Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA
Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of...
Saved in:
Published in | Processes Vol. 8; no. 5; p. 579 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
01.05.2020
|
Online Access | Get full text |
ISSN | 2227-9717 2227-9717 |
DOI | 10.3390/pr8050579 |
Cover
Abstract | Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of aggressive competition among companies, effective management of supply chain risks (SCRs) is crucial, and is currently a very active field of research. Failure Mode, Effects and Criticality Analysis (FMECA) has been recently extended to SCR identification and prioritization, aiming at reducing potential losses caused by lack of risk control. This article has a twofold objective. First, SCR assessment is investigated, and a comprehensive list of specific risks related to the automotive industry is compiled to extend the set of most commonly considered risks. Second, an alternative way of calculating the Risk Priority Number (RPN) is proposed within the FMECA framework by means of an integrated Multi-Criteria Decision-Making (MCDM) approach. We give a new calculation procedure by making use of the Analytic Hierarchy Process (AHP) to derive factors weights, and then the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) to evaluate the new factor of “dependence” among the risks. The developed joint analysis constitutes a risk analysis support tool for criticality in systems engineering. The approach also deals with uncertainty and vagueness associated with input data through the use of fuzzy numbers. The results obtained from a relevant case study in the automotive industry showcase the effectiveness of this approach, which brings important value to those companies: When planning interventions of prevention/mitigation, primary importance should be given to (1) supply chain disruptions due to natural disasters; (2) manufacturing facilities, human resources, policies and breakdown processes; and (3) inefficient transport. |
---|---|
AbstractList | Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of aggressive competition among companies, effective management of supply chain risks (SCRs) is crucial, and is currently a very active field of research. Failure Mode, Effects and Criticality Analysis (FMECA) has been recently extended to SCR identification and prioritization, aiming at reducing potential losses caused by lack of risk control. This article has a twofold objective. First, SCR assessment is investigated, and a comprehensive list of specific risks related to the automotive industry is compiled to extend the set of most commonly considered risks. Second, an alternative way of calculating the Risk Priority Number (RPN) is proposed within the FMECA framework by means of an integrated Multi-Criteria Decision-Making (MCDM) approach. We give a new calculation procedure by making use of the Analytic Hierarchy Process (AHP) to derive factors weights, and then the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) to evaluate the new factor of “dependence” among the risks. The developed joint analysis constitutes a risk analysis support tool for criticality in systems engineering. The approach also deals with uncertainty and vagueness associated with input data through the use of fuzzy numbers. The results obtained from a relevant case study in the automotive industry showcase the effectiveness of this approach, which brings important value to those companies: When planning interventions of prevention/mitigation, primary importance should be given to (1) supply chain disruptions due to natural disasters; (2) manufacturing facilities, human resources, policies and breakdown processes; and (3) inefficient transport. |
Author | El Felsoufi, Zoubir Certa, Antonella Mzougui, Ilyas Carpitella, Silvia Izquierdo, Joaquín |
Author_xml | – sequence: 1 givenname: Ilyas surname: Mzougui fullname: Mzougui, Ilyas – sequence: 2 givenname: Silvia orcidid: 0000-0003-0171-2504 surname: Carpitella fullname: Carpitella, Silvia – sequence: 3 givenname: Antonella surname: Certa fullname: Certa, Antonella – sequence: 4 givenname: Zoubir surname: El Felsoufi fullname: El Felsoufi, Zoubir – sequence: 5 givenname: Joaquín orcidid: 0000-0002-6625-7226 surname: Izquierdo fullname: Izquierdo, Joaquín |
BookMark | eNptkM1OwzAQhC1UJErpgTfwlUOo7cROfAyhhUqNkPg5cYgc22kNbRzZTqW8PUEghBB7mU-7s3OYczBpbasBuMToOo45WnQuQxTRlJ-AKSEkjXiK08kvPgNz79_QOBzHGWVT8Jp7r7037RY-9V23H2CxE6aFj8a_ezhC2GmY98EebDBHDdet6n1ww7h3tt_uoIClVaYxWsGyuC2jG-FHXJXLIr8Ap43Yez3_1hl4WS2fi_to83C3LvJNJAlLQoSJrLmMU5UiwhBTvE4UkVSN10aKTAnKEtkIQRLFaCZV1iCqaoY5TjCpmYhn4OorVzrrvdNN1TlzEG6oMKo-i6l-ihm9iz9eaYIIxrbBCbP_5-MDRQdnEQ |
CitedBy_id | crossref_primary_10_1016_j_cie_2024_110416 crossref_primary_10_1016_j_psep_2024_06_038 crossref_primary_10_1080_21681015_2023_2269926 crossref_primary_10_3390_pr9040670 crossref_primary_10_3390_pr9112070 crossref_primary_10_2478_mspe_2024_0010 crossref_primary_10_3390_su152416583 crossref_primary_10_1088_1742_6596_1820_1_012117 crossref_primary_10_3390_su12229483 crossref_primary_10_1002_bse_3793 crossref_primary_10_3390_logistics5040082 crossref_primary_10_5812_jjhs_154456 crossref_primary_10_2478_mspe_2025_0013 crossref_primary_10_1108_IJQRM_06_2021_0191 crossref_primary_10_3390_su15064924 crossref_primary_10_1080_09640568_2023_2219828 crossref_primary_10_4995_ijpme_2022_17169 crossref_primary_10_22201_enesl_20078064e_2023_25_85807 crossref_primary_10_1016_j_heliyon_2024_e31615 crossref_primary_10_1590_0101_7438_2023_043spe1_00263696 crossref_primary_10_3390_math10040552 crossref_primary_10_1186_s10033_021_00539_6 crossref_primary_10_3390_pr10071283 crossref_primary_10_59782_sidr_v4i1_146 crossref_primary_10_3390_pr11030859 crossref_primary_10_29121_shodhkosh_v5_i1_2024_1699 crossref_primary_10_3390_en14185607 crossref_primary_10_1016_j_seps_2022_101257 crossref_primary_10_3390_pr10061209 crossref_primary_10_46465_endustrimuhendisligi_1465791 crossref_primary_10_31202_ecjse_1132087 crossref_primary_10_1016_j_joitmc_2025_100489 crossref_primary_10_3390_en16217324 crossref_primary_10_1007_s10660_024_09814_9 crossref_primary_10_1007_s40747_021_00417_7 crossref_primary_10_1108_JBIM_10_2023_0587 crossref_primary_10_3390_su13137449 crossref_primary_10_1108_BFJ_12_2022_1116 crossref_primary_10_1007_s12597_021_00568_8 crossref_primary_10_1142_S0218126622501055 crossref_primary_10_3390_su13116049 crossref_primary_10_1590_0103_6513_20210057 crossref_primary_10_1016_j_ress_2021_108022 crossref_primary_10_1080_00207543_2021_1970848 |
Cites_doi | 10.1016/j.cor.2012.08.015 10.1515/eng-2017-0007 10.1016/j.jmsy.2019.04.005 10.1016/j.egypro.2017.03.1109 10.1111/j.1937-5956.2011.01251.x 10.1016/j.jclepro.2019.03.307 10.1016/j.eswa.2012.05.031 10.1080/00207543.2019.1680893 10.1016/j.asoc.2019.105729 10.4028/www.scientific.net/AMR.940.112 10.1108/09600030810866986 10.1016/j.ijpe.2020.107667 10.1108/JMTM-01-2017-0014 10.1016/j.eswa.2010.07.114 10.1108/02656710910966165 10.1080/0951192X.2014.900865 10.1016/j.pursup.2007.01.004 10.1016/j.eswa.2011.06.044 10.1016/j.ijggc.2015.07.008 10.1016/j.ress.2017.09.017 10.1007/s10845-009-0266-x 10.1108/09600031211202472 10.1016/j.cor.2008.05.002 10.21236/ADA214804 10.1016/j.pursup.2008.01.008 10.1142/S0219622014500758 10.1002/mcda.1620 10.1002/smj.4250080503 10.1108/09574090510617385 10.1108/09576060110391174 10.1108/02656710610640943 10.1016/j.ijpe.2008.07.008 10.1016/j.ress.2011.11.006 10.1007/s00170-017-0222-4 10.1016/j.jbi.2014.11.012 10.1108/09574091211289200 10.1016/j.omega.2008.06.003 10.1080/13675560310001627016 10.1002/1099-1638(200007/08)16:4<313::AID-QRE434>3.0.CO;2-U 10.1007/978-981-10-1466-6 10.1016/j.chaos.2018.09.018 10.1016/j.ijpe.2004.02.007 10.1016/j.ijpe.2020.107752 10.1108/13598540910970072 10.1287/mnsc.33.11.1404 10.1080/16258312.2018.1537504 10.1016/j.ejor.2007.01.004 10.1016/j.procs.2017.11.304 10.1016/j.eswa.2010.06.046 10.1016/j.eswa.2015.04.030 10.1016/j.trpro.2015.09.035 10.1016/j.eswa.2010.09.110 10.1016/j.energy.2019.06.007 10.1016/0022-2496(77)90033-5 10.1137/1.9780898719512 10.1016/j.apm.2013.01.016 |
ContentType | Journal Article |
DBID | AAYXX CITATION |
DOI | 10.3390/pr8050579 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Sciences (General) |
EISSN | 2227-9717 |
ExternalDocumentID | 10_3390_pr8050579 |
GroupedDBID | 5VS 8FE 8FG 8FH AADQD AAFWJ AAYXX ABJCF ACIWK ACPRK ADBBV ADMLS AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS BBNVY BCNDV BENPR BGLVJ BHPHI CCPQU CITATION D1I HCIFZ IAO IGS KB. KQ8 LK8 M7P MODMG M~E OK1 PDBOC PHGZM PHGZT PIMPY PROAC RNS |
ID | FETCH-LOGICAL-c264t-12cb9c37d702606d9b4d2c5dc26fca8da564cfaa24d658cd8f05db6191412b6a3 |
ISSN | 2227-9717 |
IngestDate | Thu Apr 24 23:08:46 EDT 2025 Tue Jul 01 02:34:26 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c264t-12cb9c37d702606d9b4d2c5dc26fca8da564cfaa24d658cd8f05db6191412b6a3 |
ORCID | 0000-0003-0171-2504 0000-0002-6625-7226 |
OpenAccessLink | https://www.mdpi.com/2227-9717/8/5/579/pdf |
ParticipantIDs | crossref_primary_10_3390_pr8050579 crossref_citationtrail_10_3390_pr8050579 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-05-01 |
PublicationDateYYYYMMDD | 2020-05-01 |
PublicationDate_xml | – month: 05 year: 2020 text: 2020-05-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Processes |
PublicationYear | 2020 |
References | Liu (ref_56) 2012; 39 Zhang (ref_53) 2014; 940 ref_12 ref_54 Manuj (ref_39) 2008; 38 Ghadge (ref_14) 2012; 23 Carpitella (ref_62) 2018; 169 Ho (ref_15) 2008; 186 ref_16 Liu (ref_27) 2015; 28 Peck (ref_35) 2003; 6 Liu (ref_57) 2014; 42 March (ref_30) 1987; 33 Bevilacqua (ref_60) 2000; 16 Aven (ref_47) 2012; 99 ref_24 Tang (ref_13) 2008; 116 ref_23 Blos (ref_31) 2009; 14 ref_65 Lolli (ref_18) 2017; 24 Govindan (ref_21) 2015; 42 Chang (ref_51) 2011; 38 Pandey (ref_45) 2017; 27 Sara (ref_66) 2015; 41 Wu (ref_4) 2019; 1821 Kern (ref_6) 2012; 42 Kutlu (ref_58) 2012; 39 Munir (ref_3) 2020; 227 Ghoshal (ref_8) 1987; 8 Chang (ref_29) 2011; 22 Muhammad (ref_28) 2017; 120 Marasova (ref_44) 2017; 7 Chang (ref_59) 2001; 12 Curkovic (ref_11) 2013; 1 Chang (ref_49) 2009; 26 Zhang (ref_52) 2011; 38 ref_37 Zak (ref_19) 2015; 10 Schoenherr (ref_9) 2008; 14 Liu (ref_55) 2011; 38 (ref_33) 2005; 16 Lee (ref_22) 2013; 37 Ming (ref_10) 2019; 225 Saaty (ref_63) 1977; 15 Hallikas (ref_32) 2004; 90 Bevilacqua (ref_41) 2018; 19 Teng (ref_34) 2006; 23 Mahmoudi (ref_64) 2019; 84 Borota (ref_46) 2017; 2017 Badea (ref_17) 2017; 112 Zaidan (ref_20) 2015; 53 Bode (ref_38) 2006; 12 Naderikia (ref_26) 2017; 92 ref_40 ref_1 Tian (ref_2) 2019; 52 Hsieh (ref_42) 2016; 23 Chin (ref_50) 2009; 36 Chang (ref_25) 2014; 13 Sodhi (ref_36) 2012; 21 ref_48 Lotfi (ref_43) 2018; 29 Wang (ref_7) 2018; 116 Garvey (ref_5) 2020; 228 Debo (ref_61) 2009; 37 |
References_xml | – volume: 42 start-page: 49 year: 2014 ident: ref_57 article-title: A FTA-based method for risk decision making in emergency response publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2012.08.015 – volume: 7 start-page: 43 year: 2017 ident: ref_44 article-title: Applying the heuristic to the risk assessment within the automotive industry supply chain publication-title: Open Eng. doi: 10.1515/eng-2017-0007 – volume: 52 start-page: 217 year: 2019 ident: ref_2 article-title: Reconfiguration of manufacturing supply chains considering outsourcing decisions and supply chain risks publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2019.04.005 – volume: 112 start-page: 19 year: 2017 ident: ref_17 article-title: Choosing the optimal technology to rehabilitate the pipes in water distribution systems using the AHP method publication-title: Energy Procedia doi: 10.1016/j.egypro.2017.03.1109 – volume: 21 start-page: 1 year: 2012 ident: ref_36 article-title: Researchers’ perspectives on supply chain risk management publication-title: Prod. Oper. Manag. doi: 10.1111/j.1937-5956.2011.01251.x – volume: 225 start-page: 857 year: 2019 ident: ref_10 article-title: Supply chain sustainability risk and assessment publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.03.307 – volume: 39 start-page: 12926 year: 2012 ident: ref_56 article-title: Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2012.05.031 – ident: ref_1 – ident: ref_40 doi: 10.1080/00207543.2019.1680893 – volume: 84 start-page: 105729 year: 2019 ident: ref_64 article-title: Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105729 – ident: ref_23 – volume: 940 start-page: 112 year: 2014 ident: ref_53 article-title: Application of FMEA-FTA method in fault diagnosis of tracked vehicle publication-title: Adv. Mater. Res. doi: 10.4028/www.scientific.net/AMR.940.112 – volume: 38 start-page: 192 year: 2008 ident: ref_39 article-title: Global supply chain risk management strategies publication-title: Int. J. Phys. Distrib. Logist. Manag. doi: 10.1108/09600030810866986 – volume: 227 start-page: 107667 year: 2020 ident: ref_3 article-title: Supply chain risk management and operational performance: The enabling role of supply chain integration publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2020.107667 – volume: 29 start-page: 168 year: 2018 ident: ref_43 article-title: Disentangling resilience, agility and leanness: Conceptual development and empirical analysis publication-title: J. Manuf. Technol. Manag. doi: 10.1108/JMTM-01-2017-0014 – volume: 38 start-page: 1850 year: 2011 ident: ref_51 article-title: Fuzzy DEMATEL method for developing supplier selection criteria publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.07.114 – volume: 26 start-page: 629 year: 2009 ident: ref_49 article-title: Applying DEA to enhance assessment capability of FMEA publication-title: Int. J. Qual. Reliab. Manag. doi: 10.1108/02656710910966165 – volume: 28 start-page: 701 year: 2015 ident: ref_27 article-title: Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-making trial and evaluation laboratory publication-title: Int. J. Comput. Integr. Manuf. doi: 10.1080/0951192X.2014.900865 – volume: 12 start-page: 301 year: 2006 ident: ref_38 article-title: An empirical investigation into supply chain vulnerability publication-title: J. Purch. Supply Manag. doi: 10.1016/j.pursup.2007.01.004 – volume: 39 start-page: 61 year: 2012 ident: ref_58 article-title: Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2011.06.044 – ident: ref_48 – volume: 41 start-page: 336 year: 2015 ident: ref_66 article-title: Assessing relative importance and mutual influence of barriers for CCS deployment of the ROAD project using AHP and DEMATEL methods publication-title: Int. J. Green Gas Control doi: 10.1016/j.ijggc.2015.07.008 – volume: 1 start-page: 251 year: 2013 ident: ref_11 article-title: Using FMEA for supply chain risk management publication-title: Mod. Manag. Sci. Eng. – volume: 169 start-page: 394 year: 2018 ident: ref_62 article-title: A combined multi-criteria approach to support FMECA analyses: A real-world case publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.09.017 – volume: 22 start-page: 113 year: 2011 ident: ref_29 article-title: Evaluating the risk of failure using the fuzzy OWA and DEMATEL method publication-title: J. Intell. Manuf. doi: 10.1007/s10845-009-0266-x – volume: 42 start-page: 60 year: 2012 ident: ref_6 article-title: Supply risk management: Model development and empirical analysis publication-title: Int. J. Phys. Distrib. Logist. Manag. doi: 10.1108/09600031211202472 – volume: 36 start-page: 1768 year: 2009 ident: ref_50 article-title: Failure mode and effects analysis using a group-based evidential reasoning approach publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2008.05.002 – ident: ref_16 doi: 10.21236/ADA214804 – volume: 14 start-page: 100 year: 2008 ident: ref_9 article-title: Assessing supply chain risks with the analytic hierarchy process: Providing decision support for the offshoring decision by a US manufacturing company publication-title: J. Purch. Supply Manag. doi: 10.1016/j.pursup.2008.01.008 – volume: 13 start-page: 1229 year: 2014 ident: ref_25 article-title: Integrating TOPSIS and DEMATEL methods to rank the risk of failure of FMEA publication-title: Int. J. Inf. Technol. Decis. Mak. doi: 10.1142/S0219622014500758 – ident: ref_24 – volume: 24 start-page: 275 year: 2017 ident: ref_18 article-title: A multicriteria framework for inventory classification and control with application to intermittent demand publication-title: J. Multi-Criteria Decis. Anal. doi: 10.1002/mcda.1620 – volume: 23 start-page: 2287 year: 2016 ident: ref_42 article-title: Resilient logistics to mitigate supply chain uncertainty: A case study of an automotive company publication-title: Sci. Iran. – volume: 8 start-page: 425 year: 1987 ident: ref_8 article-title: Global strategy: An organizing framework publication-title: Strateg. Manag. J. doi: 10.1002/smj.4250080503 – volume: 16 start-page: 120 year: 2005 ident: ref_33 article-title: Supply chain risk management: Understanding the business requirements from a practitioner perspective publication-title: Int. J. Logist. Manag. doi: 10.1108/09574090510617385 – volume: 12 start-page: 211 year: 2001 ident: ref_59 article-title: Failure mode and effects analysis using grey theory publication-title: Integr. Manuf. Syst. doi: 10.1108/09576060110391174 – volume: 23 start-page: 179 year: 2006 ident: ref_34 article-title: Implementing FMEA in a collaborative supply chain environment publication-title: Int. J. Qual. Reliab. Manag. doi: 10.1108/02656710610640943 – volume: 116 start-page: 12 year: 2008 ident: ref_13 article-title: The power of flexibility for mitigating supply chain risks publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2008.07.008 – volume: 99 start-page: 33 year: 2012 ident: ref_47 article-title: The risk concept—Historical and recent development trends publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2011.11.006 – volume: 92 start-page: 3749 year: 2017 ident: ref_26 article-title: A new fuzzy approach to identify the critical risk factors in maintenance management publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-017-0222-4 – volume: 53 start-page: 390 year: 2015 ident: ref_20 article-title: Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS publication-title: J. Biomed. Inform. doi: 10.1016/j.jbi.2014.11.012 – ident: ref_37 – volume: 23 start-page: 313 year: 2012 ident: ref_14 article-title: Supply chain risk management: Present and future scope publication-title: Int. J. Phys. Distrib. Logist. Manag. doi: 10.1108/09574091211289200 – volume: 37 start-page: 811 year: 2009 ident: ref_61 article-title: Sharing inventory risk in supply chain: The implication of financial constraint publication-title: Omega doi: 10.1016/j.omega.2008.06.003 – volume: 6 start-page: 197 year: 2003 ident: ref_35 article-title: Supply chain risk management: Outlining an agenda for future research publication-title: Int. J. Logist. doi: 10.1080/13675560310001627016 – volume: 16 start-page: 313 year: 2000 ident: ref_60 article-title: Monte Carlo simulation approach for a modified FMECA in a power plant publication-title: Qual. Reliab. Eng. Int. doi: 10.1002/1099-1638(200007/08)16:4<313::AID-QRE434>3.0.CO;2-U – ident: ref_54 doi: 10.1007/978-981-10-1466-6 – volume: 2017 start-page: 4931797 year: 2017 ident: ref_46 article-title: ABC classification of risk factors in production supply chains with uncertain data publication-title: Math. Probl. Eng. – volume: 116 start-page: 72 year: 2018 ident: ref_7 article-title: The complexity measurement and evolution analysis of supply chain network under disruption risks publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2018.09.018 – volume: 27 start-page: 395 year: 2017 ident: ref_45 article-title: FMEA-based interpretive structural modelling approach to model automotive supply chain risk publication-title: Int. J. Logist. Syst. Manag. – volume: 90 start-page: 47 year: 2004 ident: ref_32 article-title: Risk management processes in supplier networks publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2004.02.007 – volume: 228 start-page: 107752 year: 2020 ident: ref_5 article-title: The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation publication-title: Int. J. Prod. Econ. doi: 10.1016/j.ijpe.2020.107752 – volume: 14 start-page: 247 year: 2009 ident: ref_31 article-title: Supply chain risk management (SCRM): A case study on the automotive and electronic industries in Brazil publication-title: Supply Chain Manag. doi: 10.1108/13598540910970072 – ident: ref_12 – volume: 33 start-page: 1404 year: 1987 ident: ref_30 article-title: Managerial perspectives on risk and risk taking publication-title: Manag. Sci. doi: 10.1287/mnsc.33.11.1404 – volume: 19 start-page: 282 year: 2018 ident: ref_41 article-title: Conceptual model for analysing domino effect among concepts affecting supply chain resilience publication-title: Supply Chain Forum Int. J. doi: 10.1080/16258312.2018.1537504 – volume: 186 start-page: 211 year: 2008 ident: ref_15 article-title: Integrated analytic hierarchy process and its application—A literature review publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.01.004 – volume: 120 start-page: 742 year: 2017 ident: ref_28 article-title: Fuzzy DEMATEL method for identifying LMS evaluation criteria publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2017.11.304 – volume: 38 start-page: 206 year: 2011 ident: ref_52 article-title: Risk prioritization in failure mode and effects analysis under uncertainty publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.06.046 – volume: 42 start-page: 7207 year: 2015 ident: ref_21 article-title: Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.030 – volume: 10 start-page: 820 year: 2015 ident: ref_19 article-title: Application of AHP and ELECTRE III/IV methods to multiple level, multiple criteria evaluation of urban transportation projects publication-title: Transp. Res. Procedia doi: 10.1016/j.trpro.2015.09.035 – volume: 38 start-page: 4403 year: 2011 ident: ref_55 article-title: Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2010.09.110 – volume: 1821 start-page: 397 year: 2019 ident: ref_4 article-title: Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation publication-title: Energy doi: 10.1016/j.energy.2019.06.007 – volume: 15 start-page: 234 year: 1977 ident: ref_63 article-title: A scaling method for priorities in hierarchical structures publication-title: J. Math. Psychol. doi: 10.1016/0022-2496(77)90033-5 – ident: ref_65 doi: 10.1137/1.9780898719512 – volume: 37 start-page: 6746 year: 2013 ident: ref_22 article-title: Revised DEMATEL: Resolving the infeasibility of DEMATEL publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2013.01.016 |
SSID | ssj0000913856 |
Score | 2.3536594 |
Snippet | Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of... |
SourceID | crossref |
SourceType | Enrichment Source Index Database |
StartPage | 579 |
Title | Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLb4cYHDBB0TDIYsxAFUhdE0cZIjdK3YpHIYIKHtUPlHIkVUbdUmleDA3773bNfJoAfgEkWOXxT1fbWf7e99j5BjmNMURBUtT_kSt26Y9ARvpR7jsMBFTa1UapbvNbu6C37dh_fVCb7OLinEmXxamlfyEa9CG_gVs2Tf4Vn3UmiAe_AvXMHDcH2Tj82JrdbUxuKcKFQMC_3m73z2MFsQGC_KQhPu5kiS1GU6Hl1xHo6l0PIMo9B-50ffu4QpTTV7_a4tO2yDVptMULEN-09gXmoewM_hI3ftHT6d5JiWoiPSm3w4zysiEJ76W7mCMXJr3JPusNmDGXpcZvqNf8alyKf13Qj_vOL-mUELU2u9JDL5mGfpkjY76sY1cIW1ETQ0tWVejuztdoJUyMk0xtJ7ps__6tkvZjXHNYRVDhoPnOkqWfcjCLSQ5_lcbcihQGqsq_267zVKVGj93VnX4pdaIHK7RT7ZFQS9MHDYJivpqEE2a7qSDbJtR-wZPbGy4qefyV-HFmrQQjVaqEYLhRtAC63QQhdooRYtlNMFWmiFFqrRskPuet3bzpVnS2t4EiLgwmv5UiSyHakINeWYSkQAf9ZQwdNM8ljxkAUy49wPFISoUsXZeagEQzHAli8Yb38hayMAyy6hAiUdVSTCSMRBJhUXLEoy5WeojMhisUdOFj_YQFrdeSx_Mhy88sweOXJdJ0Zs5XWnr2_ptE82KnQekLViWqbfIHosxKH2-j989XBC |
linkProvider | ISSN International Centre |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+Supply+Chain+Risks+in+the+Automotive+Industry+through+a+Modified+MCDM-Based+FMECA&rft.jtitle=Processes&rft.au=Mzougui%2C+Ilyas&rft.au=Carpitella%2C+Silvia&rft.au=Certa%2C+Antonella&rft.au=El+Felsoufi%2C+Zoubir&rft.date=2020-05-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=8&rft.issue=5&rft.spage=579&rft_id=info:doi/10.3390%2Fpr8050579&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr8050579 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon |