Speeding up the Sphere Decoder With H^ and SDP Inspired Lower Bounds
It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 56; no. 2; pp. 712 - 726 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, NY
IEEE
01.02.2008
Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2007.906697 |
Cover
| Abstract | It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find the exact ML solution with an expected complexity that is often less than N 3 . However, the computational complexity of sphere decoding becomes prohibitive if the SNR is too low and/or if the dimension of the problem is too large. In this paper, we target these two regimes and attempt to find faster algorithms by pruning the search tree beyond what is done in the standard sphere decoding algorithm. The search tree is pruned by computing lower bounds on the optimal value of the objective function as the algorithm proceeds to descend down the search tree. We observe a tradeoff between the computational complexity required to compute a lower bound and the size of the pruned tree: the more effort we spend in computing a tight lower bound, the more branches that can be eliminated in the tree. Using ideas from semidefinite program (SDP)-duality theory and H infin estimation theory, we propose general frameworks for computing lower bounds on integer least-squares problems. We propose two families of algorithms, one that is appropriate for large problem dimensions and binary modulation, and the other that is appropriate for moderate-size dimensions yet high-order constellations. We then show how in each case these bounds can be efficiently incorporated in the sphere decoding algorithm, often resulting in significant improvement of the expected complexity of solving the ML decoding problem, while maintaining the exact ML-performance. |
|---|---|
| AbstractList | It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find the exact ML solution with an expected complexity that is often less than N 3 . However, the computational complexity of sphere decoding becomes prohibitive if the SNR is too low and/or if the dimension of the problem is too large. In this paper, we target these two regimes and attempt to find faster algorithms by pruning the search tree beyond what is done in the standard sphere decoding algorithm. The search tree is pruned by computing lower bounds on the optimal value of the objective function as the algorithm proceeds to descend down the search tree. We observe a tradeoff between the computational complexity required to compute a lower bound and the size of the pruned tree: the more effort we spend in computing a tight lower bound, the more branches that can be eliminated in the tree. Using ideas from semidefinite program (SDP)-duality theory and H infin estimation theory, we propose general frameworks for computing lower bounds on integer least-squares problems. We propose two families of algorithms, one that is appropriate for large problem dimensions and binary modulation, and the other that is appropriate for moderate-size dimensions yet high-order constellations. We then show how in each case these bounds can be efficiently incorporated in the sphere decoding algorithm, often resulting in significant improvement of the expected complexity of solving the ML decoding problem, while maintaining the exact ML-performance. [...] it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find the exact ML solution with an expected complexity that is often less than N3. |
| Author | Vikalo, H. Stojnic, M. Hassibi, B. |
| Author_xml | – sequence: 1 givenname: M. surname: Stojnic fullname: Stojnic, M. organization: California Inst. of Technol., Pasadena – sequence: 2 givenname: H. surname: Vikalo fullname: Vikalo, H. organization: California Inst. of Technol., Pasadena – sequence: 3 givenname: B. surname: Hassibi fullname: Hassibi, B. organization: California Inst. of Technol., Pasadena |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20020834$$DView record in Pascal Francis |
| BookMark | eNp9kM1LJDEQxYMo-LGePXgJgnvrMemkk85RHb9gQGEUPdmkk2on0ia9STey__1mGPHgYU9VUL_36vH20bYPHhA6omRGKVFnj8uHWUmInCkihJJbaI8qTgvCpdjOO6lYUdXyZRftp_ROCOVciT00Xw4A1vk3PA14XAFeDiuIgOdggoWIn924wrevWHuLl_MHfOfT4CJYvAif-XwRJm_TL7TT6T7B4dc8QE_XV4-Xt8Xi_ubu8nxRmFLwsShBCGCGk061trSkAiJ1a1ldVpZ3oJlQTGgBprRKEKVZ1dK2AqmZbVtugB2g3xvfIYY_E6Sx-XDJQN9rD2FKDePZgBKewZMf4HuYos_ZmlqwHEbIOkOnX5BORvdd1N641AzRfej4t8ldlqRma7OzDWdiSClC941Q0qyrb3L1a1w2m-qzovqhMG7Uowt-jNr1_9Edb3QOAL6_cM5KWVP2DygGkIY |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TIT_2021_3129767 crossref_primary_10_1109_TSP_2021_3100929 crossref_primary_10_1109_COMST_2015_2475242 crossref_primary_10_1016_j_sigpro_2020_107661 crossref_primary_10_1016_j_sigpro_2022_108509 crossref_primary_10_1109_TWC_2012_051512_111220 crossref_primary_10_1109_TIT_2011_2177590 crossref_primary_10_1109_LCOMM_2010_093010_100918 crossref_primary_10_1109_OJCOMS_2024_3510535 crossref_primary_10_1002_ett_2538 crossref_primary_10_1109_TSP_2014_2307836 crossref_primary_10_1016_j_mejo_2016_08_001 crossref_primary_10_1016_j_sigpro_2013_11_041 crossref_primary_10_1109_JSTSP_2009_2038210 crossref_primary_10_1016_j_sigpro_2016_02_006 crossref_primary_10_1109_TVT_2016_2570942 crossref_primary_10_1109_TMBMC_2016_2640306 crossref_primary_10_1016_j_sigpro_2017_11_010 crossref_primary_10_1109_TIT_2010_2059730 |
| Cites_doi | 10.1109/TSP.2006.890912 10.1109/ICASSP.2005.1415739 10.1109/TSP.2005.850352 10.1109/4234.846498 10.1109/JSAC.2005.862402 10.1007/BF01100205 10.1145/227683.227684 10.1109/ICASSP.2005.1415738 10.1109/TWC.2006.256975 10.1109/SPAWC.2005.1505872 10.1109/TSP.2003.818210 10.1137/S1052623494240456 10.1109/TSP.2005.843746 10.1109/78.992139 10.1007/978-3-642-78240-4 10.1109/ISIT.2005.1523632 10.1109/WIRLES.2005.1549632 10.1090/S0025-5718-1985-0777278-8 10.1109/TCOMM.2003.809789 10.1109/LSP.2005.853044 10.1109/LSP.2002.800508 10.1007/978-1-4615-4381-7 10.1016/S0166-218X(00)00263-8 10.1109/JSSC.2005.847505 10.1109/TIT.2005.864418 10.1109/ICASSP.2006.1661027 10.1137/1.9781611970760 10.1109/TIT.2003.817829 10.1109/ICASSP.2003.1202528 10.1109/ACSSC.2005.1599816 10.1109/TIT.2002.800499 10.1109/TWC.2006.1576534 10.1109/49.942507 10.1109/LSP.2005.843779 10.1109/TWC.2004.837271 10.1109/VETECS.2004.1388918 |
| ContentType | Journal Article |
| Copyright | 2008 INIST-CNRS Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| Copyright_xml | – notice: 2008 INIST-CNRS – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008 |
| DBID | 97E RIA RIE AAYXX CITATION IQODW 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TSP.2007.906697 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1941-0476 |
| EndPage | 726 |
| ExternalDocumentID | 2328864421 20020834 10_1109_TSP_2007_906697 4432781 |
| Genre | orig-research |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION IQODW RIG 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c264t-2e66e3c40f9bd2d05e07abd3825d4fea36936a6ec2d9609a35b1b5e7a3dbb4ce3 |
| IEDL.DBID | RIE |
| ISSN | 1053-587X |
| IngestDate | Thu Oct 02 11:40:09 EDT 2025 Mon Jun 30 10:22:07 EDT 2025 Mon Jul 21 09:17:06 EDT 2025 Thu Apr 24 22:54:19 EDT 2025 Wed Oct 01 01:57:58 EDT 2025 Tue Aug 26 16:47:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Performance evaluation Worst case method Convex programming sphere decoding Binary modulation Least squares method Digital communication expected complexity Branch-and-bound algorithm H infinite optimization Lower bound maximum-likelihood (ML) detection Branch and bound method integer least-squares Least squares problem H∞ estimation Estimation theory Algorithm Computational complexity Maximum likelihood decoding Exact solution NP hard problem convex optimization Search tree Objective function Maximum likelihood Signal to noise ratio |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c264t-2e66e3c40f9bd2d05e07abd3825d4fea36936a6ec2d9609a35b1b5e7a3dbb4ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 863264678 |
| PQPubID | 85478 |
| PageCount | 15 |
| ParticipantIDs | pascalfrancis_primary_20020834 crossref_citationtrail_10_1109_TSP_2007_906697 proquest_miscellaneous_34936104 crossref_primary_10_1109_TSP_2007_906697 ieee_primary_4432781 proquest_journals_863264678 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2008-02-00 |
| PublicationDateYYYYMMDD | 2008-02-01 |
| PublicationDate_xml | – month: 02 year: 2008 text: 2008-02-00 |
| PublicationDecade | 2000 |
| PublicationPlace | New York, NY |
| PublicationPlace_xml | – name: New York, NY – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2008 |
| Publisher | IEEE Institute of Electrical and Electronics Engineers The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: Institute of Electrical and Electronics Engineers – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref35 ref34 ref12 ref37 ref15 ref36 ref14 ref31 ref30 ref33 ref11 ref10 cui (ref20) 2004; 1 ref2 stojnic (ref13) 2005 ref1 ref39 golub (ref3) 1996 ref38 ref16 ref19 wolkowicz (ref27) 2000 jalden (ref32) 2003 kailath (ref17) 2000 ref24 ref23 ref26 ref25 ref42 hassibi (ref18) 0 ref41 ref22 ref21 ref28 boyd (ref5) 2003 ref29 ref8 ref7 ref9 ref4 ref6 ref40 |
| References_xml | – ident: ref9 doi: 10.1109/TSP.2006.890912 – volume: 1 start-page: 1218 year: 2004 ident: ref20 article-title: reduced complexity sphere decoding using forcing rules publication-title: Proc 38th Asilomar Conf Signals Systems Computers – ident: ref29 doi: 10.1109/ICASSP.2005.1415739 – ident: ref4 doi: 10.1109/TSP.2005.850352 – ident: ref10 doi: 10.1109/4234.846498 – year: 2003 ident: ref5 publication-title: Convex optimization – ident: ref22 doi: 10.1109/JSAC.2005.862402 – ident: ref34 doi: 10.1007/BF01100205 – ident: ref26 doi: 10.1145/227683.227684 – ident: ref12 doi: 10.1109/ICASSP.2005.1415738 – ident: ref37 doi: 10.1109/TWC.2006.256975 – ident: ref39 doi: 10.1109/SPAWC.2005.1505872 – year: 1996 ident: ref3 publication-title: Matrix Computations – ident: ref6 doi: 10.1109/TSP.2003.818210 – ident: ref2 doi: 10.1137/S1052623494240456 – ident: ref19 doi: 10.1109/TSP.2005.843746 – ident: ref28 doi: 10.1109/78.992139 – ident: ref38 doi: 10.1007/978-3-642-78240-4 – ident: ref35 doi: 10.1109/ISIT.2005.1523632 – year: 0 ident: ref18 article-title: a efficient square-root algorithm for blast publication-title: IEEE Trans Signal Process – ident: ref14 doi: 10.1109/WIRLES.2005.1549632 – ident: ref1 doi: 10.1090/S0025-5718-1985-0777278-8 – year: 2005 ident: ref13 article-title: an -based lower bound to speed up the sphere decoder publication-title: Signal Processing Its Applications in Wireless Communications (SPAWC) – ident: ref8 doi: 10.1109/TCOMM.2003.809789 – ident: ref42 doi: 10.1109/LSP.2005.853044 – ident: ref31 doi: 10.1109/LSP.2002.800508 – year: 2000 ident: ref27 publication-title: Handbook of Semidefinite Programming Theory Algorithms and Applications doi: 10.1007/978-1-4615-4381-7 – year: 2000 ident: ref17 publication-title: Linear Estimation – ident: ref33 doi: 10.1016/S0166-218X(00)00263-8 – ident: ref40 doi: 10.1109/JSSC.2005.847505 – ident: ref25 doi: 10.1109/TIT.2005.864418 – ident: ref15 doi: 10.1109/ICASSP.2006.1661027 – ident: ref16 doi: 10.1137/1.9781611970760 – ident: ref36 doi: 10.1109/TIT.2003.817829 – year: 2003 ident: ref32 article-title: semidefinite programming for detection in linear systemsoptimality conditions and spacetime decoding publication-title: Proc Int Conf Acoustics Speech Signal Processing (ICASSP) doi: 10.1109/ICASSP.2003.1202528 – ident: ref41 doi: 10.1109/ACSSC.2005.1599816 – ident: ref11 doi: 10.1109/TIT.2002.800499 – ident: ref24 doi: 10.1109/TWC.2006.1576534 – ident: ref30 doi: 10.1109/49.942507 – ident: ref23 doi: 10.1109/LSP.2005.843779 – ident: ref7 doi: 10.1109/TWC.2004.837271 – ident: ref21 doi: 10.1109/VETECS.2004.1388918 |
| SSID | ssj0014496 |
| Score | 2.0791051 |
| Snippet | It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP... [...] it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find... |
| SourceID | proquest pascalfrancis crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 712 |
| SubjectTerms | Algorithms Applied sciences Branch-and-bound algorithm Coding, codes Computational complexity convex optimization Digital communication Estimation theory Exact sciences and technology expected complexity H^{\infty} estimation Information, signal and communications theory integer least-squares Lattices Maximum likelihood decoding Maximum likelihood detection Maximum likelihood estimation maximum-likelihood (ML) detection Signal and communications theory Signal to noise ratio sphere decoding Studies Telecommunications and information theory |
| Title | Speeding up the Sphere Decoder With H^ and SDP Inspired Lower Bounds |
| URI | https://ieeexplore.ieee.org/document/4432781 https://www.proquest.com/docview/863264678 https://www.proquest.com/docview/34936104 |
| Volume | 56 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6VnuBAWwoiffrAgQPZZmMncY4t22pBgCptK_ZE5MdERVTZVTe59NfXY2ej8qjELZIdJZmxPTOZme8DeJeiVijqLBYcdSxkOY61CxNigWlhM4EJWl8g-y2fXovP82y-AR-GXhhE9MVnOKJLn8u3C9PRr7ITIXhaUJ_1s0LmoVdryBgI4bm4nLvA40wW8x7GZ5yUJ1ezy4BVWDr7SuhOjyyQp1Shgki1cjKpA5nFX-eyNzYXW_B1_ZqhxuTXqGv1yNz_geD4v9-xDS97r5OdhmWyAxvYvIIXj7AId2EyWwZDxrolc14hmxHgALIJUtf7Hfv-s71h0x9MNZbNJpfsU0M5erTsC_GssTOiZ1q9huuL86uP07inWIiN84TaOMU8R25EUpfapjbJMCmUttzFjVbUqHhe8lzlaFJL0HSKZ3qsMywUt1oLg_wNbDaLBt8Ck4SkV5fCkJcjjJbKHSXaLRGJUkmVRjBai70yPf440WDcVj4OScrK6YlYMYsq6CmC98MNywC98fTUXZLyMK0XcARHv-l1GE89NykXEeyvFV31e3dVydy5tM5-yAiOh1G36SiTohpcdKuKCycWF8ju_fu5-_A8lJVQ1csBbLZ3HR4636XVR37RPgCz5-po |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9NAEB5V5QAcoFAQptDugQMHnDresb0-AqFKIa0qJRU5Ye1jLKoiJ2rsC7-efThWy0PiZmnXsj2zuzPjmfk-gDcpKUlYZzFyUjGKchwrGybESGlhMqSEjC-QPc-nl_h5mS134N3QC0NEvviMRu7S5_LNSnfuV9kxIk8L12d9L0PELHRrDTkDRM_GZR0GHmeiWPZAPuOkPF7MLwJaYWktrMN3umWDPKmKK4mUGyuVOtBZ_HEye3Nz8hjOti8aqkyuR12rRvrnbxiO__sle_Co9zvZ-7BQnsAONU_h4S00wn2YzNfBlLFuzaxfyOYOcoDYhFzf-w37etV-Z9NvTDaGzScX7LRxWXoybOaY1tgHR9C0eQaXJ58WH6dxT7IQa-sLtXFKeU5cY1KXyqQmySgppDLcRo4Ga5I8L3kuc9KpceB0kmdqrDIqJDdKoSb-HHabVUMvgAmHpVeXqJ2fg1oJaQ8TZReJICGFTCMYbcVe6R6B3BFh_Kh8JJKUldWT48UsqqCnCN4ON6wD-Ma_p-47KQ_TegFHcHhHr8N46tlJOUZwsFV01e_eTSVy69RaCyIiOBpG7bZzuRTZ0KrbVBytWGwo-_Lvzz2C-9PF2ayanZ5_OYAHocjE1cC8gt32pqPX1pNp1aFfwL8AH5zttQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Speeding+up+the+Sphere+Decoder+With+H%5E+and+SDP+Inspired+Lower+Bounds&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Stojnic%2C+M.&rft.au=Vikalo%2C+H.&rft.au=Hassibi%2C+B.&rft.date=2008-02-01&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=56&rft.issue=2&rft.spage=712&rft.epage=726&rft_id=info:doi/10.1109%2FTSP.2007.906697&rft.externalDocID=4432781 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |