Computer vision for eye diseases detection using pre‐trained deep learning techniques and raspberry Pi
Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐t...
Saved in:
| Published in | Journal of engineering (Stevenage, England) Vol. 2024; no. 7 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Wiley
01.07.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2051-3305 2051-3305 |
| DOI | 10.1049/tje2.12410 |
Cover
| Abstract | Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology.
The paper presents a new approach that uses pre‐trained ImageNet models to automatically detect various eye diseases, including cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis, achieving remarkable performance, with the InceptionResNetV2 model showing the highest accuracy of 93%. This proposed method has proven effective in early detection through real‐time monitoring in the field of ophthalmology. |
|---|---|
| AbstractList | Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology. Abstract Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology. Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology. The paper presents a new approach that uses pre‐trained ImageNet models to automatically detect various eye diseases, including cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis, achieving remarkable performance, with the InceptionResNetV2 model showing the highest accuracy of 93%. This proposed method has proven effective in early detection through real‐time monitoring in the field of ophthalmology. |
| Author | Chahl, Javaan Al‐Naji, Ali Mahmood, Mustafa F. Khalid, Ghaidaa A. |
| Author_xml | – sequence: 1 givenname: Ali orcidid: 0000-0002-8840-9235 surname: Al‐Naji fullname: Al‐Naji, Ali email: ali_al_naji@mtu.edu.iq organization: University of South Australia – sequence: 2 givenname: Ghaidaa A. orcidid: 0000-0001-6270-6445 surname: Khalid fullname: Khalid, Ghaidaa A. organization: Middle Technical University – sequence: 3 givenname: Mustafa F. surname: Mahmood fullname: Mahmood, Mustafa F. organization: Middle Technical University – sequence: 4 givenname: Javaan surname: Chahl fullname: Chahl, Javaan organization: University of South Australia |
| BookMark | eNp9kM1O3TAQRq0KpFJgwxN43eqCxz9JvKyuaAEhwQLWlh2PwVfBSe3couz6CH3GPgm5BFWsWM1ovjNn8X0he6lPSMgJsFNgUp-NG-SnwCWwT-SAMwUrIZjae7d_JselbBhjICRnEg7I47p_GrYjZvo7ltgnGvpMcULqY0FbsFCPI7bjLtqWmB7okPHfn79jtjGhn1McaIc2p102k48p_trObzZ5mm0ZHOY80dt4RPaD7Qoev81Dcv_j_G59sbq--Xm5_n69ankl2copsLULjstGBlWpUGtV2xZYJWrGnG-YkhqslgGC5gKBVw3a1nlRYdCA4pBcLl7f240ZcnyyeTK9jeb10OcHY_MY2w5Ng15LpYN0isu6bVwQIHVwwLxrtdCz69vi2qbBTs-26_4LgZld52bXuXntfKa_LnSb-1Iyho9hWODn2OH0AWnurs758vMCUqqVDQ |
| Cites_doi | 10.1109/IConSCEPT57958.2023.10170532 10.1609/aaai.v31i1.11231 10.3390/biomedinformatics3030037 10.1109/CVPR.2016.308 10.3390/biomedinformatics3020031 10.1155/2022/8014979 10.4172/2155-9570.1000645 10.1016/j.patrec.2020.03.030 10.3390/app13010037 10.3390/jcm11133850 10.1109/CVPR.2018.00907 10.1007/s11042-023-16000-w 10.1016/j.jfo.2019.11.009 10.3390/electronics11010023 10.1007/978-3-030-20257-6_9 10.1016/j.gmod.2023.101206 10.3991/ijoe.v18i09.29847 10.1007/s10044-009-0150-5 10.1186/s12864-019-6413-7 10.1007/s00034-023-02564-3 10.1186/s12938-019-0649-y 10.1109/CVPR.2018.00474 10.1155/2022/4934190 10.1109/FIT53504.2021.00034 10.1109/CVPR.2016.90 10.1109/ICEMI.2017.8265863 10.1016/j.bspc.2020.102329 |
| ContentType | Journal Article |
| Copyright | 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| Copyright_xml | – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology. |
| DBID | 24P AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.1049/tje2.12410 |
| DatabaseName | Wiley Online Library Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2051-3305 |
| EndPage | n/a |
| ExternalDocumentID | oai_doaj_org_article_8ed9459f4b5247c8bf3149fb10dbc939 10.1049/tje2.12410 10_1049_tje2_12410 TJE212410 |
| Genre | article |
| GroupedDBID | 0R~ 1OC 24P 5VS AAHJG AAJGR AAMMB ABJCF ABQXS ACCMX ACESK ACXQS ADBBV ADMLS AEFGJ AFKRA AGXDD AIDQK AIDYY ALMA_UNASSIGNED_HOLDINGS ARAPS AVUZU BCNDV BENPR BGLVJ CCPQU EBS GROUPED_DOAJ HCIFZ IAO IDLOA IGS IPNFZ ITC KQ8 M43 M7S M~E OK1 PHGZM PHGZT PIMPY PQGLB PTHSS RIG RNS ROL RUI WIN AAYXX AFFHD CITATION ADTOC PUEGO UNPAY |
| ID | FETCH-LOGICAL-c2640-b51a7bfb2484f565f7957ac1063700bd805491a94f1f923e1268eacbd36ef91e3 |
| IEDL.DBID | UNPAY |
| ISSN | 2051-3305 |
| IngestDate | Fri Oct 03 12:33:23 EDT 2025 Sun Sep 07 10:50:14 EDT 2025 Wed Oct 29 21:25:51 EDT 2025 Wed Aug 20 07:27:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| License | Attribution cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2640-b51a7bfb2484f565f7957ac1063700bd805491a94f1f923e1268eacbd36ef91e3 |
| ORCID | 0000-0001-6270-6445 0000-0002-8840-9235 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1049/tje2.12410 |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_8ed9459f4b5247c8bf3149fb10dbc939 unpaywall_primary_10_1049_tje2_12410 crossref_primary_10_1049_tje2_12410 wiley_primary_10_1049_tje2_12410_TJE212410 |
| PublicationCentury | 2000 |
| PublicationDate | July 2024 2024-07-00 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: July 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of engineering (Stevenage, England) |
| PublicationYear | 2024 |
| Publisher | Wiley |
| Publisher_xml | – name: Wiley |
| References | 2019; 8 2017; 8 2021; 66 2010; 13 2020; 2604 2019; 18 2017; 08 2024 2023; 3 2023; 83 2023; 43 2017; 31 2022; 2022 2021; 11 2023 2023; 130 2021 2019 2022; 13 2020; 117 2018 2017 2016 2015 2020; 43 2022; 11 2020; 136 2020; 21 2022; 18 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_3_1 Schuster A.K. (e_1_2_8_5_1) 2020; 117 e_1_2_8_2_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_23_1 Abbas Q. (e_1_2_8_11_1) 2017; 8 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 Vijayalakshmi D. (e_1_2_8_14_1) 2024 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 Cheung C.Y. (e_1_2_8_9_1) 2019; 8 e_1_2_8_30_1 |
| References_xml | – volume: 8 issue: 6 year: 2017 article-title: Glaucoma‐deep: detection of glaucoma eye disease on retinal fundus images using deep learning publication-title: Int. J. Adv. Comput. Sci. Appl. – year: 2015 article-title: Very deep convolutional networks for large‐scale image recognition – volume: 130 year: 2023 article-title: A systematic approach for enhancement of homogeneous background images using structural information publication-title: Graph. Models – volume: 2022 start-page: 1 year: 2022 end-page: 10 article-title: Design of intelligent diagnosis and treatment system for ophthalmic diseases based on deep neural network model publication-title: Contrast Media Mol. Imaging – volume: 66 year: 2021 article-title: Multi‐class multi‐label ophthalmological disease detection using transfer learning based convolutional neural network publication-title: Biomed. Signal Process. Control – start-page: 1 year: 2023 end-page: 6 article-title: A transfer learning approach for retinal disease classification – volume: 18 start-page: 1 year: 2019 end-page: 19 article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation publication-title: Biomed. Eng. Online – volume: 11 start-page: 23 year: 2021 article-title: Deep feature vectors concatenation for eye disease detection using fundus image publication-title: Electronics – volume: 3 start-page: 455 year: 2023 end-page: 466 article-title: Automatic facial palsy, age and gender detection using a raspberry Pi publication-title: BioMedInformatics – volume: 21 start-page: 1 year: 2020 end-page: 13 article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation publication-title: BMC Genomics – year: 2024 – start-page: 4510 year: 2018 end-page: 4520 article-title: Mobilenetv2: Inverted residuals and linear bottlenecks – volume: 13 start-page: 197 year: 2010 end-page: 211 article-title: The architecture and performance of the face and eyes detection system based on the Haar cascade classifiers publication-title: Pattern Anal. Appl. – start-page: 104 year: 2019 end-page: 114 article-title: Eye disease prediction from optical coherence tomography images with transfer learning – start-page: 137 year: 2021 end-page: 142 article-title: Classification of eye diseases and detection of cataract using digital fundus imaging (DFI) and inception‐V4 deep learning model – start-page: 770 year: 2016 end-page: 778 article-title: Deep residual learning for image recognition – volume: 13 start-page: 37 year: 2022 article-title: Retinal nerve fiber layer analysis using deep learning to improve glaucoma detection in eye disease assessment publication-title: Appl. Sci. – volume: 31 issue: 1 year: 2017 article-title: Inception‐v4, inception‐resnet and the impact of residual connections on learning – start-page: 483 year: 2017 end-page: 487 article-title: Human face detection algorithm via Haar cascade classifier combined with three additional classifiers – volume: 3 start-page: 543 year: 2023 end-page: 552 article-title: NJN: A dataset for the normal and jaundiced newborns publication-title: BioMedInformatics – start-page: 2818 year: 2016 end-page: 2826 article-title: Rethinking the inception architecture for computer vision – volume: 2022 start-page: 1 year: 2022 end-page: 15 article-title: Diagnosis of retinal diseases based on Bayesian optimization deep learning network using optical coherence tomography images publication-title: Comput. Intell. Neurosci. – volume: 43 start-page: 2385 year: 2023 end-page: 2408 article-title: Covid‐19net: An effective and robust approach for covid‐19 detection using ensemble of convnet‐24 and customized pre‐trained models publication-title: Circuits Syst. Signal Process. – volume: 8 start-page: 158 year: 2019 end-page: 164 article-title: Artificial intelligence in diabetic eye disease screening publication-title: Asia‐Pacific J. Ophthalmol. – volume: 18 start-page: 115 issue: 9 year: 2022 end-page: 130 article-title: Convolutional neural network modeling for eye disease recognition publication-title: Int. J. Online Biomed. Eng. – volume: 83 start-page: 11957 year: 2023 end-page: 11975 article-title: Multiple ocular disease detection using novel ensemble models publication-title: Multimedia Tools Appl. – volume: 2604 start-page: 715 year: 2020 end-page: 729 article-title: Bagging of convolutional neural networks for diagnostic of eye diseases – volume: 136 start-page: 71 year: 2020 end-page: 80 article-title: On the performance of Matthews correlation coefficient (MCC) for imbalanced dataset publication-title: Pattern Recognit. Lett. – volume: 117 start-page: 225 year: 2020 article-title: The diagnosis and treatment of glaucoma publication-title: Dtsch. Arztebl. Int. – year: 2017 – start-page: 8697 year: 2018 end-page: 8710 article-title: Learning transferable architectures for scalable image recognition – volume: 43 start-page: 653 year: 2020 end-page: 659 article-title: Signs, symptoms, and clinical forms of cataract in adults publication-title: J. Fr. Ophtalmol. – volume: 08 start-page: 1â year: 2017 article-title: Ocular foreign bodies: A review publication-title: J. Clin. Exp. Ophthalmol. – year: 2019 – volume: 11 start-page: 3850 year: 2022 article-title: Retinal glaucoma public datasets: What do we have and what is missing? publication-title: J. Clin. Med. – ident: e_1_2_8_22_1 doi: 10.1109/IConSCEPT57958.2023.10170532 – ident: e_1_2_8_33_1 doi: 10.1609/aaai.v31i1.11231 – ident: e_1_2_8_34_1 doi: 10.3390/biomedinformatics3030037 – ident: e_1_2_8_31_1 doi: 10.1109/CVPR.2016.308 – ident: e_1_2_8_25_1 doi: 10.3390/biomedinformatics3020031 – ident: e_1_2_8_6_1 – ident: e_1_2_8_12_1 doi: 10.1155/2022/8014979 – ident: e_1_2_8_17_1 – ident: e_1_2_8_4_1 doi: 10.4172/2155-9570.1000645 – ident: e_1_2_8_35_1 doi: 10.1016/j.patrec.2020.03.030 – volume: 8 issue: 6 year: 2017 ident: e_1_2_8_11_1 article-title: Glaucoma‐deep: detection of glaucoma eye disease on retinal fundus images using deep learning publication-title: Int. J. Adv. Comput. Sci. Appl. – ident: e_1_2_8_8_1 doi: 10.3390/app13010037 – ident: e_1_2_8_20_1 doi: 10.3390/jcm11133850 – ident: e_1_2_8_28_1 doi: 10.1109/CVPR.2018.00907 – ident: e_1_2_8_7_1 – start-page: 2450008 volume-title: Biomedical Engineering: Applications, Basis and Communications year: 2024 ident: e_1_2_8_14_1 – ident: e_1_2_8_23_1 doi: 10.1007/s11042-023-16000-w – ident: e_1_2_8_3_1 doi: 10.1016/j.jfo.2019.11.009 – ident: e_1_2_8_10_1 doi: 10.3390/electronics11010023 – ident: e_1_2_8_2_1 – ident: e_1_2_8_15_1 doi: 10.1007/978-3-030-20257-6_9 – ident: e_1_2_8_37_1 doi: 10.1016/j.gmod.2023.101206 – ident: e_1_2_8_24_1 doi: 10.3991/ijoe.v18i09.29847 – ident: e_1_2_8_26_1 doi: 10.1007/s10044-009-0150-5 – ident: e_1_2_8_36_1 doi: 10.1186/s12864-019-6413-7 – volume: 117 start-page: 225 year: 2020 ident: e_1_2_8_5_1 article-title: The diagnosis and treatment of glaucoma publication-title: Dtsch. Arztebl. Int. – ident: e_1_2_8_13_1 doi: 10.1007/s00034-023-02564-3 – ident: e_1_2_8_16_1 doi: 10.1186/s12938-019-0649-y – ident: e_1_2_8_32_1 doi: 10.1109/CVPR.2018.00474 – ident: e_1_2_8_21_1 doi: 10.1155/2022/4934190 – ident: e_1_2_8_29_1 – ident: e_1_2_8_18_1 doi: 10.1109/FIT53504.2021.00034 – ident: e_1_2_8_30_1 doi: 10.1109/CVPR.2016.90 – ident: e_1_2_8_27_1 doi: 10.1109/ICEMI.2017.8265863 – ident: e_1_2_8_19_1 doi: 10.1016/j.bspc.2020.102329 – volume: 8 start-page: 158 year: 2019 ident: e_1_2_8_9_1 article-title: Artificial intelligence in diabetic eye disease screening publication-title: Asia‐Pacific J. Ophthalmol. |
| SSID | ssj0001342041 |
| Score | 2.2793577 |
| Snippet | Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach... Abstract Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique... |
| SourceID | doaj unpaywall crossref wiley |
| SourceType | Open Website Open Access Repository Index Database Publisher |
| SubjectTerms | artificial intelligence biomedical signal and image processing |
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KI7iD9x_iLgTkJd26RNc1TZGAPFwwa7laRJpiK1dB2ym3-Cf6N_ia9pN-plXryVNtDwXtp8krz3fQh1JQmDJGDaMUIyB4hYwCeVwFiWKgoMALq0-x0Pj-FwQkfTYNoo9VXGhFXywJXhepFWnAbcUBn4lCWRNASg3kjPVTLhxKbuuRFvLKbs7gqhvku9lR4p5b3iVfs3MJmVqbKNGcgK9bfR9iLNxPJDvL39hlQ7ywz20G6Nh_i26tY-2tLpAWo3RAMP0fOqEAOu8sIxYCfWS43rs5Y5VrqwAVYpLqPaZzjL9ffnly0GoRU81Rmui0XM8FrDdY5FqnAu5pnUeb7ETy9HaDLoj--HTl0vwUkAa1xHBp5g0kifRtQAqBnGAyYSWPQR5rpgfMAz7glOjWeA67TnhxH8d6UioTbc0-QYtdL3VJ8gzKXxWUIVDxWhinLJSZnFCzAEyx0RsQ66WtkwzipZjNgeZ1Mel5aOraU76K4077pFKWVtb4CD49rB8V8O7qDu2jkb33Vt_bahSTwe9X17dfofHTtDOz4QThW7e45aRb7QF0Aohby0g_EHXKPj3g priority: 102 providerName: Directory of Open Access Journals – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS-UwFICD6EJdiK9hrqMS0JVQp82jacCNiiKC4kLBXclpkquD1NJ7Zbi7-QnzG_0lnqS9V90I7kqbUjiP5jtJzjmE7APPZSWVS7wBlSARG3SpCm0ZbCE9AjrE9Y6r6_ziTlzey_s5cjTNhenqQ8wW3IJnxP91cHADXRcShFpU4viPY4c4O4X8qoUMQSbYNxM37yssXLA0tq5kaHkJBu5yWp9U6N_vr3-akWLh_mWy-FI3ZvLXPD19htY465yvkpUeF-lxp981MufqdbL8oYjgBnmYNmagXZ44RQylbuJov_cyotaN44GrmoZT7kPatO713__YHMJZfOoa2jePGNJZTdcRNbWlrRk14Np2Qm8eN8nd-dnt6UXS909IKsScNAGZGQUemCiER3DzSktlKgwCuUpTVAbims6MFj7zyHkuY3mB_2GwPHdeZ47_IPP1c-1-EqrBM1UJq3PLhRUaNA9ZvQhHGP6YQg3I3lSGZdOVySjj9rbQZZB0GSU9ICdBvLMRobR1vPHcDsveU8rCWS2k9gIkE6oqwHOM4jxkqYVKcz0g-zPlfPmtg6i3L4aUt5dnLF5tfWfwL7LEkGy6M7vbZH7cvrgdJJMx7EYDfAOrkt2T priority: 102 providerName: Wiley-Blackwell |
| Title | Computer vision for eye diseases detection using pre‐trained deep learning techniques and raspberry Pi |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12410 https://doi.org/10.1049/tje2.12410 https://doaj.org/article/8ed9459f4b5247c8bf3149fb10dbc939 |
| UnpaywallVersion | publishedVersion |
| Volume | 2024 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: KQ8 dateStart: 20130101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2051-3305 dateEnd: 20241231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: ADMLS dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVBHI databaseName: IET Digital Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: IDLOA dateStart: 20130601 isFulltext: true titleUrlDefault: https://digital-library.theiet.org/content/collections providerName: Institution of Engineering and Technology – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: M~E dateStart: 20130101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: BENPR dateStart: 20210201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: KBPluse Wiley Online Library: Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: AVUZU dateStart: 20130601 isFulltext: true titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 2051-3305 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001342041 issn: 2051-3305 databaseCode: 24P dateStart: 20130101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtswDCa65DD00P1jGdZA2Hoa4Cy2Jcs6Zv1BUaxFgDVAdzJES2q3Fa7hOBiy0x6hz9gnGa3YwbJDsJthy7ZAUtZHk_wIcIBxInIhbeA0yoAQsaYllZMto0mFI4CO_n_H-UVyOuNnV-JqB951tTAb8XuuPtbfbTSiPaipouongvB2D_qzi-nka9M1jiwqIIdcdLyjGzds7DSekH8XHi-KUi9_6tvbTTDqd5OTJ3DYzWOVRPJjtKhxlP_6h6Jx-0Sfwl4LJtlkpf1nsGOL57D7F8XgC7jp2jawVRU5I5DK7NKyNjIzZ8bWPh2rYE0O_DUrK_vw-963jrCGrtqSta0lrtma8XXOdGFYpecl2qpasum3lzA7Ob48PA3a7gpBTiBoHKAItUSHEU-5I1jnpBJS5-QixnI8JlURmFOhVtyFjlCgDaMkpa80mjixToU2fgW94q6wr4EpdJHMuVGJibnhClXc1PwSdCLnSKdyAO87TWTlikQj88FvrrJGbpmX2wA-NUpaj2iIr_0JEnPWrqMstUZxoRxHEXGZp-hi8vEchmODuYrVAA7WKt76rg9e-1uGZJdnx5E_evN_z3wLvbpa2H0CKTUO4VHEp0PoT47OP38Zeld_2FruH0e-6Q4 |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELbQ9gAcqpZSdaG0luBUKZD4J46PgEDLr_awK-0tsmN7W4RClA2q9sYj9Bn7JB072VAuSNyixFakGY_9zXjmG4QONE15wYWNnNIiAkSswKQKWMvaZNwBQNch3nFzm46m7HLGZ11ujq-Fafkh-oCbt4ywX3sD9wHp1uFkniSzubPkEI4nX2D1jqVJ6n0vwsbPIRbKSBx6VxJYehF47nxFUMrk0fP0F0dSYO7fROuPZaWWv9X9_UvUGo6d8w_ofYcX8XGr4I9ozZZbaPM_FsFP6OeqMwNuC8Ux4FBslxZ3ly8LbGwTMq5K7NPc57iq7d-nP6E7hDXw1Va46x4xxz2p6wKr0uBaLSpt63qJx7-20fT8bHI6iroGClEBOCeONE-U0E4TljEHyM0JyYUqwAukIo5BG4DXZKIkc4kDoGcTkmawEWtDU-tkYulnNCgfSvsFYakdEQUzMjWUGSa1pL6sF9AR-D8qE0O0v5JhXrU8GXm432Yy95LOg6SH6MSLtx_hua3Di4d6nnemkmfWSMalY5oTJopMOwpunNNJbHQhqRyig145r_7rR9DbK0PyyeUZCU87bxn8Ha2PJjfX-fXF7dUu2iAAc9oE3q9o0NSPdg9gSqO_hcX4D6s44P8 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6hrVToAfUH1AVKLdFTpUDinzg-tqWrUmjVQxdVXCI7thdQlUbZrdDeeASekSdh7GS37aUStyixHGnG4_nGnvkGYM-wXFRCusRrIxNExBpNqsK1bGwhPAJ0E887zs7zkzE_vRJXfW5OqIXp-CGWB27BMuJ-HQzcNdZ3AScPJJmzn46-R_cUCqxW0JGnfAArB1_H38Z3hyyM0zR2r6S4-BKM3cWCopSrD3cTPHBKkbt_DZ7e1o2e_9LX1w9xa3Q8o3V43iNGctCpeAOeuHoT1u7xCG7B90VvBtKVihNEosTNHemvX6bEulnMuapJSHSfkKZ1f3__if0hnMWvriF9_4gJWdK6TomuLWn1tDGubefk4scLGI-OL49Okr6FQlIh0kkTIzItjTeUF9wjdvNSCakrjAOZTFPUByI2lWnFfeYR6rmM5gVuxcay3HmVOfYSBvVN7baBKOOprLhVuWXccmUUC4W9iI8wAtKFHMK7hQzLpmPKKOMNN1dlkHQZJT2EwyDe5YjAbh1f3LSTsjeWsnBWcaE8N4JyWRXGMwzkvMlSayrF1BD2lsp59F_7UW-PDCkvT49pfHr1P4N3YfXi46j88un882t4RhHndBm8b2Awa2_dDuKUmXnbr8Z_zVriUw |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB2h5YA4QAut2Ioiq3BCynaT2HF8BARCSEUcWAlOkSe2KbBKo2xWaDnxCXxjv6QTb7Lq9rDqLUqcxJoZx28yM28AjjBORC6kDZxGGRAi1rSkcrJlNKlwBNDR_-_4cZ1cjvjVnbhbg29dLcxS_J6r7_WTjQa0BzVVVOuJILzdg_XR9c3JfdM1jiwqIIdcdLyjSzcs7TSekH8TNqZFqWcvejxeBqN-N7nYhrNuHvMkkufBtMZB_voPRePqiX6ArRZMspO59j_Cmi12YPMvisFd-Nm1bWDzKnJGIJXZmWVtZGbCjK19OlbBmhz4B1ZW9vfbu28dYQ1dtSVrW0s8sAXj64TpwrBKT0q0VTVjN4-fYHRxfnt2GbTdFYKcQNAwQBFqiQ4jnnJHsM5JJaTOyUWM5XBIqiIwp0KtuAsdoUAbRklKX2k0cWKdCm38GXrFr8LuAVPoIplzoxITc8MVqrip-SXoRM6RTmUfDjtNZOWcRCPzwW-uskZumZdbH04bJS1GNMTX_gSJOWvXUZZao7hQjqOIuMxTdDH5eA7DocFcxaoPRwsVr3zXsdf-iiHZ7dV55I--_N8z96FXV1P7lUBKjQetlf4BPPDlrg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+vision+for+eye+diseases+detection+using+pre%E2%80%90trained+deep+learning+techniques+and+raspberry+Pi&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Al%E2%80%90Naji%2C+Ali&rft.au=Khalid%2C+Ghaidaa+A.&rft.au=Mahmood%2C+Mustafa+F.&rft.au=Chahl%2C+Javaan&rft.date=2024-07-01&rft.issn=2051-3305&rft.eissn=2051-3305&rft.volume=2024&rft.issue=7&rft_id=info:doi/10.1049%2Ftje2.12410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_tje2_12410 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon |