Speeding up the Sphere Decoder With H^ and SDP Inspired Lower Bounds

It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 56; no. 2; pp. 712 - 726
Main Authors Stojnic, M., Vikalo, H., Hassibi, B.
Format Journal Article
LanguageEnglish
Published New York, NY IEEE 01.02.2008
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2007.906697

Cover

More Information
Summary:It is well known that maximum-likelihood (ML) decoding in many digital communication schemes reduces to solving an integer least-squares problem, which is NP hard in the worst-case. On the other hand, it has recently been shown that, over a wide range of dimensions N and signal-to-noise ratios (SNRs), the sphere decoding algorithm can be used to find the exact ML solution with an expected complexity that is often less than N 3 . However, the computational complexity of sphere decoding becomes prohibitive if the SNR is too low and/or if the dimension of the problem is too large. In this paper, we target these two regimes and attempt to find faster algorithms by pruning the search tree beyond what is done in the standard sphere decoding algorithm. The search tree is pruned by computing lower bounds on the optimal value of the objective function as the algorithm proceeds to descend down the search tree. We observe a tradeoff between the computational complexity required to compute a lower bound and the size of the pruned tree: the more effort we spend in computing a tight lower bound, the more branches that can be eliminated in the tree. Using ideas from semidefinite program (SDP)-duality theory and H infin estimation theory, we propose general frameworks for computing lower bounds on integer least-squares problems. We propose two families of algorithms, one that is appropriate for large problem dimensions and binary modulation, and the other that is appropriate for moderate-size dimensions yet high-order constellations. We then show how in each case these bounds can be efficiently incorporated in the sphere decoding algorithm, often resulting in significant improvement of the expected complexity of solving the ML decoding problem, while maintaining the exact ML-performance.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1053-587X
1941-0476
DOI:10.1109/TSP.2007.906697