_4432781
proquest_journals_863264678
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2008-02-00
PublicationDateYYYYMMDD 2008-02-01
PublicationDate_xml – month: 02
  year: 2008
  text: 2008-02-00
PublicationDecade 2000
PublicationPlace New York, NY
PublicationPlace_xml – name: New York, NY
– name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2008
Publisher IEEE
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: Institute of Electrical and Electronics Engineers
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref35
ref34
ref12
ref37
ref15
ref36
ref14
ref31
ref30
ref33
ref11
ref10
cui (ref20) 2004; 1
ref2
stojnic (ref13) 2005
ref1
ref39
golub (ref3) 1996
ref38
ref16
ref19
wolkowicz (ref27) 2000
jalden (ref32) 2003
kailath (ref17) 2000
ref24
ref23
ref26
ref25
ref42
hassibi (ref18) 0
ref41
ref22
ref21
ref28
boyd (ref5) 2003
ref29
ref8
ref7
ref9
ref4
ref6
ref40
References_xml – ident: ref9
  doi: 10.1109/TSP.2006.890912
– volume: 1
  start-page: 1218
  year: 2004
  ident: ref20
  article-title: reduced complexity sphere decoding using forcing rules
  publication-title: Proc 38th Asilomar Conf Signals Systems Computers
– ident: ref29
  doi: 10.1109/ICASSP.2005.1415739
– ident: ref4
  doi: 10.1109/TSP.2005.850352
– ident: ref10
  doi: 10.1109/4234.846498
– year: 2003
  ident: ref5
  publication-title: Convex optimization
– ident: ref22
  doi: 10.1109/JSAC.2005.862402
– ident: ref34
  doi: 10.1007/BF01100205
– ident: ref26
  doi: 10.1145/227683.227684
– ident: ref12
  doi: 10.1109/ICASSP.2005.1415738
– ident: ref37
  doi: 10.1109/TWC.2006.256975
– ident: ref39
  doi: 10.1109/SPAWC.2005.1505872
– year: 1996
  ident: ref3
  publication-title: Matrix Computations
– ident: ref6
  doi: 10.1109/TSP.2003.818210
– ident: ref2
  doi: 10.1137/S1052623494240456
– ident: ref19
  doi: 10.1109/TSP.2005.843746
– ident: ref28
  doi: 10.1109/78.992139
– ident: ref38
  doi: 10.1007/978-3-642-78240-4
– ident: ref35
  doi: 10.1109/ISIT.2005.1523632
– year: 0
  ident: ref18
  article-title: a efficient square-root algorithm for blast
  publication-title: IEEE Trans Signal Process
– ident: ref14
  doi: 10.1109/WIRLES.2005.1549632
– ident: ref1
  doi: 10.1090/S0025-5718-1985-0777278-8
– year: 2005
  ident: ref13
  article-title: an -based lower bound to speed up the sphere decoder
  publication-title: Signal Processing Its Applications in Wireless Communications (SPAWC)
– ident: ref8
  doi: 10.1109/TCOMM.2003.809789
– ident: ref42
  doi: 10.1109/LSP.2005.853044
– ident: ref31
  doi: 10.1109/LSP.2002.800508
– year: 2000
  ident: ref27
  publication-title: Handbook of Semidefinite Programming Theory Algorithms and Applications
  doi: 10.1007/978-1-4615-4381-7
– year: 2000
  ident: ref17
  publication-title: Linear Estimation
– ident: ref33
  doi: 10.1016/S0166-218X(00)00263-8
– ident: ref40
  doi: 10.1109/JSSC.2005.847505
– ident: ref25
  doi: 10.1109/TIT.2005.864418
– ident: ref15
  doi: 10.1109/ICASSP.2006.1661027
– ident: ref16
  doi: 10.1137/1.9781611970760
– ident: ref36
  doi: 10.1109/TIT.2003.817829
– year: 2003
  ident: ref32
  article-title: semidefinite programming for detection in linear systemsoptimality conditions and spacetime decoding
  publication-title: Proc Int Conf Acoustics Speech Signal Processing (ICASSP)
  doi: 10.1109/ICASSP.2003.1202528
– ident: ref41
  doi: 10.1109/ACSSC.2005.1599816
– ident: ref11
  doi: 10.1109/TIT.2002.800499
– ident: ref24
  doi: 10.1109/TWC.2006.1576534
– ident: ref30
  doi: 10.1109/49.942507
– ident: ref23
  doi: 10.1109/LSP.2005.843779
– ident: ref7
  doi: 10.1109/TWC.2004.837271
– ident: ref21
  doi: 10.1109/VETECS.2004.1388918
SSID ssj0014496
Score 2.0791051
Snippet It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP...
[...] it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find...
SourceID proquest
pascalfrancis
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 712
SubjectTerms Algorithms
Applied sciences
Branch-and-bound algorithm
Coding, codes
Computational complexity
convex optimization
Digital communication
Estimation theory
Exact sciences and technology
expected complexity
H^{\infty} estimation
Information, signal and communications theory
integer least-squares
Lattices
Maximum likelihood decoding
Maximum likelihood detection
Maximum likelihood estimation
maximum-likelihood (ML) detection
Signal and communications theory
Signal to noise ratio
sphere decoding
Studies
Telecommunications and information theory
Title Speeding up the Sphere Decoder With H^ and SDP Inspired Lower Bounds
URI https://ieeexplore.ieee.org/document/4432781
https://www.proquest.com/docview/863264678
https://www.proquest.com/docview/34936104
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAWwoiffrAgQPZZmMncY4t22pBgCptK_ZE5MdERVTZVTe59NfXY2ej8qjELZIdJZmxPTOZme8DeJeiVijqLBYcdSxkOY61CxNigWlhM4EJWl8g-y2fXovP82y-AR-GXhhE9MVnOKJLn8u3C9PRr7ITIXhaUJ_1s0LmoVdryBgI4bm4nLvA40wW8x7GZ5yUJ1ezy4BVWDr7SuhOjyyQp1Shgki1cjKpA5nFX-eyNzYXW_B1_ZqhxuTXqGv1yNz_geD4v9-xDS97r5OdhmWyAxvYvIIXj7AId2EyWwZDxrolc14hmxHgALIJUtf7Hfv-s71h0x9MNZbNJpfsU0M5erTsC_GssTOiZ1q9huuL86uP07inWIiN84TaOMU8R25EUpfapjbJMCmUttzFjVbUqHhe8lzlaFJL0HSKZ3qsMywUt1oLg_wNbDaLBt8Ck4SkV5fCkJcjjJbKHSXaLRGJUkmVRjBai70yPf440WDcVj4OScrK6YlYMYsq6CmC98MNywC98fTUXZLyMK0XcARHv-l1GE89NykXEeyvFV31e3dVydy5tM5-yAiOh1G36SiTohpcdKuKCycWF8ju_fu5-_A8lJVQ1csBbLZ3HR4636XVR37RPgCz5-po
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAcoFAQptDugQMHnDresb0-AqFKIa0qJRU5Ye1jLKoiJ2rsC7-efThWy0PiZmnXsj2zuzPjmfk-gDcpKUlYZzFyUjGKchwrGybESGlhMqSEjC-QPc-nl_h5mS134N3QC0NEvviMRu7S5_LNSnfuV9kxIk8L12d9L0PELHRrDTkDRM_GZR0GHmeiWPZAPuOkPF7MLwJaYWktrMN3umWDPKmKK4mUGyuVOtBZ_HEye3Nz8hjOti8aqkyuR12rRvrnbxiO__sle_Co9zvZ-7BQnsAONU_h4S00wn2YzNfBlLFuzaxfyOYOcoDYhFzf-w37etV-Z9NvTDaGzScX7LRxWXoybOaY1tgHR9C0eQaXJ58WH6dxT7IQa-sLtXFKeU5cY1KXyqQmySgppDLcRo4Ga5I8L3kuc9KpceB0kmdqrDIqJDdKoSb-HHabVUMvgAmHpVeXqJ2fg1oJaQ8TZReJICGFTCMYbcVe6R6B3BFh_Kh8JJKUldWT48UsqqCnCN4ON6wD-Ma_p-47KQ_TegFHcHhHr8N46tlJOUZwsFV01e_eTSVy69RaCyIiOBpG7bZzuRTZ0KrbVBytWGwo-_Lvzz2C-9PF2ayanZ5_OYAHocjE1cC8gt32pqPX1pNp1aFfwL8AH5zttQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speeding+up+the+Sphere+Decoder+With+H%5E+and+SDP+Inspired+Lower+Bounds&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Stojnic%2C+M.&rft.au=Vikalo%2C+H.&rft.au=Hassibi%2C+B.&rft.date=2008-02-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=56&rft.issue=2&rft.spage=712&rft.epage=726&rft_id=info:doi/10.1109%2FTSP.2007.906697&rft.externalDocID=4432781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon