Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA

Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of...

Full description

Saved in:
Bibliographic Details
Published inProcesses Vol. 8; no. 5; p. 579
Main Authors Mzougui, Ilyas, Carpitella, Silvia, Certa, Antonella, El Felsoufi, Zoubir, Izquierdo, Joaquín
Format Journal Article
LanguageEnglish
Published 01.05.2020
Online AccessGet full text
ISSN2227-9717
2227-9717
DOI10.3390/pr8050579

Cover

Abstract Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of aggressive competition among companies, effective management of supply chain risks (SCRs) is crucial, and is currently a very active field of research. Failure Mode, Effects and Criticality Analysis (FMECA) has been recently extended to SCR identification and prioritization, aiming at reducing potential losses caused by lack of risk control. This article has a twofold objective. First, SCR assessment is investigated, and a comprehensive list of specific risks related to the automotive industry is compiled to extend the set of most commonly considered risks. Second, an alternative way of calculating the Risk Priority Number (RPN) is proposed within the FMECA framework by means of an integrated Multi-Criteria Decision-Making (MCDM) approach. We give a new calculation procedure by making use of the Analytic Hierarchy Process (AHP) to derive factors weights, and then the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) to evaluate the new factor of “dependence” among the risks. The developed joint analysis constitutes a risk analysis support tool for criticality in systems engineering. The approach also deals with uncertainty and vagueness associated with input data through the use of fuzzy numbers. The results obtained from a relevant case study in the automotive industry showcase the effectiveness of this approach, which brings important value to those companies: When planning interventions of prevention/mitigation, primary importance should be given to (1) supply chain disruptions due to natural disasters; (2) manufacturing facilities, human resources, policies and breakdown processes; and (3) inefficient transport.
AbstractList Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of risks that can result in significant economic losses and negative impacts in terms of image and prestige for companies. In circumstances of aggressive competition among companies, effective management of supply chain risks (SCRs) is crucial, and is currently a very active field of research. Failure Mode, Effects and Criticality Analysis (FMECA) has been recently extended to SCR identification and prioritization, aiming at reducing potential losses caused by lack of risk control. This article has a twofold objective. First, SCR assessment is investigated, and a comprehensive list of specific risks related to the automotive industry is compiled to extend the set of most commonly considered risks. Second, an alternative way of calculating the Risk Priority Number (RPN) is proposed within the FMECA framework by means of an integrated Multi-Criteria Decision-Making (MCDM) approach. We give a new calculation procedure by making use of the Analytic Hierarchy Process (AHP) to derive factors weights, and then the fuzzy Decision-Making Trial and Evaluation Laboratory (DEMATEL) to evaluate the new factor of “dependence” among the risks. The developed joint analysis constitutes a risk analysis support tool for criticality in systems engineering. The approach also deals with uncertainty and vagueness associated with input data through the use of fuzzy numbers. The results obtained from a relevant case study in the automotive industry showcase the effectiveness of this approach, which brings important value to those companies: When planning interventions of prevention/mitigation, primary importance should be given to (1) supply chain disruptions due to natural disasters; (2) manufacturing facilities, human resources, policies and breakdown processes; and (3) inefficient transport.
Author El Felsoufi, Zoubir
Certa, Antonella
Mzougui, Ilyas
Carpitella, Silvia
Izquierdo, Joaquín
Author_xml – sequence: 1
  givenname: Ilyas
  surname: Mzougui
  fullname: Mzougui, Ilyas
– sequence: 2
  givenname: Silvia
  orcidid: 0000-0003-0171-2504
  surname: Carpitella
  fullname: Carpitella, Silvia
– sequence: 3
  givenname: Antonella
  surname: Certa
  fullname: Certa, Antonella
– sequence: 4
  givenname: Zoubir
  surname: El Felsoufi
  fullname: El Felsoufi, Zoubir
– sequence: 5
  givenname: Joaquín
  orcidid: 0000-0002-6625-7226
  surname: Izquierdo
  fullname: Izquierdo, Joaquín
BookMark eNptkM1OwzAQhC1UJErpgTfwlUOo7cROfAyhhUqNkPg5cYgc22kNbRzZTqW8PUEghBB7mU-7s3OYczBpbasBuMToOo45WnQuQxTRlJ-AKSEkjXiK08kvPgNz79_QOBzHGWVT8Jp7r7037RY-9V23H2CxE6aFj8a_ezhC2GmY98EebDBHDdet6n1ww7h3tt_uoIClVaYxWsGyuC2jG-FHXJXLIr8Ap43Yez3_1hl4WS2fi_to83C3LvJNJAlLQoSJrLmMU5UiwhBTvE4UkVSN10aKTAnKEtkIQRLFaCZV1iCqaoY5TjCpmYhn4OorVzrrvdNN1TlzEG6oMKo-i6l-ihm9iz9eaYIIxrbBCbP_5-MDRQdnEQ
CitedBy_id crossref_primary_10_1016_j_cie_2024_110416
crossref_primary_10_1016_j_psep_2024_06_038
crossref_primary_10_1080_21681015_2023_2269926
crossref_primary_10_3390_pr9040670
crossref_primary_10_3390_pr9112070
crossref_primary_10_2478_mspe_2024_0010
crossref_primary_10_3390_su152416583
crossref_primary_10_1088_1742_6596_1820_1_012117
crossref_primary_10_3390_su12229483
crossref_primary_10_1002_bse_3793
crossref_primary_10_3390_logistics5040082
crossref_primary_10_5812_jjhs_154456
crossref_primary_10_2478_mspe_2025_0013
crossref_primary_10_1108_IJQRM_06_2021_0191
crossref_primary_10_3390_su15064924
crossref_primary_10_1080_09640568_2023_2219828
crossref_primary_10_4995_ijpme_2022_17169
crossref_primary_10_22201_enesl_20078064e_2023_25_85807
crossref_primary_10_1016_j_heliyon_2024_e31615
crossref_primary_10_1590_0101_7438_2023_043spe1_00263696
crossref_primary_10_3390_math10040552
crossref_primary_10_1186_s10033_021_00539_6
crossref_primary_10_3390_pr10071283
crossref_primary_10_59782_sidr_v4i1_146
crossref_primary_10_3390_pr11030859
crossref_primary_10_29121_shodhkosh_v5_i1_2024_1699
crossref_primary_10_3390_en14185607
crossref_primary_10_1016_j_seps_2022_101257
crossref_primary_10_3390_pr10061209
crossref_primary_10_46465_endustrimuhendisligi_1465791
crossref_primary_10_31202_ecjse_1132087
crossref_primary_10_1016_j_joitmc_2025_100489
crossref_primary_10_3390_en16217324
crossref_primary_10_1007_s10660_024_09814_9
crossref_primary_10_1007_s40747_021_00417_7
crossref_primary_10_1108_JBIM_10_2023_0587
crossref_primary_10_3390_su13137449
crossref_primary_10_1108_BFJ_12_2022_1116
crossref_primary_10_1007_s12597_021_00568_8
crossref_primary_10_1142_S0218126622501055
crossref_primary_10_3390_su13116049
crossref_primary_10_1590_0103_6513_20210057
crossref_primary_10_1016_j_ress_2021_108022
crossref_primary_10_1080_00207543_2021_1970848
Cites_doi 10.1016/j.cor.2012.08.015
10.1515/eng-2017-0007
10.1016/j.jmsy.2019.04.005
10.1016/j.egypro.2017.03.1109
10.1111/j.1937-5956.2011.01251.x
10.1016/j.jclepro.2019.03.307
10.1016/j.eswa.2012.05.031
10.1080/00207543.2019.1680893
10.1016/j.asoc.2019.105729
10.4028/www.scientific.net/AMR.940.112
10.1108/09600030810866986
10.1016/j.ijpe.2020.107667
10.1108/JMTM-01-2017-0014
10.1016/j.eswa.2010.07.114
10.1108/02656710910966165
10.1080/0951192X.2014.900865
10.1016/j.pursup.2007.01.004
10.1016/j.eswa.2011.06.044
10.1016/j.ijggc.2015.07.008
10.1016/j.ress.2017.09.017
10.1007/s10845-009-0266-x
10.1108/09600031211202472
10.1016/j.cor.2008.05.002
10.21236/ADA214804
10.1016/j.pursup.2008.01.008
10.1142/S0219622014500758
10.1002/mcda.1620
10.1002/smj.4250080503
10.1108/09574090510617385
10.1108/09576060110391174
10.1108/02656710610640943
10.1016/j.ijpe.2008.07.008
10.1016/j.ress.2011.11.006
10.1007/s00170-017-0222-4
10.1016/j.jbi.2014.11.012
10.1108/09574091211289200
10.1016/j.omega.2008.06.003
10.1080/13675560310001627016
10.1002/1099-1638(200007/08)16:4<313::AID-QRE434>3.0.CO;2-U
10.1007/978-981-10-1466-6
10.1016/j.chaos.2018.09.018
10.1016/j.ijpe.2004.02.007
10.1016/j.ijpe.2020.107752
10.1108/13598540910970072
10.1287/mnsc.33.11.1404
10.1080/16258312.2018.1537504
10.1016/j.ejor.2007.01.004
10.1016/j.procs.2017.11.304
10.1016/j.eswa.2010.06.046
10.1016/j.eswa.2015.04.030
10.1016/j.trpro.2015.09.035
10.1016/j.eswa.2010.09.110
10.1016/j.energy.2019.06.007
10.1016/0022-2496(77)90033-5
10.1137/1.9780898719512
10.1016/j.apm.2013.01.016
ContentType Journal Article
DBID AAYXX
CITATION
DOI 10.3390/pr8050579
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2227-9717
ExternalDocumentID 10_3390_pr8050579
GroupedDBID 5VS
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ABJCF
ACIWK
ACPRK
ADBBV
ADMLS
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
BBNVY
BCNDV
BENPR
BGLVJ
BHPHI
CCPQU
CITATION
D1I
HCIFZ
IAO
IGS
KB.
KQ8
LK8
M7P
MODMG
M~E
OK1
PDBOC
PHGZM
PHGZT
PIMPY
PROAC
RNS
ID FETCH-LOGICAL-c264t-12cb9c37d702606d9b4d2c5dc26fca8da564cfaa24d658cd8f05db6191412b6a3
ISSN 2227-9717
IngestDate Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 02:34:26 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c264t-12cb9c37d702606d9b4d2c5dc26fca8da564cfaa24d658cd8f05db6191412b6a3
ORCID 0000-0003-0171-2504
0000-0002-6625-7226
OpenAccessLink https://www.mdpi.com/2227-9717/8/5/579/pdf
ParticipantIDs crossref_primary_10_3390_pr8050579
crossref_citationtrail_10_3390_pr8050579
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-05-01
PublicationDateYYYYMMDD 2020-05-01
PublicationDate_xml – month: 05
  year: 2020
  text: 2020-05-01
  day: 01
PublicationDecade 2020
PublicationTitle Processes
PublicationYear 2020
References Liu (ref_56) 2012; 39
Zhang (ref_53) 2014; 940
ref_12
ref_54
Manuj (ref_39) 2008; 38
Ghadge (ref_14) 2012; 23
Carpitella (ref_62) 2018; 169
Ho (ref_15) 2008; 186
ref_16
Liu (ref_27) 2015; 28
Peck (ref_35) 2003; 6
Liu (ref_57) 2014; 42
March (ref_30) 1987; 33
Bevilacqua (ref_60) 2000; 16
Aven (ref_47) 2012; 99
ref_24
Tang (ref_13) 2008; 116
ref_23
Blos (ref_31) 2009; 14
ref_65
Lolli (ref_18) 2017; 24
Govindan (ref_21) 2015; 42
Chang (ref_51) 2011; 38
Pandey (ref_45) 2017; 27
Sara (ref_66) 2015; 41
Wu (ref_4) 2019; 1821
Kern (ref_6) 2012; 42
Kutlu (ref_58) 2012; 39
Munir (ref_3) 2020; 227
Ghoshal (ref_8) 1987; 8
Chang (ref_29) 2011; 22
Muhammad (ref_28) 2017; 120
Marasova (ref_44) 2017; 7
Chang (ref_59) 2001; 12
Curkovic (ref_11) 2013; 1
Chang (ref_49) 2009; 26
Zhang (ref_52) 2011; 38
ref_37
Zak (ref_19) 2015; 10
Schoenherr (ref_9) 2008; 14
Liu (ref_55) 2011; 38
(ref_33) 2005; 16
Lee (ref_22) 2013; 37
Ming (ref_10) 2019; 225
Saaty (ref_63) 1977; 15
Hallikas (ref_32) 2004; 90
Bevilacqua (ref_41) 2018; 19
Teng (ref_34) 2006; 23
Mahmoudi (ref_64) 2019; 84
Borota (ref_46) 2017; 2017
Badea (ref_17) 2017; 112
Zaidan (ref_20) 2015; 53
Bode (ref_38) 2006; 12
Naderikia (ref_26) 2017; 92
ref_40
ref_1
Tian (ref_2) 2019; 52
Hsieh (ref_42) 2016; 23
Chin (ref_50) 2009; 36
Chang (ref_25) 2014; 13
Sodhi (ref_36) 2012; 21
ref_48
Lotfi (ref_43) 2018; 29
Wang (ref_7) 2018; 116
Garvey (ref_5) 2020; 228
Debo (ref_61) 2009; 37
References_xml – volume: 42
  start-page: 49
  year: 2014
  ident: ref_57
  article-title: A FTA-based method for risk decision making in emergency response
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2012.08.015
– volume: 7
  start-page: 43
  year: 2017
  ident: ref_44
  article-title: Applying the heuristic to the risk assessment within the automotive industry supply chain
  publication-title: Open Eng.
  doi: 10.1515/eng-2017-0007
– volume: 52
  start-page: 217
  year: 2019
  ident: ref_2
  article-title: Reconfiguration of manufacturing supply chains considering outsourcing decisions and supply chain risks
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2019.04.005
– volume: 112
  start-page: 19
  year: 2017
  ident: ref_17
  article-title: Choosing the optimal technology to rehabilitate the pipes in water distribution systems using the AHP method
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.1109
– volume: 21
  start-page: 1
  year: 2012
  ident: ref_36
  article-title: Researchers’ perspectives on supply chain risk management
  publication-title: Prod. Oper. Manag.
  doi: 10.1111/j.1937-5956.2011.01251.x
– volume: 225
  start-page: 857
  year: 2019
  ident: ref_10
  article-title: Supply chain sustainability risk and assessment
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.03.307
– volume: 39
  start-page: 12926
  year: 2012
  ident: ref_56
  article-title: Risk evaluation in failure mode and effects analysis with extended VIKOR method under fuzzy environment
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2012.05.031
– ident: ref_1
– ident: ref_40
  doi: 10.1080/00207543.2019.1680893
– volume: 84
  start-page: 105729
  year: 2019
  ident: ref_64
  article-title: Identifying critical success factors in Heart Failure Self-Care using fuzzy DEMATEL method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105729
– ident: ref_23
– volume: 940
  start-page: 112
  year: 2014
  ident: ref_53
  article-title: Application of FMEA-FTA method in fault diagnosis of tracked vehicle
  publication-title: Adv. Mater. Res.
  doi: 10.4028/www.scientific.net/AMR.940.112
– volume: 38
  start-page: 192
  year: 2008
  ident: ref_39
  article-title: Global supply chain risk management strategies
  publication-title: Int. J. Phys. Distrib. Logist. Manag.
  doi: 10.1108/09600030810866986
– volume: 227
  start-page: 107667
  year: 2020
  ident: ref_3
  article-title: Supply chain risk management and operational performance: The enabling role of supply chain integration
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2020.107667
– volume: 29
  start-page: 168
  year: 2018
  ident: ref_43
  article-title: Disentangling resilience, agility and leanness: Conceptual development and empirical analysis
  publication-title: J. Manuf. Technol. Manag.
  doi: 10.1108/JMTM-01-2017-0014
– volume: 38
  start-page: 1850
  year: 2011
  ident: ref_51
  article-title: Fuzzy DEMATEL method for developing supplier selection criteria
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.07.114
– volume: 26
  start-page: 629
  year: 2009
  ident: ref_49
  article-title: Applying DEA to enhance assessment capability of FMEA
  publication-title: Int. J. Qual. Reliab. Manag.
  doi: 10.1108/02656710910966165
– volume: 28
  start-page: 701
  year: 2015
  ident: ref_27
  article-title: Risk assessment in system FMEA combining fuzzy weighted average with fuzzy decision-making trial and evaluation laboratory
  publication-title: Int. J. Comput. Integr. Manuf.
  doi: 10.1080/0951192X.2014.900865
– volume: 12
  start-page: 301
  year: 2006
  ident: ref_38
  article-title: An empirical investigation into supply chain vulnerability
  publication-title: J. Purch. Supply Manag.
  doi: 10.1016/j.pursup.2007.01.004
– volume: 39
  start-page: 61
  year: 2012
  ident: ref_58
  article-title: Fuzzy failure modes and effects analysis by using fuzzy TOPSIS-based fuzzy AHP
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2011.06.044
– ident: ref_48
– volume: 41
  start-page: 336
  year: 2015
  ident: ref_66
  article-title: Assessing relative importance and mutual influence of barriers for CCS deployment of the ROAD project using AHP and DEMATEL methods
  publication-title: Int. J. Green Gas Control
  doi: 10.1016/j.ijggc.2015.07.008
– volume: 1
  start-page: 251
  year: 2013
  ident: ref_11
  article-title: Using FMEA for supply chain risk management
  publication-title: Mod. Manag. Sci. Eng.
– volume: 169
  start-page: 394
  year: 2018
  ident: ref_62
  article-title: A combined multi-criteria approach to support FMECA analyses: A real-world case
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.09.017
– volume: 22
  start-page: 113
  year: 2011
  ident: ref_29
  article-title: Evaluating the risk of failure using the fuzzy OWA and DEMATEL method
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-009-0266-x
– volume: 42
  start-page: 60
  year: 2012
  ident: ref_6
  article-title: Supply risk management: Model development and empirical analysis
  publication-title: Int. J. Phys. Distrib. Logist. Manag.
  doi: 10.1108/09600031211202472
– volume: 36
  start-page: 1768
  year: 2009
  ident: ref_50
  article-title: Failure mode and effects analysis using a group-based evidential reasoning approach
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2008.05.002
– ident: ref_16
  doi: 10.21236/ADA214804
– volume: 14
  start-page: 100
  year: 2008
  ident: ref_9
  article-title: Assessing supply chain risks with the analytic hierarchy process: Providing decision support for the offshoring decision by a US manufacturing company
  publication-title: J. Purch. Supply Manag.
  doi: 10.1016/j.pursup.2008.01.008
– volume: 13
  start-page: 1229
  year: 2014
  ident: ref_25
  article-title: Integrating TOPSIS and DEMATEL methods to rank the risk of failure of FMEA
  publication-title: Int. J. Inf. Technol. Decis. Mak.
  doi: 10.1142/S0219622014500758
– ident: ref_24
– volume: 24
  start-page: 275
  year: 2017
  ident: ref_18
  article-title: A multicriteria framework for inventory classification and control with application to intermittent demand
  publication-title: J. Multi-Criteria Decis. Anal.
  doi: 10.1002/mcda.1620
– volume: 23
  start-page: 2287
  year: 2016
  ident: ref_42
  article-title: Resilient logistics to mitigate supply chain uncertainty: A case study of an automotive company
  publication-title: Sci. Iran.
– volume: 8
  start-page: 425
  year: 1987
  ident: ref_8
  article-title: Global strategy: An organizing framework
  publication-title: Strateg. Manag. J.
  doi: 10.1002/smj.4250080503
– volume: 16
  start-page: 120
  year: 2005
  ident: ref_33
  article-title: Supply chain risk management: Understanding the business requirements from a practitioner perspective
  publication-title: Int. J. Logist. Manag.
  doi: 10.1108/09574090510617385
– volume: 12
  start-page: 211
  year: 2001
  ident: ref_59
  article-title: Failure mode and effects analysis using grey theory
  publication-title: Integr. Manuf. Syst.
  doi: 10.1108/09576060110391174
– volume: 23
  start-page: 179
  year: 2006
  ident: ref_34
  article-title: Implementing FMEA in a collaborative supply chain environment
  publication-title: Int. J. Qual. Reliab. Manag.
  doi: 10.1108/02656710610640943
– volume: 116
  start-page: 12
  year: 2008
  ident: ref_13
  article-title: The power of flexibility for mitigating supply chain risks
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2008.07.008
– volume: 99
  start-page: 33
  year: 2012
  ident: ref_47
  article-title: The risk concept—Historical and recent development trends
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2011.11.006
– volume: 92
  start-page: 3749
  year: 2017
  ident: ref_26
  article-title: A new fuzzy approach to identify the critical risk factors in maintenance management
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-017-0222-4
– volume: 53
  start-page: 390
  year: 2015
  ident: ref_20
  article-title: Evaluation and selection of open-source EMR software packages based on integrated AHP and TOPSIS
  publication-title: J. Biomed. Inform.
  doi: 10.1016/j.jbi.2014.11.012
– ident: ref_37
– volume: 23
  start-page: 313
  year: 2012
  ident: ref_14
  article-title: Supply chain risk management: Present and future scope
  publication-title: Int. J. Phys. Distrib. Logist. Manag.
  doi: 10.1108/09574091211289200
– volume: 37
  start-page: 811
  year: 2009
  ident: ref_61
  article-title: Sharing inventory risk in supply chain: The implication of financial constraint
  publication-title: Omega
  doi: 10.1016/j.omega.2008.06.003
– volume: 6
  start-page: 197
  year: 2003
  ident: ref_35
  article-title: Supply chain risk management: Outlining an agenda for future research
  publication-title: Int. J. Logist.
  doi: 10.1080/13675560310001627016
– volume: 16
  start-page: 313
  year: 2000
  ident: ref_60
  article-title: Monte Carlo simulation approach for a modified FMECA in a power plant
  publication-title: Qual. Reliab. Eng. Int.
  doi: 10.1002/1099-1638(200007/08)16:4<313::AID-QRE434>3.0.CO;2-U
– ident: ref_54
  doi: 10.1007/978-981-10-1466-6
– volume: 2017
  start-page: 4931797
  year: 2017
  ident: ref_46
  article-title: ABC classification of risk factors in production supply chains with uncertain data
  publication-title: Math. Probl. Eng.
– volume: 116
  start-page: 72
  year: 2018
  ident: ref_7
  article-title: The complexity measurement and evolution analysis of supply chain network under disruption risks
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2018.09.018
– volume: 27
  start-page: 395
  year: 2017
  ident: ref_45
  article-title: FMEA-based interpretive structural modelling approach to model automotive supply chain risk
  publication-title: Int. J. Logist. Syst. Manag.
– volume: 90
  start-page: 47
  year: 2004
  ident: ref_32
  article-title: Risk management processes in supplier networks
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2004.02.007
– volume: 228
  start-page: 107752
  year: 2020
  ident: ref_5
  article-title: The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation
  publication-title: Int. J. Prod. Econ.
  doi: 10.1016/j.ijpe.2020.107752
– volume: 14
  start-page: 247
  year: 2009
  ident: ref_31
  article-title: Supply chain risk management (SCRM): A case study on the automotive and electronic industries in Brazil
  publication-title: Supply Chain Manag.
  doi: 10.1108/13598540910970072
– ident: ref_12
– volume: 33
  start-page: 1404
  year: 1987
  ident: ref_30
  article-title: Managerial perspectives on risk and risk taking
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.33.11.1404
– volume: 19
  start-page: 282
  year: 2018
  ident: ref_41
  article-title: Conceptual model for analysing domino effect among concepts affecting supply chain resilience
  publication-title: Supply Chain Forum Int. J.
  doi: 10.1080/16258312.2018.1537504
– volume: 186
  start-page: 211
  year: 2008
  ident: ref_15
  article-title: Integrated analytic hierarchy process and its application—A literature review
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.01.004
– volume: 120
  start-page: 742
  year: 2017
  ident: ref_28
  article-title: Fuzzy DEMATEL method for identifying LMS evaluation criteria
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2017.11.304
– volume: 38
  start-page: 206
  year: 2011
  ident: ref_52
  article-title: Risk prioritization in failure mode and effects analysis under uncertainty
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.06.046
– volume: 42
  start-page: 7207
  year: 2015
  ident: ref_21
  article-title: Intuitionistic fuzzy based DEMATEL method for developing green practices and performances in a green supply chain
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.030
– volume: 10
  start-page: 820
  year: 2015
  ident: ref_19
  article-title: Application of AHP and ELECTRE III/IV methods to multiple level, multiple criteria evaluation of urban transportation projects
  publication-title: Transp. Res. Procedia
  doi: 10.1016/j.trpro.2015.09.035
– volume: 38
  start-page: 4403
  year: 2011
  ident: ref_55
  article-title: Failure mode and effects analysis using fuzzy evidential reasoning approach and grey theory
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.09.110
– volume: 1821
  start-page: 397
  year: 2019
  ident: ref_4
  article-title: Risk assessment of electric vehicle supply chain based on fuzzy synthetic evaluation
  publication-title: Energy
  doi: 10.1016/j.energy.2019.06.007
– volume: 15
  start-page: 234
  year: 1977
  ident: ref_63
  article-title: A scaling method for priorities in hierarchical structures
  publication-title: J. Math. Psychol.
  doi: 10.1016/0022-2496(77)90033-5
– ident: ref_65
  doi: 10.1137/1.9780898719512
– volume: 37
  start-page: 6746
  year: 2013
  ident: ref_22
  article-title: Revised DEMATEL: Resolving the infeasibility of DEMATEL
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2013.01.016
SSID ssj0000913856
Score 2.3536594
Snippet Supply chains are complex networks that receive assiduous attention in the literature. Like any complex network, a supply chain is subject to a wide variety of...
SourceID crossref
SourceType Enrichment Source
Index Database
StartPage 579
Title Assessing Supply Chain Risks in the Automotive Industry through a Modified MCDM-Based FMECA
Volume 8
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLb4cYHDBB0TDIYsxAFUhdE0cZIjdK3YpHIYIKHtUPlHIkVUbdUmleDA3773bNfJoAfgEkWOXxT1fbWf7e99j5BjmNMURBUtT_kSt26Y9ARvpR7jsMBFTa1UapbvNbu6C37dh_fVCb7OLinEmXxamlfyEa9CG_gVs2Tf4Vn3UmiAe_AvXMHDcH2Tj82JrdbUxuKcKFQMC_3m73z2MFsQGC_KQhPu5kiS1GU6Hl1xHo6l0PIMo9B-50ffu4QpTTV7_a4tO2yDVptMULEN-09gXmoewM_hI3ftHT6d5JiWoiPSm3w4zysiEJ76W7mCMXJr3JPusNmDGXpcZvqNf8alyKf13Qj_vOL-mUELU2u9JDL5mGfpkjY76sY1cIW1ETQ0tWVejuztdoJUyMk0xtJ7ps__6tkvZjXHNYRVDhoPnOkqWfcjCLSQ5_lcbcihQGqsq_267zVKVGj93VnX4pdaIHK7RT7ZFQS9MHDYJivpqEE2a7qSDbJtR-wZPbGy4qefyV-HFmrQQjVaqEYLhRtAC63QQhdooRYtlNMFWmiFFqrRskPuet3bzpVnS2t4EiLgwmv5UiSyHakINeWYSkQAf9ZQwdNM8ljxkAUy49wPFISoUsXZeagEQzHAli8Yb38hayMAyy6hAiUdVSTCSMRBJhUXLEoy5WeojMhisUdOFj_YQFrdeSx_Mhy88sweOXJdJ0Zs5XWnr2_ptE82KnQekLViWqbfIHosxKH2-j989XBC
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assessing+Supply+Chain+Risks+in+the+Automotive+Industry+through+a+Modified+MCDM-Based+FMECA&rft.jtitle=Processes&rft.au=Mzougui%2C+Ilyas&rft.au=Carpitella%2C+Silvia&rft.au=Certa%2C+Antonella&rft.au=El+Felsoufi%2C+Zoubir&rft.date=2020-05-01&rft.issn=2227-9717&rft.eissn=2227-9717&rft.volume=8&rft.issue=5&rft.spage=579&rft_id=info:doi/10.3390%2Fpr8050579&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_pr8050579
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9717&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9717&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9717&client=summon