Numerical Study of Radiative and Dissipative MHD Casson Nanofluid Over a Cone With High‐Order Chemical Reaction
ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimen...
Saved in:
| Published in | Engineering reports (Hoboken, N.J.) Vol. 7; no. 4 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2025
Wiley |
| Subjects | |
| Online Access | Get full text |
| ISSN | 2577-8196 2577-8196 |
| DOI | 10.1002/eng2.70112 |
Cover
| Abstract | ABSTRACT
This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimensionless PDEs by fitting non‐dimensional parameters and solved using an effectual Galerkin finite element method (GFEM). The impact of physical parameters on momentum, energy, and concentration profiles is analyzed via graphical representations. The wall friction, thermal, and solutal transport rates are tabularly detailed. It was detected that increasing the absorbency parameter, Eckert number, thermal radiation, and thermal generation improves fluid velocity. Conversely, intensifying the magnetic field, Prandtl number and inclination angle reduces fluid velocity. The nanofluid temperature declines with a mounted Prandtl number and nanoparticle volume fraction, and the opposite effect is perceived with increased Eckert, Dufour, and Soret numbers. Wall friction intensifies with rising porosity, magnetic field strength, Casson parameter, and diffusive parameters, while it diminishes with higher nanoparticle volume fraction. The findings distinctly indicate that Ag−WEG$$ Ag- WEG $$ nanofluid exhibits superior effectiveness in enhancing thermal and mass exchanges compared to Al2O3−WEG$$ {Al}_2{O}_3- WEG $$ nanofluid. Furthermore, a comparative analysis agrees with earlier findings. This current model problem finds application across various scientific, engineering, and technological domains, including energy production, space exploration, food preservation, agricultural product manufacturing, materials processing, astrophysical phenomena, biomedical procedures, and enhanced oil recovery.
This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The proposed model has broad applicability across various scientific, engineering, and technological domains. |
|---|---|
| AbstractList | ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimensionless PDEs by fitting non‐dimensional parameters and solved using an effectual Galerkin finite element method (GFEM). The impact of physical parameters on momentum, energy, and concentration profiles is analyzed via graphical representations. The wall friction, thermal, and solutal transport rates are tabularly detailed. It was detected that increasing the absorbency parameter, Eckert number, thermal radiation, and thermal generation improves fluid velocity. Conversely, intensifying the magnetic field, Prandtl number and inclination angle reduces fluid velocity. The nanofluid temperature declines with a mounted Prandtl number and nanoparticle volume fraction, and the opposite effect is perceived with increased Eckert, Dufour, and Soret numbers. Wall friction intensifies with rising porosity, magnetic field strength, Casson parameter, and diffusive parameters, while it diminishes with higher nanoparticle volume fraction. The findings distinctly indicate that Ag−WEG nanofluid exhibits superior effectiveness in enhancing thermal and mass exchanges compared to Al2O3−WEG nanofluid. Furthermore, a comparative analysis agrees with earlier findings. This current model problem finds application across various scientific, engineering, and technological domains, including energy production, space exploration, food preservation, agricultural product manufacturing, materials processing, astrophysical phenomena, biomedical procedures, and enhanced oil recovery. This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimensionless PDEs by fitting non‐dimensional parameters and solved using an effectual Galerkin finite element method (GFEM). The impact of physical parameters on momentum, energy, and concentration profiles is analyzed via graphical representations. The wall friction, thermal, and solutal transport rates are tabularly detailed. It was detected that increasing the absorbency parameter, Eckert number, thermal radiation, and thermal generation improves fluid velocity. Conversely, intensifying the magnetic field, Prandtl number and inclination angle reduces fluid velocity. The nanofluid temperature declines with a mounted Prandtl number and nanoparticle volume fraction, and the opposite effect is perceived with increased Eckert, Dufour, and Soret numbers. Wall friction intensifies with rising porosity, magnetic field strength, Casson parameter, and diffusive parameters, while it diminishes with higher nanoparticle volume fraction. The findings distinctly indicate that nanofluid exhibits superior effectiveness in enhancing thermal and mass exchanges compared to nanofluid. Furthermore, a comparative analysis agrees with earlier findings. This current model problem finds application across various scientific, engineering, and technological domains, including energy production, space exploration, food preservation, agricultural product manufacturing, materials processing, astrophysical phenomena, biomedical procedures, and enhanced oil recovery. ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimensionless PDEs by fitting non‐dimensional parameters and solved using an effectual Galerkin finite element method (GFEM). The impact of physical parameters on momentum, energy, and concentration profiles is analyzed via graphical representations. The wall friction, thermal, and solutal transport rates are tabularly detailed. It was detected that increasing the absorbency parameter, Eckert number, thermal radiation, and thermal generation improves fluid velocity. Conversely, intensifying the magnetic field, Prandtl number and inclination angle reduces fluid velocity. The nanofluid temperature declines with a mounted Prandtl number and nanoparticle volume fraction, and the opposite effect is perceived with increased Eckert, Dufour, and Soret numbers. Wall friction intensifies with rising porosity, magnetic field strength, Casson parameter, and diffusive parameters, while it diminishes with higher nanoparticle volume fraction. The findings distinctly indicate that Ag−WEG$$ Ag- WEG $$ nanofluid exhibits superior effectiveness in enhancing thermal and mass exchanges compared to Al2O3−WEG$$ {Al}_2{O}_3- WEG $$ nanofluid. Furthermore, a comparative analysis agrees with earlier findings. This current model problem finds application across various scientific, engineering, and technological domains, including energy production, space exploration, food preservation, agricultural product manufacturing, materials processing, astrophysical phenomena, biomedical procedures, and enhanced oil recovery. This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The proposed model has broad applicability across various scientific, engineering, and technological domains. |
| Author | Matao, P. M. Sademaki, L. Joseph Reddy, B. Prabhakar |
| Author_xml | – sequence: 1 givenname: L. Joseph surname: Sademaki fullname: Sademaki, L. Joseph organization: CNMS, the University of Dodoma – sequence: 2 givenname: B. Prabhakar surname: Reddy fullname: Reddy, B. Prabhakar organization: CNMS, the University of Dodoma – sequence: 3 givenname: P. M. orcidid: 0000-0002-6518-6251 surname: Matao fullname: Matao, P. M. email: paul.matao@udom.ac.tz organization: CNMS, the University of Dodoma |
| BookMark | eNp9kEtOwzAQhi0EEs8NJ_Aa1GI7sdMuUQoUqbQSD7G0Jn60rtK42CmoO47AGTkJaYMQq67GM_P5s_Ufo_3KVwahc0q6lBB2Zaop62aEUraHjhjPsk6P9sX-v_MhOotxThqYZpQk5Ai9jVcLE5yCEj_VK73G3uJH0A5q924wVBoPXIxu2fYPwwHOIUZf4TFU3pYrp_Hk3QQMOG8-g19dPcNDN519f35Ngm4W-cwstvpHA6p2vjpFBxbKaM5-6wl6ub15zoed0eTuPr8edRQTKev0C0OzPk0SwousrxOurOLEakiINrQghHMFvEgYSVMtWC_lBddUpJZYAcxAcoLuW6_2MJfL4BYQ1tKDk9uBD1MJoXaqNJKCYSAKJTS3qSBQZDRLmTZJIUA0bzWuy9a1qpaw_oCy_BNSIjfhy034cht-Q1-0tAo-xmDsbpi28IcrzXoHKW_Gd6y98wOKbZZj |
| Cites_doi | 10.1007/BF03184951 10.1016/j.rinma.2022.100334 10.1007/s00521-020-05645-5 10.1016/j.padiff.2024.100825 10.1016/j.padiff.2024.100761 10.1016/j.rineng.2022.100394 10.1166/jon.2019.1607 10.1080/10407782.2023.2260948 10.1615/JPorMedia.2019025699 10.1590/S0104-66322013000100020 10.1155/2021/6633468 10.1142/S0217979224502060 10.1108/MMMS-01-2018-0011 10.1016/j.ijhydene.2024.12.426 10.1166/jon.2023.2036 10.1002/htj.21605 10.1016/j.ijft.2024.100589 10.1016/0017-9310(85)90216-9 10.1080/17455030.2021.1927237 10.1007/s10973-023-12465-x 10.1615/JPorMedia.2023048112 10.1177/09544062211023094 10.1140/epjp/s13360-022-02359-6 10.18280/mmep.060218 10.1166/jon.2017.1380 10.1016/j.physleta.2018.10.040 10.3329/jname.v12i2.25269 10.1080/17455030.2021.1978591 10.1002/htj.22258 10.1007/s10973-024-13352-9 10.1016/j.csite.2021.101614 10.1016/j.icheatmasstransfer.2022.106389 10.1155/2022/7987315 10.1108/MMMS-08-2022-0160 10.1007/s12668-023-01281-0 10.1016/j.matcom.2020.12.005 10.1007/s13204-020-01308-y 10.1016/j.jcde.2019.03.003 10.1016/j.csite.2022.102038 10.1016/j.padiff.2024.100674 10.1016/j.rineng.2023.100905 10.1080/17455030.2022.2164380 10.1108/HFF-03-2021-0225 10.1142/S0217979224504423 10.1002/mma.7281 10.1016/j.csite.2022.101930 10.1007/s00396-024-05286-3 10.1002/zamm.202200471 10.1063/1.4935649 10.1177/09544089241239583 10.1016/j.padiff.2021.100034 10.1080/10407790.2023.2233694 10.1080/02286203.2021.2012634 10.1016/j.asej.2024.102959 10.1177/00368504231176151 10.1016/j.cnsns.2009.07.002 10.1142/S0217984925500915 10.1016/j.heliyon.2024.e28591 10.1515/ntrev-2024-0021 10.1016/j.jrras.2024.101218 10.1007/BF03184952 |
| ContentType | Journal Article |
| Copyright | 2025 The Author(s). published by John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2025 The Author(s). published by John Wiley & Sons Ltd. |
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1002/eng2.70112 |
| DatabaseName | Wiley Online Library Open Access - NZ CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2577-8196 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_1ae2a6bc6d5f460ab71742de3b6a61b0 10.1002/eng2.70112 10_1002_eng2_70112 ENG270112 |
| Genre | researchArticle |
| GroupedDBID | 0R~ 1OC 24P AAMMB ABJCF ACCMX ACXQS ADKYN ADMLS ADZMN AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARCSS AVUZU BENPR BGLVJ CCPQU EBS EJD GROUPED_DOAJ HCIFZ IAO IGS ITC M7S M~E OK1 PHGZM PHGZT PIMPY PTHSS AAYXX CITATION PQGLB PUEGO WIN ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2642-9be17913305b79d35cfc50fda30de1b0055ca5b32044d62845b5d164f0f6a2ea3 |
| IEDL.DBID | DOA |
| ISSN | 2577-8196 |
| IngestDate | Fri Oct 03 12:52:15 EDT 2025 Tue Aug 19 23:43:43 EDT 2025 Wed Oct 01 06:01:52 EDT 2025 Sun Jul 06 04:45:35 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2642-9be17913305b79d35cfc50fda30de1b0055ca5b32044d62845b5d164f0f6a2ea3 |
| Notes | The authors received no specific funding for this work. Funding |
| ORCID | 0000-0002-6518-6251 |
| OpenAccessLink | https://doaj.org/article/1ae2a6bc6d5f460ab71742de3b6a61b0 |
| PageCount | 26 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_1ae2a6bc6d5f460ab71742de3b6a61b0 unpaywall_primary_10_1002_eng2_70112 crossref_primary_10_1002_eng2_70112 wiley_primary_10_1002_eng2_70112_ENG270112 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | April 2025 2025-04-00 2025-04-01 |
| PublicationDateYYYYMMDD | 2025-04-01 |
| PublicationDate_xml | – month: 04 year: 2025 text: April 2025 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA |
| PublicationTitle | Engineering reports (Hoboken, N.J.) |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc Wiley |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley |
| References | 2017; 6 1985; 28 2010; 15 2024; 302 2024; 149 2013; 24 2021; 28 2019; 15 2023; 106 2023; 148 2023; 103 2024; 34 2020; 10 2024 2024; 38 2022; 137 2022; 138 2021; 34 2021; 33 2019; 22 1954; 4 2022; 34 2020; 49 2024; 21 2022; 32 2022; 33 2024; 27 2021; 2021 2019; 8 2015; 12 2015; 5 2019; 6 2021; 3 2023; 12 2023; 17 2010 2023; 19 2021; 182 1996 1995 2025; 18 2024; 10 2022; 42 2024; 11 2024; 13 2021; 50 2024; 14 2024; 15 2019; 383 1959 2022; 236 2025; 101 2023; 46 2022; 2022 2023 2013; 30 2022; 14 2024; 85 2022; 16 Bathe K. J. (e_1_2_11_66_1) 1996 Choi S. U. S. (e_1_2_11_2_1) 1995 Vinodkumar Reddy M. (e_1_2_11_63_1) 2024 e_1_2_11_32_1 e_1_2_11_55_1 e_1_2_11_57_1 e_1_2_11_36_1 Anwar I. (e_1_2_11_30_1) 2013; 24 e_1_2_11_51_1 e_1_2_11_13_1 e_1_2_11_34_1 e_1_2_11_53_1 e_1_2_11_11_1 e_1_2_11_29_1 e_1_2_11_27_1 e_1_2_11_4_1 e_1_2_11_48_1 e_1_2_11_60_1 e_1_2_11_20_1 e_1_2_11_45_1 e_1_2_11_47_1 e_1_2_11_24_1 e_1_2_11_41_1 e_1_2_11_62_1 e_1_2_11_8_1 e_1_2_11_22_1 e_1_2_11_43_1 e_1_2_11_64_1 e_1_2_11_17_1 e_1_2_11_15_1 e_1_2_11_59_1 e_1_2_11_38_1 e_1_2_11_19_1 e_1_2_11_50_1 e_1_2_11_10_1 e_1_2_11_31_1 e_1_2_11_56_1 e_1_2_11_58_1 e_1_2_11_14_1 e_1_2_11_35_1 e_1_2_11_52_1 e_1_2_11_12_1 e_1_2_11_33_1 e_1_2_11_54_1 e_1_2_11_7_1 e_1_2_11_28_1 e_1_2_11_5_1 e_1_2_11_26_1 e_1_2_11_3_1 e_1_2_11_49_1 e_1_2_11_61_1 e_1_2_11_21_1 e_1_2_11_44_1 e_1_2_11_46_1 e_1_2_11_25_1 e_1_2_11_40_1 e_1_2_11_9_1 e_1_2_11_23_1 e_1_2_11_42_1 e_1_2_11_65_1 e_1_2_11_18_1 e_1_2_11_16_1 e_1_2_11_37_1 e_1_2_11_39_1 Casson N. (e_1_2_11_6_1) 1959 Rao S. S. (e_1_2_11_67_1) 2010 |
| References_xml | – volume: 2022 issue: 1 year: 2022 article-title: A Numerical Study on Newtonian Heating Effect on Heat Absorbing MHD Casson Flow of Dissipative Fluid Past an Oscillating Vertical Porous Plate publication-title: International Journal of Mathematics and Mathematical Sciences – volume: 34 start-page: 1041 issue: 3 year: 2024 end-page: 1061 article-title: Time‐Dependent Viscous Flow of Higher‐Order Reactive MHD Maxwell Nanofluid With Joule Heating in a Porous Regime publication-title: Waves in Random and Complex Media – start-page: 84 year: 1959 end-page: 104 article-title: Flow Equation for Pigment‐Oil Suspensions of the Printing Ink‐Type publication-title: Rheology of Disperse Systems – volume: 15 start-page: 1553 issue: 6 year: 2010 end-page: 1564 article-title: Effect of Variable Viscosity on MHD Non‐Darcy Mixed Convective Heat Transfer Over a Stretching Sheet Embedded in a Porous Medium With Non‐uniform Heat Source/Sink publication-title: Communications in Nonlinear Science and Numerical Simulation – volume: 13 issue: 1 year: 2024 article-title: Ferromagnetic Effect on Casson Nanofluid Flow and Transport Phenomena Across a Bi‐Directional Riga Sensor Device: Darcy–Forchheimer Model publication-title: Nanotechnology Reviews – volume: 24 start-page: 1390 issue: 10 year: 2013 end-page: 1398 article-title: Chemical Reaction and Uniform Heat Generation or Absorption Effects on MHD Stagnation‐Point Flow of a Nanofluid Over a Porous Sheet publication-title: World Applied Sciences Journal – volume: 103 issue: 9 year: 2023 article-title: Viscous Dissipation and Chemical Reaction Effects on MHD Nanofluid Flow Over a Vertical Plate in a Rotating System publication-title: Zeitschrift für Angewandte Mathematik Und Mechanik – start-page: 1 year: 2023 end-page: 27 article-title: Irreversibility and Heat Transfer Analysis in MHD Darcy‐Forchheimer Flow of Casson Hybrid Nanofluid Flow Through Cone and Wedge publication-title: Numerical Heat Transfer, Part A: Applications – volume: 30 start-page: 187 year: 2013 end-page: 195 article-title: Effects of Mass Transfer on MHD Flow of Casson Fluid With Chemical Reaction and Suction publication-title: Brazilian Journal of Chemical Engineering – volume: 383 start-page: 376 issue: 4 year: 2019 end-page: 382 article-title: Impact of Non‐uniform Heat Sink/Source and Convective Condition in Radiative Heat Transfer to Oldroyd‐B Nanofluid: A Revised Proposed Relation publication-title: Physics Letters A – volume: 49 start-page: 180 issue: 1 year: 2020 end-page: 196 article-title: Stagnation Flow of Hybrid Nanoparticles With MHD and Slip Effects publication-title: Heat Transfer ‐ Asian Research – volume: 18 issue: 1 year: 2025 article-title: Implementation of Homotopy Analysis Method for Entropy‐Optimized Two‐Phase Nanofluid Flow in a Bioconvective Non‐Newtonian Model With Thermal Radiation publication-title: Journal of Radiation Research and Applied Sciences – volume: 28 year: 2021 article-title: Numerical Simulation and Thermal Enhancement of Multi‐Based Nanofluid Over an Embrittled Cone publication-title: Case Studies in Thermal Engineering – volume: 22 start-page: 1141 issue: 9 year: 2019 end-page: 1157 article-title: Modeling and Numerical Simulation of Hydromagnetic Natural Convection Casson Fluid Flow With Nth‐Order Chemical Reaction and Newtonian Heating in Porous Medium publication-title: Journal of Porous Media – start-page: 1 year: 2023 end-page: 23 article-title: Soret and Dufour Effects on Dissipative Jeffrey Nanofluid Flow Over a Curved Surface With Nonlinear Slip, Activation Energy and Entropy Generation publication-title: Waves in Random and Complex Media – volume: 2021 issue: 1 year: 2021 article-title: Heat Transport Improvement and Three‐Dimensional Rotating Cone Flow of Hybrid‐Based Nanofluid publication-title: Mathematical Problems in Engineering – volume: 34 year: 2022 article-title: Numerical Study of Flow and Heat Transfer of a Nanofluid Past a Vertical Cone publication-title: Case Studies in Thermal Engineering – volume: 38 issue: 16 year: 2024 article-title: Dynamics of Soret–Dufour Effects and Thermal Aspects of Joule Heating in Multiple Slips Casson–Williamson Nanofluid publication-title: International Journal of Modern Physics B – volume: 137 start-page: 297 issue: 3 year: 2022 article-title: Nonlinear Thermal Radiation and Heat Source Effects on Unsteady Electrical MHD Motion of Nanofluid Past a Stretching Surface With Binary Chemical Reaction publication-title: European Physical Journal Plus – volume: 33 year: 2022 article-title: The Effects of Nanoparticle Aggregation and Radiation on the Flow of Nanofluid Between the Gap of a Disk and Cone publication-title: Case Studies in Thermal Engineering – volume: 15 issue: 10 year: 2024 article-title: Bio‐Convection Maxwell Nanofluid Through Darcy Forchheimer Medium due to Rotating Disc in the Presence of MHD publication-title: Ain Shams Engineering Journal – volume: 106 issue: 2 year: 2023 article-title: MHD Flow of Nanofluid Over Moving Slender Needle With Nanoparticles Aggregation and Viscous Dissipation Effects publication-title: Science Progress – volume: 12 start-page: 1522 issue: 6 year: 2023 end-page: 1530 article-title: Thermal Diffusion and Diffusion Thermo Effects on Chemically Reacting Nanofluid Flow Towards A Vertical Cone Filled by Porous Medium publication-title: Journal of Nanofluids – volume: 46 start-page: 11303 issue: 10 year: 2023 end-page: 11321 article-title: Natural Convection Nanofluid Flow With Heat Transfer Analysis of Carbon Nanotubes–Water Nanofluid Inside a Vertical Truncated Wavy Cone publication-title: Mathematical Methods in the Applied Sciences – volume: 236 start-page: 137 issue: 1 year: 2022 end-page: 152 article-title: MHD Nanofluid Flow Around a Permeable Stretching Sheet With Thermal Radiation and Viscous Dissipation publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science – volume: 14 year: 2022 article-title: Heat and Mass Transfer Analysis of Radiative and Chemical Reactive Effects on MHD Nanofluid Over an Infinite Moving Vertical Plate publication-title: Results in Engineering – volume: 14 start-page: 946 issue: 2 year: 2024 end-page: 954 article-title: Mixed Convection Flow of Hybrid Nanofluids With Viscous Dissipation and Dynamic Viscosity publication-title: BioNano Science – volume: 4 start-page: 207 year: 1954 end-page: 221 article-title: Thermal Convection in Laminar Boundary Layers III publication-title: Applied Scientific Research, Section A – volume: 28 start-page: 1945 issue: 10 year: 1985 end-page: 1952 article-title: Conjugate Heat Transfer From Small Isothermal Heat Sources Embedded in a Large Substrate publication-title: International Journal of Heat and Mass Transfer – volume: 182 start-page: 819 year: 2021 end-page: 837 article-title: Investigation of Nanoparticles cu, ag and Fe3O4 on Thermophoresis and Viscous Dissipation of MHD Nanofluid Over a Stretching Sheet in a Porous Regime: A Numerical Modeling publication-title: Mathematics and Computers in Simulation – volume: 149 start-page: 8713 issue: 15 year: 2024 end-page: 8727 article-title: Induced Magnetic Field and Soret–Dufour Effects on Viscous Dissipative Casson Fluid Flow Through Porous Medium Over a Stretching Sheet publication-title: Journal of Thermal Analysis and Calorimetry – volume: 6 start-page: 293 issue: 2 year: 2019 end-page: 299 article-title: Higher Order Chemical Reaction on MHD Nanofluid Flow With Slip Boundary Conditions: A Numerical Approach publication-title: Mathematical Modelling of Engineering Problems – volume: 8 start-page: 596 issue: 3 year: 2019 end-page: 603 article-title: Maxwell Nanofluid Flow Individualities by Way of Rotating Cone publication-title: Journal of Nanofluids – volume: 138 year: 2022 article-title: A Computational Study on Diffusion‐Thermo and Rotation Effects on Heat Generated Mixed Convection Flow of MHD Casson Fluid Past an Oscillating Porous Plate publication-title: International Communications in Heat and Mass Transfer – volume: 19 start-page: 253 issue: 2 year: 2023 end-page: 276 article-title: Magnetohydrodynamic Hybrid Nanofluid Flow Over a Decelerating Rotating Disk With Soret and Dufour Effects publication-title: Multidiscipline Modeling in Materials and Structures – year: 2024 article-title: Magnetohydrodynamic Stagnation Point Flow of Williamson Hybrid Nanofluid via Stretching Sheet in a Porous Medium With Heat Source and Chemical Reaction publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering – volume: 42 start-page: 985 issue: 6 year: 2022 end-page: 1004 article-title: Finite Element Numerical Technique for Magneto‐Micropolar Nanofluid Flow Filled With Chemically Reactive Casson Fluid Between Parallel Plates Subjected to Rotatory System With Electrical and Hall Currents publication-title: International Journal of Modelling and Simulation – volume: 38 issue: 32 year: 2024 article-title: Unsteady Dynamical Analysis of Convective Hydromagnetic Thermal Migration of Chemically Reacting Tiny Species With Dissipation and Radiation in an Inclined Porous Plate publication-title: International Journal of Modern Physics B – volume: 10 issue: 7 year: 2024 article-title: A Finite Difference Study of Radiative Mixed Convection MHD Heat Propagating Casson Fluid Past an Accelerating Porous Plate Including Viscous Dissipation and Joule Heating Effects publication-title: Heliyon – volume: 4 start-page: 195 year: 1954 end-page: 206 article-title: Thermal Convection in Laminar Boundary Layers II publication-title: Applied Scientific Research, Section A – volume: 32 start-page: 1643 issue: 5 year: 2022 end-page: 1663 article-title: Shape Effect of Nanoparticles on MHD Nanofluid Flow Over a Stretching Sheet in the Presence of Heat Source/Sink With Entropy Generation publication-title: International Journal of Numerical Methods for Heat & Fluid Flow – volume: 101 start-page: 450 year: 2025 end-page: 460 article-title: Analysis of Casson Ternary Nanofluid Integration Under Various Thermal Physical Impacts With Cattaneo‐Christov Model: Exploring Magnified Heat Transfer in Stretchy Surface publication-title: International Journal of Hydrogen Energy – volume: 12 start-page: 125 issue: 2 year: 2015 end-page: 136 article-title: Casson Fluid Flow Over a Vertical Cone With Non‐Uniform Heat Source/Sink and High Order Chemical Reaction publication-title: Journal of Naval Architecture and Marine Engineering – volume: 6 start-page: 593 issue: 4 year: 2019 end-page: 605 article-title: Exact and Statistical Computations of Radiated Flow of Nano and Casson Fluids Under Heat and Mass Flux Conditions publication-title: Journal of Computational Design and Engineering – year: 1996 – start-page: 99 year: 1995 end-page: 105 – volume: 21 year: 2024 article-title: Thermophysical Characteristics With Natural Convective Flow of Carreau Fluid Influencing by Soret and Dufour Effects: By Using Numerical Technique publication-title: International Journal of Thermofluids – volume: 10 year: 2024 article-title: The Impact of Soret, Dufour, and Chemical Reaction on MHD Nanofluid Over a Stretching Sheet publication-title: Partial Differential Equations in Applied Mathematics – volume: 50 start-page: 7879 issue: 8 year: 2021 end-page: 7897 article-title: Magnetohydrodynamic Boundary Layer Flow of Nanofluid With Variable Chemical Reaction in a Radiative Vertical Plate publication-title: Heat Transfer – year: 2010 – volume: 148 start-page: 12083 issue: 21 year: 2023 end-page: 12095 article-title: Bioconvective Treatment for the Reactive Casson Hybrid Nanofluid Flow Past an Exponentially Stretching Sheet With Ohmic Heating and Mixed Convection publication-title: Journal of Thermal Analysis and Calorimetry – volume: 15 start-page: 452 issue: 2 year: 2019 end-page: 472 article-title: Effect of Non‐Uniform Heat Source/Sink on MHD Boundary Layer Flow and Melting Heat Transfer of Williamson Nanofluid in Porous Medium publication-title: Multidiscipline Modeling in Materials and Structures – volume: 11 year: 2024 article-title: Enhanced Heat Transfer Rate on the Flow of Hybrid Nanofluid Through a Rotating Vertical Cone: A Statistical Analysis publication-title: Partial Differential Equations in Applied Mathematics – volume: 11 year: 2024 article-title: Computational Analysis of Transient Thermal Diffusion and Propagation of Chemically Reactive Magneto‐Nanofluid, Brinkman‐Type Flow Past an Oscillating Absorbent Plate publication-title: Partial Differential Equations in Applied Mathematics – volume: 16 year: 2022 article-title: Effect of Thermal Radiation and Chemical Reaction on MHD Mixed Convective Heat and Mass Transfer in Nanofluid Flow due to Nonlinear Stretching Surface Through Porous Medium publication-title: Results in Materials – volume: 6 start-page: 883 issue: 5 year: 2017 end-page: 891 article-title: MHD Boundary Layer Heat and Mass Flow Over a Vertical Cone Embedded in Porous Media Filled With Al O ‐Water and cu‐Water Nanofluid publication-title: Journal of Nanofluids – year: 2024 article-title: Thermal Efficiency of the Variable Porosity System of Viscoplastic (Casson) Water‐Based Hybrid Nanofluid Transport due to an Exponentially Elastic Sheet: Computational Study publication-title: Modern Physics Letters B – volume: 5 issue: 11 year: 2015 article-title: Magnetohydrodynamic (MHD) Stretched Flow of Nanofluid With Power‐Law Velocity and Chemical Reaction publication-title: AIP Advances – volume: 33 start-page: 11285 year: 2021 end-page: 11295 article-title: Viscous Dissipation and MHD Hybrid Nanofluid Flow Towards an Exponentially Stretching/Shrinking Surface publication-title: Neural Computing and Applications – volume: 17 year: 2023 article-title: Impact of Radiation on the MHD Couple Stress Hybrid Nanofluid Flow Over a Porous Sheet With Viscous Dissipation publication-title: Results in Engineering – volume: 10 start-page: 5149 year: 2020 end-page: 5165 article-title: MHD Instability of Hartmann Flow of Nanoparticles Fe O in Water publication-title: Applied Nanoscience – volume: 27 start-page: 23 year: 2024 end-page: 43 article-title: Effects of Porous Medium in MHD Flow of Maxwell Fluid With Soret/Dufour Impacts publication-title: Journal of Porous Media – volume: 3 year: 2021 article-title: A Brief Review of Numerical Methods for Heat and Mass Transfer of Casson Fluids publication-title: Partial Differential Equations in Applied Mathematics – volume: 302 start-page: 1635 year: 2024 end-page: 1669 article-title: Heat and Mass Transfer in Double‐Diffusive Mixed Convection of Casson Fluid: Biomedical Applications publication-title: Colloid and Polymer Science – volume: 34 start-page: 3450 year: 2021 end-page: 3473 article-title: Heat and Mass Transfer Analysis in the MHD Flow of Radiative Maxwell Nanofluid With Non‐Uniform Heat Source/Sink publication-title: Waves in Random and Complex Media – volume: 85 start-page: 286 issue: 3 year: 2024 end-page: 304 article-title: Heat Source and Joule Heating Effects on Convective MHD Stagnation Point Flow of Casson Nanofluid Through a Porous Medium With Chemical Reaction publication-title: Numerical Heat Transfer, Part B: Fundamentals – ident: e_1_2_11_19_1 doi: 10.1007/BF03184951 – ident: e_1_2_11_36_1 doi: 10.1016/j.rinma.2022.100334 – ident: e_1_2_11_49_1 doi: 10.1007/s00521-020-05645-5 – ident: e_1_2_11_28_1 doi: 10.1016/j.padiff.2024.100825 – ident: e_1_2_11_39_1 doi: 10.1016/j.padiff.2024.100761 – ident: e_1_2_11_35_1 doi: 10.1016/j.rineng.2022.100394 – ident: e_1_2_11_21_1 doi: 10.1166/jon.2019.1607 – ident: e_1_2_11_26_1 doi: 10.1080/10407782.2023.2260948 – start-page: 84 year: 1959 ident: e_1_2_11_6_1 article-title: Flow Equation for Pigment‐Oil Suspensions of the Printing Ink‐Type publication-title: Rheology of Disperse Systems – ident: e_1_2_11_33_1 doi: 10.1615/JPorMedia.2019025699 – ident: e_1_2_11_29_1 doi: 10.1590/S0104-66322013000100020 – ident: e_1_2_11_23_1 doi: 10.1155/2021/6633468 – ident: e_1_2_11_48_1 doi: 10.1142/S0217979224502060 – ident: e_1_2_11_59_1 doi: 10.1108/MMMS-01-2018-0011 – ident: e_1_2_11_18_1 doi: 10.1016/j.ijhydene.2024.12.426 – ident: e_1_2_11_43_1 doi: 10.1166/jon.2023.2036 – ident: e_1_2_11_3_1 doi: 10.1002/htj.21605 – ident: e_1_2_11_45_1 doi: 10.1016/j.ijft.2024.100589 – ident: e_1_2_11_65_1 doi: 10.1016/0017-9310(85)90216-9 – ident: e_1_2_11_38_1 doi: 10.1080/17455030.2021.1927237 – ident: e_1_2_11_12_1 doi: 10.1007/s10973-023-12465-x – ident: e_1_2_11_47_1 doi: 10.1615/JPorMedia.2023048112 – ident: e_1_2_11_51_1 doi: 10.1177/09544062211023094 – ident: e_1_2_11_37_1 doi: 10.1140/epjp/s13360-022-02359-6 – ident: e_1_2_11_32_1 doi: 10.18280/mmep.060218 – ident: e_1_2_11_58_1 doi: 10.1166/jon.2017.1380 – ident: e_1_2_11_61_1 doi: 10.1016/j.physleta.2018.10.040 – volume: 24 start-page: 1390 issue: 10 year: 2013 ident: e_1_2_11_30_1 article-title: Chemical Reaction and Uniform Heat Generation or Absorption Effects on MHD Stagnation‐Point Flow of a Nanofluid Over a Porous Sheet publication-title: World Applied Sciences Journal – ident: e_1_2_11_57_1 doi: 10.3329/jname.v12i2.25269 – ident: e_1_2_11_60_1 doi: 10.1080/17455030.2021.1978591 – ident: e_1_2_11_34_1 doi: 10.1002/htj.22258 – ident: e_1_2_11_44_1 doi: 10.1007/s10973-024-13352-9 – ident: e_1_2_11_22_1 doi: 10.1016/j.csite.2021.101614 – ident: e_1_2_11_9_1 doi: 10.1016/j.icheatmasstransfer.2022.106389 – ident: e_1_2_11_10_1 doi: 10.1155/2022/7987315 – ident: e_1_2_11_41_1 doi: 10.1108/MMMS-08-2022-0160 – ident: e_1_2_11_55_1 doi: 10.1007/s12668-023-01281-0 – ident: e_1_2_11_50_1 doi: 10.1016/j.matcom.2020.12.005 – ident: e_1_2_11_4_1 doi: 10.1007/s13204-020-01308-y – volume-title: The Finite Element Method in Engineering year: 2010 ident: e_1_2_11_67_1 – ident: e_1_2_11_7_1 doi: 10.1016/j.jcde.2019.03.003 – ident: e_1_2_11_24_1 doi: 10.1016/j.csite.2022.102038 – ident: e_1_2_11_46_1 doi: 10.1016/j.padiff.2024.100674 – ident: e_1_2_11_54_1 doi: 10.1016/j.rineng.2023.100905 – start-page: 99 volume-title: Developments and Applications of Non‐Newtonian Flows year: 1995 ident: e_1_2_11_2_1 – ident: e_1_2_11_42_1 doi: 10.1080/17455030.2022.2164380 – ident: e_1_2_11_5_1 doi: 10.1108/HFF-03-2021-0225 – ident: e_1_2_11_56_1 doi: 10.1142/S0217979224504423 – ident: e_1_2_11_27_1 doi: 10.1002/mma.7281 – ident: e_1_2_11_25_1 doi: 10.1016/j.csite.2022.101930 – ident: e_1_2_11_13_1 doi: 10.1007/s00396-024-05286-3 – ident: e_1_2_11_52_1 doi: 10.1002/zamm.202200471 – ident: e_1_2_11_31_1 doi: 10.1063/1.4935649 – year: 2024 ident: e_1_2_11_63_1 article-title: Magnetohydrodynamic Stagnation Point Flow of Williamson Hybrid Nanofluid via Stretching Sheet in a Porous Medium With Heat Source and Chemical Reaction publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering doi: 10.1177/09544089241239583 – ident: e_1_2_11_8_1 doi: 10.1016/j.padiff.2021.100034 – ident: e_1_2_11_62_1 doi: 10.1080/10407790.2023.2233694 – ident: e_1_2_11_11_1 doi: 10.1080/02286203.2021.2012634 – ident: e_1_2_11_40_1 doi: 10.1016/j.asej.2024.102959 – ident: e_1_2_11_53_1 doi: 10.1177/00368504231176151 – ident: e_1_2_11_64_1 doi: 10.1016/j.cnsns.2009.07.002 – ident: e_1_2_11_15_1 doi: 10.1142/S0217984925500915 – ident: e_1_2_11_14_1 doi: 10.1016/j.heliyon.2024.e28591 – ident: e_1_2_11_16_1 doi: 10.1515/ntrev-2024-0021 – ident: e_1_2_11_17_1 doi: 10.1016/j.jrras.2024.101218 – ident: e_1_2_11_20_1 doi: 10.1007/BF03184952 – volume-title: Finite Element Procedures year: 1996 ident: e_1_2_11_66_1 |
| SSID | ssj0002171030 |
| Score | 2.2893517 |
| Snippet | ABSTRACT
This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and... This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and... ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and... |
| SourceID | doaj unpaywall crossref wiley |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| SubjectTerms | Casson parameter magnetic field nanoparticles Soret number viscous dissipation |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLZQe0AcBmNMK4LJ0jghpaR27LRHKLBqEgWhVbBT9PwLEFVSUCPUnfYn8DfuL9mzk1aFA5rELYmcxPH73vPn-PkzIXvdVIPtKB0pABclXS3R59IeYtl2Y-hwq8PWCWdDORglP67F9dIq_kofYvHDzXtGiNfewSfGVXG-nt1nBza_Ye0UIYpBuCkFsvEGaY6GF4e__J5yIsUAjAhbqJIu3_CiHwpy_WtktcwnMHuC8fglVQ19zek6gXktqxST-3Y5VW39-5WA43s-Y4N8qIkoPayQ85Gs2HyTrC3JE34iD8Oyms8ZU59uOKOFo5dey8CHSAq5ocdotpCTjedng2PaRype5BRDduHG5Z2h5-gpFGi_yC29upveUp9X8vfP87lX_KRztQJ6aav1FVtkdHrysz-I6i0aIo1MikU9Zb2-KceoodKe4UI7LWJngMcGIeAVvjQIxVmcJEZiVyiUMDhCc7GTwCzwz6SRYxW-EIoDN2NBGSeQccRSY1ngqemqVFvOuWuRb3ODZZNKiSOrNJdZ5hswCw3YIkfelosSXj07XCgeb7LaGbMOWAZSaWmES2QMCse0CTOWKwkSa90iewskvPmu_WDZN4pkJ8PvLBxt_98zd0hj-ljaXWQ6U_W1BvM_YhT_4w priority: 102 providerName: Unpaywall – databaseName: Wiley Online Library Open Access - NZ dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnF9EdCTUO0mTboLXnRXXQRXEUVvZfJSYWl97CJ78yf4G_0lTtLdqhfBW1umNMwrX9LJN4TsNFINtq50pABclDS0xJhLm-jLthFDnVsdWiecd2XnJjm7E3cT5GB8Fqbkh6g23HxkhHztAxzU6_43aajN79leiu6JCXiqjkDG-zdLLqsdFgTbvoeW7y4nUkzF6GsVPynb_37914wUiPtnyfQgf4LhG_R6v0FrmHVO5sncCC7Sw9K-C2TC5otk9geJ4BJ57g7Kvy496osCh7Rw9MozDvhERiE3tI3KDZXTeH_eadMWAuYip5hYC9cbPBp6gf5MgbaK3NLbx_4D9dUfn-8fF56Xk445BeiVLU9BLJObk-PrVicaNVKINOIdFjWV9SykHGNbpU3DhXZaxM4Ajw0ayvNwaRCKszhJjMQJSyhhcB3lYieBWeArZDLHIawSissrY0EZJxAXxFKjLPDUNFSqLefc1cj2WJnZU8mXkZXMyCzzKs-CymvkyOu5kvAc1-FB8XKfjUImq4NlIJWWRrhExqBw5ZkwY7mSIHHUNbJTWenPb-0GA_4hkh13T1m4WvuP8DqZYb4bcKjj2SCT_ZeB3USI0ldbwRO_ALVt39w priority: 102 providerName: Wiley-Blackwell |
| Title | Numerical Study of Radiative and Dissipative MHD Casson Nanofluid Over a Cone With High‐Order Chemical Reaction |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70112 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70112 https://doaj.org/article/1ae2a6bc6d5f460ab71742de3b6a61b0 |
| UnpaywallVersion | publishedVersion |
| Volume | 7 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: DOA dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: ADMLS dateStart: 20190801 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: BENPR dateStart: 20191201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: AVUZU dateStart: 20190801 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2577-8196 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002171030 issn: 2577-8196 databaseCode: 24P dateStart: 20190101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEB4Veig5VC0FEdpGK8EJyeDs2mvnCCE0qoSJIiLgZM3-AVLkAEqEuPEIfcY-SWfXIQoXuPTmtUbyamZ25ht59huA3TzTaNtKRwrRRUmuJZ25rEO-bPMY28LqMDrhtJD9UfL7Mr1cGvXle8JqeuBacQdttByl0tKkLpExKqo_Em6sUBJlW4VqPc47S8WUj8EEtP38rAUfKT-w1TXfz8ib-asMFIj6G_BpVt3h0yOOx69BasgyJ1_g8xwessN6W1_hg63WobFEGvgN7otZ_ZdlzHwT4BObODb0DAM-cDGsDDsmZYZOaVqf9o9ZlwDypGIUSCduPLs17Iz8lyHrTirLLm6nN8x3e_x9_nPmeTjZC4cAG9r61sMGjE56591-NB-cEGnCNzzqKOtZRwWdZZV1jEi102nsDIrYkGE875bGVAkeJ4mRlKBSlRqqm1zsJHKLYhNWK9rCFjAqp4xFZVxKOCCWmmRRZCZXmbZCCNeEnRdllnc1P0ZZMyHz0qu8DCpvwpHX80LCc1qHF2Tpcm7p8j1LN2F3YaU3v7UXDPiGSNkrfvHwtP0_NvYd1rifChz6eX7A6vRhZn8SVJmqFqzwZNCCj0e9YjBsBR-l1agYHF79AwiJ6sA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF4hegAOqAUqwqsrlROSwdn1rpNjCdC0JQEhULlZsy9AimxAiRC3_oT-xv4SZtbBlAsSN9say6t57cx49hvGtju5Bd82NjEAIck6VqPN5V3UZd9JoS29jaMTBkPdv8h-XqrLaW8OnYWp8SGaghtZRvTXZOBUkN57QQ315ZXYzVE_0QN_yHRbU-4lstOmxILRNg3RovFyKkdfjMrWAJSKvZfXX21JEbl_gc1Nylt4fIDR6HXUGredo49scRov8m-1gD-xGV8usYX_UASX2d1wUv92GXHqCnzkVeBnBDlAnoxD6fgBcje2TuP9oH_AexgxVyVHz1qF0eTG8RNUaA68V5We_74ZX3Nq__j35-8JAXPyZ1ABfubrYxAr7OLo8LzXT6aTFBKLAY9IusYTDKlE4zZ510llg1VpcCBTh5IiIC4LykiRZpnTuGMpoxwmUiENGoQH-ZnNlriEVcYxv3IejAsKA4NUW6QFmbuOya2XUoYW-_rMzOK2BswoamhkURDLi8jyFtsnPjcUBHIdH1T3V8XUZoo2eAHaWO1UyHQKBlPPTDgvjQaNq26x7UZKb35rJwrwDZLicPhdxKu19xB_YXP988Fxcfxj-GudzQsaDRybejbY7Ph-4jcxXhmbraiVT9WA40g |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6hVAJ6QOWlhlJYiZ6QTJ1d7zo5tklDeDRFFYGKizX7KpUiO60Sod74Cf2N_BJm165LL5W42dbIXs171rPfAOz0c4Oup02iEX2S9Y0im8sHpMuun2JPOBNHJxxO1WSWfTyRJ01vTjgLU-NDtBtuwTKivw4G7hbW796ghrrylL_LST_JA69RIE-zDqztfZv9mLWbLJRvhzFaYcCczMkbk7q1EKV89-YFt4JSxO5fhwercoGXv3A-v523xsAz3oBHTcbI9moRP4Z7rnwC6__gCD6F8-mq_vEyZ6Ev8JJVnh0H0IHgyxiWlo2Iv7F5mu4PJyM2pJy5Khn51srPV2eWHZFKM2TDqnTs-9nyJwsNIH9-Xx0FaE52DSvAjl19EOIZzMYHX4eTpJmlkBhKeXgy0C4AkQoyb50PrJDGG5l6iyK1JKsAxWVQasHTLLOKYpbU0lIp5VOvkDsUz6FT0hI2gVGFZR1q6yWlBqkyRIsit32dGyeE8F14c83MYlFDZhQ1ODIvAsuLyPIu7Ac-txQB5jo-qC5Oi8Zqih46jkobZaXPVIqais-MWye0QkWr7sJOK6U7v_U2CvAOkuJg-p7Hqxf_Q_wa7n8ZjYvPH6aftuAhD7OBY1fPS-gsL1ZumxKWpX7VqOVfAZXknA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLZQe0AcBmNMK4LJ0jghpaR27LRHKLBqEgWhVbBT9PwLEFVSUCPUnfYn8DfuL9mzk1aFA5rELYmcxPH73vPn-PkzIXvdVIPtKB0pABclXS3R59IeYtl2Y-hwq8PWCWdDORglP67F9dIq_kofYvHDzXtGiNfewSfGVXG-nt1nBza_Ye0UIYpBuCkFsvEGaY6GF4e__J5yIsUAjAhbqJIu3_CiHwpy_WtktcwnMHuC8fglVQ19zek6gXktqxST-3Y5VW39-5WA43s-Y4N8qIkoPayQ85Gs2HyTrC3JE34iD8Oyms8ZU59uOKOFo5dey8CHSAq5ocdotpCTjedng2PaRype5BRDduHG5Z2h5-gpFGi_yC29upveUp9X8vfP87lX_KRztQJ6aav1FVtkdHrysz-I6i0aIo1MikU9Zb2-KceoodKe4UI7LWJngMcGIeAVvjQIxVmcJEZiVyiUMDhCc7GTwCzwz6SRYxW-EIoDN2NBGSeQccRSY1ngqemqVFvOuWuRb3ODZZNKiSOrNJdZ5hswCw3YIkfelosSXj07XCgeb7LaGbMOWAZSaWmES2QMCse0CTOWKwkSa90iewskvPmu_WDZN4pkJ8PvLBxt_98zd0hj-ljaXWQ6U_W1BvM_YhT_4w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Study+of+Radiative+and+Dissipative+MHD+Casson+Nanofluid+Over+a+Cone+With+High%E2%80%90Order+Chemical+Reaction&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=L.+Joseph+Sademaki&rft.au=B.+Prabhakar+Reddy&rft.au=P.+M.+Matao&rft.date=2025-04-01&rft.pub=Wiley&rft.eissn=2577-8196&rft.volume=7&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feng2.70112&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ae2a6bc6d5f460ab71742de3b6a61b0 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon |