Numerical Study of Radiative and Dissipative MHD Casson Nanofluid Over a Cone With High‐Order Chemical Reaction

ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimen...

Full description

Saved in:
Bibliographic Details
Published inEngineering reports (Hoboken, N.J.) Vol. 7; no. 4
Main Authors Sademaki, L. Joseph, Reddy, B. Prabhakar, Matao, P. M.
Format Journal Article
LanguageEnglish
Published Hoboken, USA John Wiley & Sons, Inc 01.04.2025
Wiley
Subjects
Online AccessGet full text
ISSN2577-8196
2577-8196
DOI10.1002/eng2.70112

Cover

Abstract ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimensionless PDEs by fitting non‐dimensional parameters and solved using an effectual Galerkin finite element method (GFEM). The impact of physical parameters on momentum, energy, and concentration profiles is analyzed via graphical representations. The wall friction, thermal, and solutal transport rates are tabularly detailed. It was detected that increasing the absorbency parameter, Eckert number, thermal radiation, and thermal generation improves fluid velocity. Conversely, intensifying the magnetic field, Prandtl number and inclination angle reduces fluid velocity. The nanofluid temperature declines with a mounted Prandtl number and nanoparticle volume fraction, and the opposite effect is perceived with increased Eckert, Dufour, and Soret numbers. Wall friction intensifies with rising porosity, magnetic field strength, Casson parameter, and diffusive parameters, while it diminishes with higher nanoparticle volume fraction. The findings distinctly indicate that Ag−WEG$$ Ag- WEG $$ nanofluid exhibits superior effectiveness in enhancing thermal and mass exchanges compared to Al2O3−WEG$$ {Al}_2{O}_3- WEG $$ nanofluid. Furthermore, a comparative analysis agrees with earlier findings. This current model problem finds application across various scientific, engineering, and technological domains, including energy production, space exploration, food preservation, agricultural product manufacturing, materials processing, astrophysical phenomena, biomedical procedures, and enhanced oil recovery. This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The proposed model has broad applicability across various scientific, engineering, and technological domains.
AbstractList ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimensionless PDEs by fitting non‐dimensional parameters and solved using an effectual Galerkin finite element method (GFEM). The impact of physical parameters on momentum, energy, and concentration profiles is analyzed via graphical representations. The wall friction, thermal, and solutal transport rates are tabularly detailed. It was detected that increasing the absorbency parameter, Eckert number, thermal radiation, and thermal generation improves fluid velocity. Conversely, intensifying the magnetic field, Prandtl number and inclination angle reduces fluid velocity. The nanofluid temperature declines with a mounted Prandtl number and nanoparticle volume fraction, and the opposite effect is perceived with increased Eckert, Dufour, and Soret numbers. Wall friction intensifies with rising porosity, magnetic field strength, Casson parameter, and diffusive parameters, while it diminishes with higher nanoparticle volume fraction. The findings distinctly indicate that Ag−WEG nanofluid exhibits superior effectiveness in enhancing thermal and mass exchanges compared to Al2O3−WEG nanofluid. Furthermore, a comparative analysis agrees with earlier findings. This current model problem finds application across various scientific, engineering, and technological domains, including energy production, space exploration, food preservation, agricultural product manufacturing, materials processing, astrophysical phenomena, biomedical procedures, and enhanced oil recovery.
This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimensionless PDEs by fitting non‐dimensional parameters and solved using an effectual Galerkin finite element method (GFEM). The impact of physical parameters on momentum, energy, and concentration profiles is analyzed via graphical representations. The wall friction, thermal, and solutal transport rates are tabularly detailed. It was detected that increasing the absorbency parameter, Eckert number, thermal radiation, and thermal generation improves fluid velocity. Conversely, intensifying the magnetic field, Prandtl number and inclination angle reduces fluid velocity. The nanofluid temperature declines with a mounted Prandtl number and nanoparticle volume fraction, and the opposite effect is perceived with increased Eckert, Dufour, and Soret numbers. Wall friction intensifies with rising porosity, magnetic field strength, Casson parameter, and diffusive parameters, while it diminishes with higher nanoparticle volume fraction. The findings distinctly indicate that nanofluid exhibits superior effectiveness in enhancing thermal and mass exchanges compared to nanofluid. Furthermore, a comparative analysis agrees with earlier findings. This current model problem finds application across various scientific, engineering, and technological domains, including energy production, space exploration, food preservation, agricultural product manufacturing, materials processing, astrophysical phenomena, biomedical procedures, and enhanced oil recovery.
ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The dimensional PDEs were transformed into dimensionless PDEs by fitting non‐dimensional parameters and solved using an effectual Galerkin finite element method (GFEM). The impact of physical parameters on momentum, energy, and concentration profiles is analyzed via graphical representations. The wall friction, thermal, and solutal transport rates are tabularly detailed. It was detected that increasing the absorbency parameter, Eckert number, thermal radiation, and thermal generation improves fluid velocity. Conversely, intensifying the magnetic field, Prandtl number and inclination angle reduces fluid velocity. The nanofluid temperature declines with a mounted Prandtl number and nanoparticle volume fraction, and the opposite effect is perceived with increased Eckert, Dufour, and Soret numbers. Wall friction intensifies with rising porosity, magnetic field strength, Casson parameter, and diffusive parameters, while it diminishes with higher nanoparticle volume fraction. The findings distinctly indicate that Ag−WEG$$ Ag- WEG $$ nanofluid exhibits superior effectiveness in enhancing thermal and mass exchanges compared to Al2O3−WEG$$ {Al}_2{O}_3- WEG $$ nanofluid. Furthermore, a comparative analysis agrees with earlier findings. This current model problem finds application across various scientific, engineering, and technological domains, including energy production, space exploration, food preservation, agricultural product manufacturing, materials processing, astrophysical phenomena, biomedical procedures, and enhanced oil recovery. This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and higher‐order reacting species. Water ethylene glycol was employed as the Casson base fluid. The proposed model has broad applicability across various scientific, engineering, and technological domains.
Author Matao, P. M.
Sademaki, L. Joseph
Reddy, B. Prabhakar
Author_xml – sequence: 1
  givenname: L. Joseph
  surname: Sademaki
  fullname: Sademaki, L. Joseph
  organization: CNMS, the University of Dodoma
– sequence: 2
  givenname: B. Prabhakar
  surname: Reddy
  fullname: Reddy, B. Prabhakar
  organization: CNMS, the University of Dodoma
– sequence: 3
  givenname: P. M.
  orcidid: 0000-0002-6518-6251
  surname: Matao
  fullname: Matao, P. M.
  email: paul.matao@udom.ac.tz
  organization: CNMS, the University of Dodoma
BookMark eNp9kEtOwzAQhi0EEs8NJ_Aa1GI7sdMuUQoUqbQSD7G0Jn60rtK42CmoO47AGTkJaYMQq67GM_P5s_Ufo_3KVwahc0q6lBB2Zaop62aEUraHjhjPsk6P9sX-v_MhOotxThqYZpQk5Ai9jVcLE5yCEj_VK73G3uJH0A5q924wVBoPXIxu2fYPwwHOIUZf4TFU3pYrp_Hk3QQMOG8-g19dPcNDN519f35Ngm4W-cwstvpHA6p2vjpFBxbKaM5-6wl6ub15zoed0eTuPr8edRQTKev0C0OzPk0SwousrxOurOLEakiINrQghHMFvEgYSVMtWC_lBddUpJZYAcxAcoLuW6_2MJfL4BYQ1tKDk9uBD1MJoXaqNJKCYSAKJTS3qSBQZDRLmTZJIUA0bzWuy9a1qpaw_oCy_BNSIjfhy034cht-Q1-0tAo-xmDsbpi28IcrzXoHKW_Gd6y98wOKbZZj
Cites_doi 10.1007/BF03184951
10.1016/j.rinma.2022.100334
10.1007/s00521-020-05645-5
10.1016/j.padiff.2024.100825
10.1016/j.padiff.2024.100761
10.1016/j.rineng.2022.100394
10.1166/jon.2019.1607
10.1080/10407782.2023.2260948
10.1615/JPorMedia.2019025699
10.1590/S0104-66322013000100020
10.1155/2021/6633468
10.1142/S0217979224502060
10.1108/MMMS-01-2018-0011
10.1016/j.ijhydene.2024.12.426
10.1166/jon.2023.2036
10.1002/htj.21605
10.1016/j.ijft.2024.100589
10.1016/0017-9310(85)90216-9
10.1080/17455030.2021.1927237
10.1007/s10973-023-12465-x
10.1615/JPorMedia.2023048112
10.1177/09544062211023094
10.1140/epjp/s13360-022-02359-6
10.18280/mmep.060218
10.1166/jon.2017.1380
10.1016/j.physleta.2018.10.040
10.3329/jname.v12i2.25269
10.1080/17455030.2021.1978591
10.1002/htj.22258
10.1007/s10973-024-13352-9
10.1016/j.csite.2021.101614
10.1016/j.icheatmasstransfer.2022.106389
10.1155/2022/7987315
10.1108/MMMS-08-2022-0160
10.1007/s12668-023-01281-0
10.1016/j.matcom.2020.12.005
10.1007/s13204-020-01308-y
10.1016/j.jcde.2019.03.003
10.1016/j.csite.2022.102038
10.1016/j.padiff.2024.100674
10.1016/j.rineng.2023.100905
10.1080/17455030.2022.2164380
10.1108/HFF-03-2021-0225
10.1142/S0217979224504423
10.1002/mma.7281
10.1016/j.csite.2022.101930
10.1007/s00396-024-05286-3
10.1002/zamm.202200471
10.1063/1.4935649
10.1177/09544089241239583
10.1016/j.padiff.2021.100034
10.1080/10407790.2023.2233694
10.1080/02286203.2021.2012634
10.1016/j.asej.2024.102959
10.1177/00368504231176151
10.1016/j.cnsns.2009.07.002
10.1142/S0217984925500915
10.1016/j.heliyon.2024.e28591
10.1515/ntrev-2024-0021
10.1016/j.jrras.2024.101218
10.1007/BF03184952
ContentType Journal Article
Copyright 2025 The Author(s). published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2025 The Author(s). published by John Wiley & Sons Ltd.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1002/eng2.70112
DatabaseName Wiley Online Library Open Access - NZ
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2577-8196
EndPage n/a
ExternalDocumentID oai_doaj_org_article_1ae2a6bc6d5f460ab71742de3b6a61b0
10.1002/eng2.70112
10_1002_eng2_70112
ENG270112
Genre researchArticle
GroupedDBID 0R~
1OC
24P
AAMMB
ABJCF
ACCMX
ACXQS
ADKYN
ADMLS
ADZMN
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BENPR
BGLVJ
CCPQU
EBS
EJD
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PTHSS
AAYXX
CITATION
PQGLB
PUEGO
WIN
ADTOC
UNPAY
ID FETCH-LOGICAL-c2642-9be17913305b79d35cfc50fda30de1b0055ca5b32044d62845b5d164f0f6a2ea3
IEDL.DBID DOA
ISSN 2577-8196
IngestDate Fri Oct 03 12:52:15 EDT 2025
Tue Aug 19 23:43:43 EDT 2025
Wed Oct 01 06:01:52 EDT 2025
Sun Jul 06 04:45:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2642-9be17913305b79d35cfc50fda30de1b0055ca5b32044d62845b5d164f0f6a2ea3
Notes The authors received no specific funding for this work.
Funding
ORCID 0000-0002-6518-6251
OpenAccessLink https://doaj.org/article/1ae2a6bc6d5f460ab71742de3b6a61b0
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_1ae2a6bc6d5f460ab71742de3b6a61b0
unpaywall_primary_10_1002_eng2_70112
crossref_primary_10_1002_eng2_70112
wiley_primary_10_1002_eng2_70112_ENG270112
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2025
2025-04-00
2025-04-01
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: April 2025
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
PublicationTitle Engineering reports (Hoboken, N.J.)
PublicationYear 2025
Publisher John Wiley & Sons, Inc
Wiley
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley
References 2017; 6
1985; 28
2010; 15
2024; 302
2024; 149
2013; 24
2021; 28
2019; 15
2023; 106
2023; 148
2023; 103
2024; 34
2020; 10
2024
2024; 38
2022; 137
2022; 138
2021; 34
2021; 33
2019; 22
1954; 4
2022; 34
2020; 49
2024; 21
2022; 32
2022; 33
2024; 27
2021; 2021
2019; 8
2015; 12
2015; 5
2019; 6
2021; 3
2023; 12
2023; 17
2010
2023; 19
2021; 182
1996
1995
2025; 18
2024; 10
2022; 42
2024; 11
2024; 13
2021; 50
2024; 14
2024; 15
2019; 383
1959
2022; 236
2025; 101
2023; 46
2022; 2022
2023
2013; 30
2022; 14
2024; 85
2022; 16
Bathe K. J. (e_1_2_11_66_1) 1996
Choi S. U. S. (e_1_2_11_2_1) 1995
Vinodkumar Reddy M. (e_1_2_11_63_1) 2024
e_1_2_11_32_1
e_1_2_11_55_1
e_1_2_11_57_1
e_1_2_11_36_1
Anwar I. (e_1_2_11_30_1) 2013; 24
e_1_2_11_51_1
e_1_2_11_13_1
e_1_2_11_34_1
e_1_2_11_53_1
e_1_2_11_11_1
e_1_2_11_29_1
e_1_2_11_27_1
e_1_2_11_4_1
e_1_2_11_48_1
e_1_2_11_60_1
e_1_2_11_20_1
e_1_2_11_45_1
e_1_2_11_47_1
e_1_2_11_24_1
e_1_2_11_41_1
e_1_2_11_62_1
e_1_2_11_8_1
e_1_2_11_22_1
e_1_2_11_43_1
e_1_2_11_64_1
e_1_2_11_17_1
e_1_2_11_15_1
e_1_2_11_59_1
e_1_2_11_38_1
e_1_2_11_19_1
e_1_2_11_50_1
e_1_2_11_10_1
e_1_2_11_31_1
e_1_2_11_56_1
e_1_2_11_58_1
e_1_2_11_14_1
e_1_2_11_35_1
e_1_2_11_52_1
e_1_2_11_12_1
e_1_2_11_33_1
e_1_2_11_54_1
e_1_2_11_7_1
e_1_2_11_28_1
e_1_2_11_5_1
e_1_2_11_26_1
e_1_2_11_3_1
e_1_2_11_49_1
e_1_2_11_61_1
e_1_2_11_21_1
e_1_2_11_44_1
e_1_2_11_46_1
e_1_2_11_25_1
e_1_2_11_40_1
e_1_2_11_9_1
e_1_2_11_23_1
e_1_2_11_42_1
e_1_2_11_65_1
e_1_2_11_18_1
e_1_2_11_16_1
e_1_2_11_37_1
e_1_2_11_39_1
Casson N. (e_1_2_11_6_1) 1959
Rao S. S. (e_1_2_11_67_1) 2010
References_xml – volume: 2022
  issue: 1
  year: 2022
  article-title: A Numerical Study on Newtonian Heating Effect on Heat Absorbing MHD Casson Flow of Dissipative Fluid Past an Oscillating Vertical Porous Plate
  publication-title: International Journal of Mathematics and Mathematical Sciences
– volume: 34
  start-page: 1041
  issue: 3
  year: 2024
  end-page: 1061
  article-title: Time‐Dependent Viscous Flow of Higher‐Order Reactive MHD Maxwell Nanofluid With Joule Heating in a Porous Regime
  publication-title: Waves in Random and Complex Media
– start-page: 84
  year: 1959
  end-page: 104
  article-title: Flow Equation for Pigment‐Oil Suspensions of the Printing Ink‐Type
  publication-title: Rheology of Disperse Systems
– volume: 15
  start-page: 1553
  issue: 6
  year: 2010
  end-page: 1564
  article-title: Effect of Variable Viscosity on MHD Non‐Darcy Mixed Convective Heat Transfer Over a Stretching Sheet Embedded in a Porous Medium With Non‐uniform Heat Source/Sink
  publication-title: Communications in Nonlinear Science and Numerical Simulation
– volume: 13
  issue: 1
  year: 2024
  article-title: Ferromagnetic Effect on Casson Nanofluid Flow and Transport Phenomena Across a Bi‐Directional Riga Sensor Device: Darcy–Forchheimer Model
  publication-title: Nanotechnology Reviews
– volume: 24
  start-page: 1390
  issue: 10
  year: 2013
  end-page: 1398
  article-title: Chemical Reaction and Uniform Heat Generation or Absorption Effects on MHD Stagnation‐Point Flow of a Nanofluid Over a Porous Sheet
  publication-title: World Applied Sciences Journal
– volume: 103
  issue: 9
  year: 2023
  article-title: Viscous Dissipation and Chemical Reaction Effects on MHD Nanofluid Flow Over a Vertical Plate in a Rotating System
  publication-title: Zeitschrift für Angewandte Mathematik Und Mechanik
– start-page: 1
  year: 2023
  end-page: 27
  article-title: Irreversibility and Heat Transfer Analysis in MHD Darcy‐Forchheimer Flow of Casson Hybrid Nanofluid Flow Through Cone and Wedge
  publication-title: Numerical Heat Transfer, Part A: Applications
– volume: 30
  start-page: 187
  year: 2013
  end-page: 195
  article-title: Effects of Mass Transfer on MHD Flow of Casson Fluid With Chemical Reaction and Suction
  publication-title: Brazilian Journal of Chemical Engineering
– volume: 383
  start-page: 376
  issue: 4
  year: 2019
  end-page: 382
  article-title: Impact of Non‐uniform Heat Sink/Source and Convective Condition in Radiative Heat Transfer to Oldroyd‐B Nanofluid: A Revised Proposed Relation
  publication-title: Physics Letters A
– volume: 49
  start-page: 180
  issue: 1
  year: 2020
  end-page: 196
  article-title: Stagnation Flow of Hybrid Nanoparticles With MHD and Slip Effects
  publication-title: Heat Transfer ‐ Asian Research
– volume: 18
  issue: 1
  year: 2025
  article-title: Implementation of Homotopy Analysis Method for Entropy‐Optimized Two‐Phase Nanofluid Flow in a Bioconvective Non‐Newtonian Model With Thermal Radiation
  publication-title: Journal of Radiation Research and Applied Sciences
– volume: 28
  year: 2021
  article-title: Numerical Simulation and Thermal Enhancement of Multi‐Based Nanofluid Over an Embrittled Cone
  publication-title: Case Studies in Thermal Engineering
– volume: 22
  start-page: 1141
  issue: 9
  year: 2019
  end-page: 1157
  article-title: Modeling and Numerical Simulation of Hydromagnetic Natural Convection Casson Fluid Flow With Nth‐Order Chemical Reaction and Newtonian Heating in Porous Medium
  publication-title: Journal of Porous Media
– start-page: 1
  year: 2023
  end-page: 23
  article-title: Soret and Dufour Effects on Dissipative Jeffrey Nanofluid Flow Over a Curved Surface With Nonlinear Slip, Activation Energy and Entropy Generation
  publication-title: Waves in Random and Complex Media
– volume: 2021
  issue: 1
  year: 2021
  article-title: Heat Transport Improvement and Three‐Dimensional Rotating Cone Flow of Hybrid‐Based Nanofluid
  publication-title: Mathematical Problems in Engineering
– volume: 34
  year: 2022
  article-title: Numerical Study of Flow and Heat Transfer of a Nanofluid Past a Vertical Cone
  publication-title: Case Studies in Thermal Engineering
– volume: 38
  issue: 16
  year: 2024
  article-title: Dynamics of Soret–Dufour Effects and Thermal Aspects of Joule Heating in Multiple Slips Casson–Williamson Nanofluid
  publication-title: International Journal of Modern Physics B
– volume: 137
  start-page: 297
  issue: 3
  year: 2022
  article-title: Nonlinear Thermal Radiation and Heat Source Effects on Unsteady Electrical MHD Motion of Nanofluid Past a Stretching Surface With Binary Chemical Reaction
  publication-title: European Physical Journal Plus
– volume: 33
  year: 2022
  article-title: The Effects of Nanoparticle Aggregation and Radiation on the Flow of Nanofluid Between the Gap of a Disk and Cone
  publication-title: Case Studies in Thermal Engineering
– volume: 15
  issue: 10
  year: 2024
  article-title: Bio‐Convection Maxwell Nanofluid Through Darcy Forchheimer Medium due to Rotating Disc in the Presence of MHD
  publication-title: Ain Shams Engineering Journal
– volume: 106
  issue: 2
  year: 2023
  article-title: MHD Flow of Nanofluid Over Moving Slender Needle With Nanoparticles Aggregation and Viscous Dissipation Effects
  publication-title: Science Progress
– volume: 12
  start-page: 1522
  issue: 6
  year: 2023
  end-page: 1530
  article-title: Thermal Diffusion and Diffusion Thermo Effects on Chemically Reacting Nanofluid Flow Towards A Vertical Cone Filled by Porous Medium
  publication-title: Journal of Nanofluids
– volume: 46
  start-page: 11303
  issue: 10
  year: 2023
  end-page: 11321
  article-title: Natural Convection Nanofluid Flow With Heat Transfer Analysis of Carbon Nanotubes–Water Nanofluid Inside a Vertical Truncated Wavy Cone
  publication-title: Mathematical Methods in the Applied Sciences
– volume: 236
  start-page: 137
  issue: 1
  year: 2022
  end-page: 152
  article-title: MHD Nanofluid Flow Around a Permeable Stretching Sheet With Thermal Radiation and Viscous Dissipation
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
– volume: 14
  year: 2022
  article-title: Heat and Mass Transfer Analysis of Radiative and Chemical Reactive Effects on MHD Nanofluid Over an Infinite Moving Vertical Plate
  publication-title: Results in Engineering
– volume: 14
  start-page: 946
  issue: 2
  year: 2024
  end-page: 954
  article-title: Mixed Convection Flow of Hybrid Nanofluids With Viscous Dissipation and Dynamic Viscosity
  publication-title: BioNano Science
– volume: 4
  start-page: 207
  year: 1954
  end-page: 221
  article-title: Thermal Convection in Laminar Boundary Layers III
  publication-title: Applied Scientific Research, Section A
– volume: 28
  start-page: 1945
  issue: 10
  year: 1985
  end-page: 1952
  article-title: Conjugate Heat Transfer From Small Isothermal Heat Sources Embedded in a Large Substrate
  publication-title: International Journal of Heat and Mass Transfer
– volume: 182
  start-page: 819
  year: 2021
  end-page: 837
  article-title: Investigation of Nanoparticles cu, ag and Fe3O4 on Thermophoresis and Viscous Dissipation of MHD Nanofluid Over a Stretching Sheet in a Porous Regime: A Numerical Modeling
  publication-title: Mathematics and Computers in Simulation
– volume: 149
  start-page: 8713
  issue: 15
  year: 2024
  end-page: 8727
  article-title: Induced Magnetic Field and Soret–Dufour Effects on Viscous Dissipative Casson Fluid Flow Through Porous Medium Over a Stretching Sheet
  publication-title: Journal of Thermal Analysis and Calorimetry
– volume: 6
  start-page: 293
  issue: 2
  year: 2019
  end-page: 299
  article-title: Higher Order Chemical Reaction on MHD Nanofluid Flow With Slip Boundary Conditions: A Numerical Approach
  publication-title: Mathematical Modelling of Engineering Problems
– volume: 8
  start-page: 596
  issue: 3
  year: 2019
  end-page: 603
  article-title: Maxwell Nanofluid Flow Individualities by Way of Rotating Cone
  publication-title: Journal of Nanofluids
– volume: 138
  year: 2022
  article-title: A Computational Study on Diffusion‐Thermo and Rotation Effects on Heat Generated Mixed Convection Flow of MHD Casson Fluid Past an Oscillating Porous Plate
  publication-title: International Communications in Heat and Mass Transfer
– volume: 19
  start-page: 253
  issue: 2
  year: 2023
  end-page: 276
  article-title: Magnetohydrodynamic Hybrid Nanofluid Flow Over a Decelerating Rotating Disk With Soret and Dufour Effects
  publication-title: Multidiscipline Modeling in Materials and Structures
– year: 2024
  article-title: Magnetohydrodynamic Stagnation Point Flow of Williamson Hybrid Nanofluid via Stretching Sheet in a Porous Medium With Heat Source and Chemical Reaction
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
– volume: 42
  start-page: 985
  issue: 6
  year: 2022
  end-page: 1004
  article-title: Finite Element Numerical Technique for Magneto‐Micropolar Nanofluid Flow Filled With Chemically Reactive Casson Fluid Between Parallel Plates Subjected to Rotatory System With Electrical and Hall Currents
  publication-title: International Journal of Modelling and Simulation
– volume: 38
  issue: 32
  year: 2024
  article-title: Unsteady Dynamical Analysis of Convective Hydromagnetic Thermal Migration of Chemically Reacting Tiny Species With Dissipation and Radiation in an Inclined Porous Plate
  publication-title: International Journal of Modern Physics B
– volume: 10
  issue: 7
  year: 2024
  article-title: A Finite Difference Study of Radiative Mixed Convection MHD Heat Propagating Casson Fluid Past an Accelerating Porous Plate Including Viscous Dissipation and Joule Heating Effects
  publication-title: Heliyon
– volume: 4
  start-page: 195
  year: 1954
  end-page: 206
  article-title: Thermal Convection in Laminar Boundary Layers II
  publication-title: Applied Scientific Research, Section A
– volume: 32
  start-page: 1643
  issue: 5
  year: 2022
  end-page: 1663
  article-title: Shape Effect of Nanoparticles on MHD Nanofluid Flow Over a Stretching Sheet in the Presence of Heat Source/Sink With Entropy Generation
  publication-title: International Journal of Numerical Methods for Heat & Fluid Flow
– volume: 101
  start-page: 450
  year: 2025
  end-page: 460
  article-title: Analysis of Casson Ternary Nanofluid Integration Under Various Thermal Physical Impacts With Cattaneo‐Christov Model: Exploring Magnified Heat Transfer in Stretchy Surface
  publication-title: International Journal of Hydrogen Energy
– volume: 12
  start-page: 125
  issue: 2
  year: 2015
  end-page: 136
  article-title: Casson Fluid Flow Over a Vertical Cone With Non‐Uniform Heat Source/Sink and High Order Chemical Reaction
  publication-title: Journal of Naval Architecture and Marine Engineering
– volume: 6
  start-page: 593
  issue: 4
  year: 2019
  end-page: 605
  article-title: Exact and Statistical Computations of Radiated Flow of Nano and Casson Fluids Under Heat and Mass Flux Conditions
  publication-title: Journal of Computational Design and Engineering
– year: 1996
– start-page: 99
  year: 1995
  end-page: 105
– volume: 21
  year: 2024
  article-title: Thermophysical Characteristics With Natural Convective Flow of Carreau Fluid Influencing by Soret and Dufour Effects: By Using Numerical Technique
  publication-title: International Journal of Thermofluids
– volume: 10
  year: 2024
  article-title: The Impact of Soret, Dufour, and Chemical Reaction on MHD Nanofluid Over a Stretching Sheet
  publication-title: Partial Differential Equations in Applied Mathematics
– volume: 50
  start-page: 7879
  issue: 8
  year: 2021
  end-page: 7897
  article-title: Magnetohydrodynamic Boundary Layer Flow of Nanofluid With Variable Chemical Reaction in a Radiative Vertical Plate
  publication-title: Heat Transfer
– year: 2010
– volume: 148
  start-page: 12083
  issue: 21
  year: 2023
  end-page: 12095
  article-title: Bioconvective Treatment for the Reactive Casson Hybrid Nanofluid Flow Past an Exponentially Stretching Sheet With Ohmic Heating and Mixed Convection
  publication-title: Journal of Thermal Analysis and Calorimetry
– volume: 15
  start-page: 452
  issue: 2
  year: 2019
  end-page: 472
  article-title: Effect of Non‐Uniform Heat Source/Sink on MHD Boundary Layer Flow and Melting Heat Transfer of Williamson Nanofluid in Porous Medium
  publication-title: Multidiscipline Modeling in Materials and Structures
– volume: 11
  year: 2024
  article-title: Enhanced Heat Transfer Rate on the Flow of Hybrid Nanofluid Through a Rotating Vertical Cone: A Statistical Analysis
  publication-title: Partial Differential Equations in Applied Mathematics
– volume: 11
  year: 2024
  article-title: Computational Analysis of Transient Thermal Diffusion and Propagation of Chemically Reactive Magneto‐Nanofluid, Brinkman‐Type Flow Past an Oscillating Absorbent Plate
  publication-title: Partial Differential Equations in Applied Mathematics
– volume: 16
  year: 2022
  article-title: Effect of Thermal Radiation and Chemical Reaction on MHD Mixed Convective Heat and Mass Transfer in Nanofluid Flow due to Nonlinear Stretching Surface Through Porous Medium
  publication-title: Results in Materials
– volume: 6
  start-page: 883
  issue: 5
  year: 2017
  end-page: 891
  article-title: MHD Boundary Layer Heat and Mass Flow Over a Vertical Cone Embedded in Porous Media Filled With Al O ‐Water and cu‐Water Nanofluid
  publication-title: Journal of Nanofluids
– year: 2024
  article-title: Thermal Efficiency of the Variable Porosity System of Viscoplastic (Casson) Water‐Based Hybrid Nanofluid Transport due to an Exponentially Elastic Sheet: Computational Study
  publication-title: Modern Physics Letters B
– volume: 5
  issue: 11
  year: 2015
  article-title: Magnetohydrodynamic (MHD) Stretched Flow of Nanofluid With Power‐Law Velocity and Chemical Reaction
  publication-title: AIP Advances
– volume: 33
  start-page: 11285
  year: 2021
  end-page: 11295
  article-title: Viscous Dissipation and MHD Hybrid Nanofluid Flow Towards an Exponentially Stretching/Shrinking Surface
  publication-title: Neural Computing and Applications
– volume: 17
  year: 2023
  article-title: Impact of Radiation on the MHD Couple Stress Hybrid Nanofluid Flow Over a Porous Sheet With Viscous Dissipation
  publication-title: Results in Engineering
– volume: 10
  start-page: 5149
  year: 2020
  end-page: 5165
  article-title: MHD Instability of Hartmann Flow of Nanoparticles Fe O in Water
  publication-title: Applied Nanoscience
– volume: 27
  start-page: 23
  year: 2024
  end-page: 43
  article-title: Effects of Porous Medium in MHD Flow of Maxwell Fluid With Soret/Dufour Impacts
  publication-title: Journal of Porous Media
– volume: 3
  year: 2021
  article-title: A Brief Review of Numerical Methods for Heat and Mass Transfer of Casson Fluids
  publication-title: Partial Differential Equations in Applied Mathematics
– volume: 302
  start-page: 1635
  year: 2024
  end-page: 1669
  article-title: Heat and Mass Transfer in Double‐Diffusive Mixed Convection of Casson Fluid: Biomedical Applications
  publication-title: Colloid and Polymer Science
– volume: 34
  start-page: 3450
  year: 2021
  end-page: 3473
  article-title: Heat and Mass Transfer Analysis in the MHD Flow of Radiative Maxwell Nanofluid With Non‐Uniform Heat Source/Sink
  publication-title: Waves in Random and Complex Media
– volume: 85
  start-page: 286
  issue: 3
  year: 2024
  end-page: 304
  article-title: Heat Source and Joule Heating Effects on Convective MHD Stagnation Point Flow of Casson Nanofluid Through a Porous Medium With Chemical Reaction
  publication-title: Numerical Heat Transfer, Part B: Fundamentals
– ident: e_1_2_11_19_1
  doi: 10.1007/BF03184951
– ident: e_1_2_11_36_1
  doi: 10.1016/j.rinma.2022.100334
– ident: e_1_2_11_49_1
  doi: 10.1007/s00521-020-05645-5
– ident: e_1_2_11_28_1
  doi: 10.1016/j.padiff.2024.100825
– ident: e_1_2_11_39_1
  doi: 10.1016/j.padiff.2024.100761
– ident: e_1_2_11_35_1
  doi: 10.1016/j.rineng.2022.100394
– ident: e_1_2_11_21_1
  doi: 10.1166/jon.2019.1607
– ident: e_1_2_11_26_1
  doi: 10.1080/10407782.2023.2260948
– start-page: 84
  year: 1959
  ident: e_1_2_11_6_1
  article-title: Flow Equation for Pigment‐Oil Suspensions of the Printing Ink‐Type
  publication-title: Rheology of Disperse Systems
– ident: e_1_2_11_33_1
  doi: 10.1615/JPorMedia.2019025699
– ident: e_1_2_11_29_1
  doi: 10.1590/S0104-66322013000100020
– ident: e_1_2_11_23_1
  doi: 10.1155/2021/6633468
– ident: e_1_2_11_48_1
  doi: 10.1142/S0217979224502060
– ident: e_1_2_11_59_1
  doi: 10.1108/MMMS-01-2018-0011
– ident: e_1_2_11_18_1
  doi: 10.1016/j.ijhydene.2024.12.426
– ident: e_1_2_11_43_1
  doi: 10.1166/jon.2023.2036
– ident: e_1_2_11_3_1
  doi: 10.1002/htj.21605
– ident: e_1_2_11_45_1
  doi: 10.1016/j.ijft.2024.100589
– ident: e_1_2_11_65_1
  doi: 10.1016/0017-9310(85)90216-9
– ident: e_1_2_11_38_1
  doi: 10.1080/17455030.2021.1927237
– ident: e_1_2_11_12_1
  doi: 10.1007/s10973-023-12465-x
– ident: e_1_2_11_47_1
  doi: 10.1615/JPorMedia.2023048112
– ident: e_1_2_11_51_1
  doi: 10.1177/09544062211023094
– ident: e_1_2_11_37_1
  doi: 10.1140/epjp/s13360-022-02359-6
– ident: e_1_2_11_32_1
  doi: 10.18280/mmep.060218
– ident: e_1_2_11_58_1
  doi: 10.1166/jon.2017.1380
– ident: e_1_2_11_61_1
  doi: 10.1016/j.physleta.2018.10.040
– volume: 24
  start-page: 1390
  issue: 10
  year: 2013
  ident: e_1_2_11_30_1
  article-title: Chemical Reaction and Uniform Heat Generation or Absorption Effects on MHD Stagnation‐Point Flow of a Nanofluid Over a Porous Sheet
  publication-title: World Applied Sciences Journal
– ident: e_1_2_11_57_1
  doi: 10.3329/jname.v12i2.25269
– ident: e_1_2_11_60_1
  doi: 10.1080/17455030.2021.1978591
– ident: e_1_2_11_34_1
  doi: 10.1002/htj.22258
– ident: e_1_2_11_44_1
  doi: 10.1007/s10973-024-13352-9
– ident: e_1_2_11_22_1
  doi: 10.1016/j.csite.2021.101614
– ident: e_1_2_11_9_1
  doi: 10.1016/j.icheatmasstransfer.2022.106389
– ident: e_1_2_11_10_1
  doi: 10.1155/2022/7987315
– ident: e_1_2_11_41_1
  doi: 10.1108/MMMS-08-2022-0160
– ident: e_1_2_11_55_1
  doi: 10.1007/s12668-023-01281-0
– ident: e_1_2_11_50_1
  doi: 10.1016/j.matcom.2020.12.005
– ident: e_1_2_11_4_1
  doi: 10.1007/s13204-020-01308-y
– volume-title: The Finite Element Method in Engineering
  year: 2010
  ident: e_1_2_11_67_1
– ident: e_1_2_11_7_1
  doi: 10.1016/j.jcde.2019.03.003
– ident: e_1_2_11_24_1
  doi: 10.1016/j.csite.2022.102038
– ident: e_1_2_11_46_1
  doi: 10.1016/j.padiff.2024.100674
– ident: e_1_2_11_54_1
  doi: 10.1016/j.rineng.2023.100905
– start-page: 99
  volume-title: Developments and Applications of Non‐Newtonian Flows
  year: 1995
  ident: e_1_2_11_2_1
– ident: e_1_2_11_42_1
  doi: 10.1080/17455030.2022.2164380
– ident: e_1_2_11_5_1
  doi: 10.1108/HFF-03-2021-0225
– ident: e_1_2_11_56_1
  doi: 10.1142/S0217979224504423
– ident: e_1_2_11_27_1
  doi: 10.1002/mma.7281
– ident: e_1_2_11_25_1
  doi: 10.1016/j.csite.2022.101930
– ident: e_1_2_11_13_1
  doi: 10.1007/s00396-024-05286-3
– ident: e_1_2_11_52_1
  doi: 10.1002/zamm.202200471
– ident: e_1_2_11_31_1
  doi: 10.1063/1.4935649
– year: 2024
  ident: e_1_2_11_63_1
  article-title: Magnetohydrodynamic Stagnation Point Flow of Williamson Hybrid Nanofluid via Stretching Sheet in a Porous Medium With Heat Source and Chemical Reaction
  publication-title: Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering
  doi: 10.1177/09544089241239583
– ident: e_1_2_11_8_1
  doi: 10.1016/j.padiff.2021.100034
– ident: e_1_2_11_62_1
  doi: 10.1080/10407790.2023.2233694
– ident: e_1_2_11_11_1
  doi: 10.1080/02286203.2021.2012634
– ident: e_1_2_11_40_1
  doi: 10.1016/j.asej.2024.102959
– ident: e_1_2_11_53_1
  doi: 10.1177/00368504231176151
– ident: e_1_2_11_64_1
  doi: 10.1016/j.cnsns.2009.07.002
– ident: e_1_2_11_15_1
  doi: 10.1142/S0217984925500915
– ident: e_1_2_11_14_1
  doi: 10.1016/j.heliyon.2024.e28591
– ident: e_1_2_11_16_1
  doi: 10.1515/ntrev-2024-0021
– ident: e_1_2_11_17_1
  doi: 10.1016/j.jrras.2024.101218
– ident: e_1_2_11_20_1
  doi: 10.1007/BF03184952
– volume-title: Finite Element Procedures
  year: 1996
  ident: e_1_2_11_66_1
SSID ssj0002171030
Score 2.2893517
Snippet ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and...
This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and...
ABSTRACT This study investigated the dissipative effects on time‐dependent Casson nanofluid motion over a cone, considering variable heat source/absorption and...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Index Database
Publisher
SubjectTerms Casson parameter
magnetic field
nanoparticles
Soret number
viscous dissipation
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLZQe0AcBmNMK4LJ0jghpaR27LRHKLBqEgWhVbBT9PwLEFVSUCPUnfYn8DfuL9mzk1aFA5rELYmcxPH73vPn-PkzIXvdVIPtKB0pABclXS3R59IeYtl2Y-hwq8PWCWdDORglP67F9dIq_kofYvHDzXtGiNfewSfGVXG-nt1nBza_Ye0UIYpBuCkFsvEGaY6GF4e__J5yIsUAjAhbqJIu3_CiHwpy_WtktcwnMHuC8fglVQ19zek6gXktqxST-3Y5VW39-5WA43s-Y4N8qIkoPayQ85Gs2HyTrC3JE34iD8Oyms8ZU59uOKOFo5dey8CHSAq5ocdotpCTjedng2PaRype5BRDduHG5Z2h5-gpFGi_yC29upveUp9X8vfP87lX_KRztQJ6aav1FVtkdHrysz-I6i0aIo1MikU9Zb2-KceoodKe4UI7LWJngMcGIeAVvjQIxVmcJEZiVyiUMDhCc7GTwCzwz6SRYxW-EIoDN2NBGSeQccRSY1ngqemqVFvOuWuRb3ODZZNKiSOrNJdZ5hswCw3YIkfelosSXj07XCgeb7LaGbMOWAZSaWmES2QMCse0CTOWKwkSa90iewskvPmu_WDZN4pkJ8PvLBxt_98zd0hj-ljaXWQ6U_W1BvM_YhT_4w
  priority: 102
  providerName: Unpaywall
– databaseName: Wiley Online Library Open Access - NZ
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA6iB_UgPnF9EdCTUO0mTboLXnRXXQRXEUVvZfJSYWl97CJ78yf4G_0lTtLdqhfBW1umNMwrX9LJN4TsNFINtq50pABclDS0xJhLm-jLthFDnVsdWiecd2XnJjm7E3cT5GB8Fqbkh6g23HxkhHztAxzU6_43aajN79leiu6JCXiqjkDG-zdLLqsdFgTbvoeW7y4nUkzF6GsVPynb_37914wUiPtnyfQgf4LhG_R6v0FrmHVO5sncCC7Sw9K-C2TC5otk9geJ4BJ57g7Kvy496osCh7Rw9MozDvhERiE3tI3KDZXTeH_eadMWAuYip5hYC9cbPBp6gf5MgbaK3NLbx_4D9dUfn-8fF56Xk445BeiVLU9BLJObk-PrVicaNVKINOIdFjWV9SykHGNbpU3DhXZaxM4Ajw0ayvNwaRCKszhJjMQJSyhhcB3lYieBWeArZDLHIawSissrY0EZJxAXxFKjLPDUNFSqLefc1cj2WJnZU8mXkZXMyCzzKs-CymvkyOu5kvAc1-FB8XKfjUImq4NlIJWWRrhExqBw5ZkwY7mSIHHUNbJTWenPb-0GA_4hkh13T1m4WvuP8DqZYb4bcKjj2SCT_ZeB3USI0ldbwRO_ALVt39w
  priority: 102
  providerName: Wiley-Blackwell
Title Numerical Study of Radiative and Dissipative MHD Casson Nanofluid Over a Cone With High‐Order Chemical Reaction
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Feng2.70112
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/eng2.70112
https://doaj.org/article/1ae2a6bc6d5f460ab71742de3b6a61b0
UnpaywallVersion publishedVersion
Volume 7
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: ADMLS
  dateStart: 20190801
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: M~E
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: BENPR
  dateStart: 20191201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: AVUZU
  dateStart: 20190801
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2577-8196
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002171030
  issn: 2577-8196
  databaseCode: 24P
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NTttAEB4Veig5VC0FEdpGK8EJyeDs2mvnCCE0qoSJIiLgZM3-AVLkAEqEuPEIfcY-SWfXIQoXuPTmtUbyamZ25ht59huA3TzTaNtKRwrRRUmuJZ25rEO-bPMY28LqMDrhtJD9UfL7Mr1cGvXle8JqeuBacQdttByl0tKkLpExKqo_Em6sUBJlW4VqPc47S8WUj8EEtP38rAUfKT-w1TXfz8ib-asMFIj6G_BpVt3h0yOOx69BasgyJ1_g8xwessN6W1_hg63WobFEGvgN7otZ_ZdlzHwT4BObODb0DAM-cDGsDDsmZYZOaVqf9o9ZlwDypGIUSCduPLs17Iz8lyHrTirLLm6nN8x3e_x9_nPmeTjZC4cAG9r61sMGjE56591-NB-cEGnCNzzqKOtZRwWdZZV1jEi102nsDIrYkGE875bGVAkeJ4mRlKBSlRqqm1zsJHKLYhNWK9rCFjAqp4xFZVxKOCCWmmRRZCZXmbZCCNeEnRdllnc1P0ZZMyHz0qu8DCpvwpHX80LCc1qHF2Tpcm7p8j1LN2F3YaU3v7UXDPiGSNkrfvHwtP0_NvYd1rifChz6eX7A6vRhZn8SVJmqFqzwZNCCj0e9YjBsBR-l1agYHF79AwiJ6sA
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEF4hegAOqAUqwqsrlROSwdn1rpNjCdC0JQEhULlZsy9AimxAiRC3_oT-xv4SZtbBlAsSN9say6t57cx49hvGtju5Bd82NjEAIck6VqPN5V3UZd9JoS29jaMTBkPdv8h-XqrLaW8OnYWp8SGaghtZRvTXZOBUkN57QQ315ZXYzVE_0QN_yHRbU-4lstOmxILRNg3RovFyKkdfjMrWAJSKvZfXX21JEbl_gc1Nylt4fIDR6HXUGredo49scRov8m-1gD-xGV8usYX_UASX2d1wUv92GXHqCnzkVeBnBDlAnoxD6fgBcje2TuP9oH_AexgxVyVHz1qF0eTG8RNUaA68V5We_74ZX3Nq__j35-8JAXPyZ1ABfubrYxAr7OLo8LzXT6aTFBKLAY9IusYTDKlE4zZ510llg1VpcCBTh5IiIC4LykiRZpnTuGMpoxwmUiENGoQH-ZnNlriEVcYxv3IejAsKA4NUW6QFmbuOya2XUoYW-_rMzOK2BswoamhkURDLi8jyFtsnPjcUBHIdH1T3V8XUZoo2eAHaWO1UyHQKBlPPTDgvjQaNq26x7UZKb35rJwrwDZLicPhdxKu19xB_YXP988Fxcfxj-GudzQsaDRybejbY7Ph-4jcxXhmbraiVT9WA40g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB6hVAJ6QOWlhlJYiZ6QTJ1d7zo5tklDeDRFFYGKizX7KpUiO60Sod74Cf2N_BJm165LL5W42dbIXs171rPfAOz0c4Oup02iEX2S9Y0im8sHpMuun2JPOBNHJxxO1WSWfTyRJ01vTjgLU-NDtBtuwTKivw4G7hbW796ghrrylL_LST_JA69RIE-zDqztfZv9mLWbLJRvhzFaYcCczMkbk7q1EKV89-YFt4JSxO5fhwercoGXv3A-v523xsAz3oBHTcbI9moRP4Z7rnwC6__gCD6F8-mq_vEyZ6Ev8JJVnh0H0IHgyxiWlo2Iv7F5mu4PJyM2pJy5Khn51srPV2eWHZFKM2TDqnTs-9nyJwsNIH9-Xx0FaE52DSvAjl19EOIZzMYHX4eTpJmlkBhKeXgy0C4AkQoyb50PrJDGG5l6iyK1JKsAxWVQasHTLLOKYpbU0lIp5VOvkDsUz6FT0hI2gVGFZR1q6yWlBqkyRIsit32dGyeE8F14c83MYlFDZhQ1ODIvAsuLyPIu7Ac-txQB5jo-qC5Oi8Zqih46jkobZaXPVIqais-MWye0QkWr7sJOK6U7v_U2CvAOkuJg-p7Hqxf_Q_wa7n8ZjYvPH6aftuAhD7OBY1fPS-gsL1ZumxKWpX7VqOVfAZXknA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLZQe0AcBmNMK4LJ0jghpaR27LRHKLBqEgWhVbBT9PwLEFVSUCPUnfYn8DfuL9mzk1aFA5rELYmcxPH73vPn-PkzIXvdVIPtKB0pABclXS3R59IeYtl2Y-hwq8PWCWdDORglP67F9dIq_kofYvHDzXtGiNfewSfGVXG-nt1nBza_Ye0UIYpBuCkFsvEGaY6GF4e__J5yIsUAjAhbqJIu3_CiHwpy_WtktcwnMHuC8fglVQ19zek6gXktqxST-3Y5VW39-5WA43s-Y4N8qIkoPayQ85Gs2HyTrC3JE34iD8Oyms8ZU59uOKOFo5dey8CHSAq5ocdotpCTjedng2PaRype5BRDduHG5Z2h5-gpFGi_yC29upveUp9X8vfP87lX_KRztQJ6aav1FVtkdHrysz-I6i0aIo1MikU9Zb2-KceoodKe4UI7LWJngMcGIeAVvjQIxVmcJEZiVyiUMDhCc7GTwCzwz6SRYxW-EIoDN2NBGSeQccRSY1ngqemqVFvOuWuRb3ODZZNKiSOrNJdZ5hswCw3YIkfelosSXj07XCgeb7LaGbMOWAZSaWmES2QMCse0CTOWKwkSa90iewskvPmu_WDZN4pkJ8PvLBxt_98zd0hj-ljaXWQ6U_W1BvM_YhT_4w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+Study+of+Radiative+and+Dissipative+MHD+Casson+Nanofluid+Over+a+Cone+With+High%E2%80%90Order+Chemical+Reaction&rft.jtitle=Engineering+reports+%28Hoboken%2C+N.J.%29&rft.au=L.+Joseph+Sademaki&rft.au=B.+Prabhakar+Reddy&rft.au=P.+M.+Matao&rft.date=2025-04-01&rft.pub=Wiley&rft.eissn=2577-8196&rft.volume=7&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1002%2Feng2.70112&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_1ae2a6bc6d5f460ab71742de3b6a61b0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2577-8196&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2577-8196&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2577-8196&client=summon