Computer vision for eye diseases detection using pre‐trained deep learning techniques and raspberry Pi

Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐t...

Full description

Saved in:
Bibliographic Details
Published inJournal of engineering (Stevenage, England) Vol. 2024; no. 7
Main Authors Al‐Naji, Ali, Khalid, Ghaidaa A., Mahmood, Mustafa F., Chahl, Javaan
Format Journal Article
LanguageEnglish
Published Wiley 01.07.2024
Subjects
Online AccessGet full text
ISSN2051-3305
2051-3305
DOI10.1049/tje2.12410

Cover

Abstract Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology. The paper presents a new approach that uses pre‐trained ImageNet models to automatically detect various eye diseases, including cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis, achieving remarkable performance, with the InceptionResNetV2 model showing the highest accuracy of 93%. This proposed method has proven effective in early detection through real‐time monitoring in the field of ophthalmology.
AbstractList Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology.
Abstract Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology.
Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach that can detect numerous eye diseases automatically. Initially, this approach used the pre‐trained ImageNet models that provides various pre‐trained models for training the acquired data. The existing data sets are composed of 645 data images acquired clinically, represented by two groups of subjects as healthy and others holding the proposed eye defect like cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis. Followed by comparisons of the pre‐trained model's coefficients and prediction performance. Later, the first‐class execution model is integrated within the Raspberry Pi staging and the real‐time digital camera detection. The evaluation process used the confusion matrix, model accuracy, precision factor, recall coefficient, F1 score, and the Matthews Correlation Coefficient (MCC). Resulting in the performance of these pre‐trained ImageNet models used in this study represented by 93% (InceptionResNetV2), 90% (MobileNet), 86% (Residual Network ResNet50), 85% (InceptionV3), 78% (Visual Geometry Group VGG19), and 72% (Neural Architecture Search Network NASNetMobile). The results show that the InceptionResNetV2 achieved the highest performance. This proposed approach shows its efficiency and strength by early detection of the subject's unhealthy eyes through real‐time monitoring in the field of ophthalmology. The paper presents a new approach that uses pre‐trained ImageNet models to automatically detect various eye diseases, including cataracts, foreign bodies, glaucoma, subconjunctival haemorrhage, and viral conjunctivitis, achieving remarkable performance, with the InceptionResNetV2 model showing the highest accuracy of 93%. This proposed method has proven effective in early detection through real‐time monitoring in the field of ophthalmology.
Author Chahl, Javaan
Al‐Naji, Ali
Mahmood, Mustafa F.
Khalid, Ghaidaa A.
Author_xml – sequence: 1
  givenname: Ali
  orcidid: 0000-0002-8840-9235
  surname: Al‐Naji
  fullname: Al‐Naji, Ali
  email: ali_al_naji@mtu.edu.iq
  organization: University of South Australia
– sequence: 2
  givenname: Ghaidaa A.
  orcidid: 0000-0001-6270-6445
  surname: Khalid
  fullname: Khalid, Ghaidaa A.
  organization: Middle Technical University
– sequence: 3
  givenname: Mustafa F.
  surname: Mahmood
  fullname: Mahmood, Mustafa F.
  organization: Middle Technical University
– sequence: 4
  givenname: Javaan
  surname: Chahl
  fullname: Chahl, Javaan
  organization: University of South Australia
BookMark eNp9kM1O3TAQRq0KpFJgwxN43eqCxz9JvKyuaAEhwQLWlh2PwVfBSe3couz6CH3GPgm5BFWsWM1ovjNn8X0he6lPSMgJsFNgUp-NG-SnwCWwT-SAMwUrIZjae7d_JselbBhjICRnEg7I47p_GrYjZvo7ltgnGvpMcULqY0FbsFCPI7bjLtqWmB7okPHfn79jtjGhn1McaIc2p102k48p_trObzZ5mm0ZHOY80dt4RPaD7Qoev81Dcv_j_G59sbq--Xm5_n69ankl2copsLULjstGBlWpUGtV2xZYJWrGnG-YkhqslgGC5gKBVw3a1nlRYdCA4pBcLl7f240ZcnyyeTK9jeb10OcHY_MY2w5Ng15LpYN0isu6bVwQIHVwwLxrtdCz69vi2qbBTs-26_4LgZld52bXuXntfKa_LnSb-1Iyho9hWODn2OH0AWnurs758vMCUqqVDQ
Cites_doi 10.1109/IConSCEPT57958.2023.10170532
10.1609/aaai.v31i1.11231
10.3390/biomedinformatics3030037
10.1109/CVPR.2016.308
10.3390/biomedinformatics3020031
10.1155/2022/8014979
10.4172/2155-9570.1000645
10.1016/j.patrec.2020.03.030
10.3390/app13010037
10.3390/jcm11133850
10.1109/CVPR.2018.00907
10.1007/s11042-023-16000-w
10.1016/j.jfo.2019.11.009
10.3390/electronics11010023
10.1007/978-3-030-20257-6_9
10.1016/j.gmod.2023.101206
10.3991/ijoe.v18i09.29847
10.1007/s10044-009-0150-5
10.1186/s12864-019-6413-7
10.1007/s00034-023-02564-3
10.1186/s12938-019-0649-y
10.1109/CVPR.2018.00474
10.1155/2022/4934190
10.1109/FIT53504.2021.00034
10.1109/CVPR.2016.90
10.1109/ICEMI.2017.8265863
10.1016/j.bspc.2020.102329
ContentType Journal Article
Copyright 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
Copyright_xml – notice: 2024 The Author(s). published by John Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.
DBID 24P
AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.1049/tje2.12410
DatabaseName Wiley Online Library Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2051-3305
EndPage n/a
ExternalDocumentID oai_doaj_org_article_8ed9459f4b5247c8bf3149fb10dbc939
10.1049/tje2.12410
10_1049_tje2_12410
TJE212410
Genre article
GroupedDBID 0R~
1OC
24P
5VS
AAHJG
AAJGR
AAMMB
ABJCF
ABQXS
ACCMX
ACESK
ACXQS
ADBBV
ADMLS
AEFGJ
AFKRA
AGXDD
AIDQK
AIDYY
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AVUZU
BCNDV
BENPR
BGLVJ
CCPQU
EBS
GROUPED_DOAJ
HCIFZ
IAO
IDLOA
IGS
IPNFZ
ITC
KQ8
M43
M7S
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PTHSS
RIG
RNS
ROL
RUI
WIN
AAYXX
AFFHD
CITATION
ADTOC
PUEGO
UNPAY
ID FETCH-LOGICAL-c2640-b51a7bfb2484f565f7957ac1063700bd805491a94f1f923e1268eacbd36ef91e3
IEDL.DBID UNPAY
ISSN 2051-3305
IngestDate Fri Oct 03 12:33:23 EDT 2025
Sun Sep 07 10:50:14 EDT 2025
Wed Oct 29 21:25:51 EDT 2025
Wed Aug 20 07:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License Attribution
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2640-b51a7bfb2484f565f7957ac1063700bd805491a94f1f923e1268eacbd36ef91e3
ORCID 0000-0001-6270-6445
0000-0002-8840-9235
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1049/tje2.12410
PageCount 11
ParticipantIDs doaj_primary_oai_doaj_org_article_8ed9459f4b5247c8bf3149fb10dbc939
unpaywall_primary_10_1049_tje2_12410
crossref_primary_10_1049_tje2_12410
wiley_primary_10_1049_tje2_12410_TJE212410
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Journal of engineering (Stevenage, England)
PublicationYear 2024
Publisher Wiley
Publisher_xml – name: Wiley
References 2019; 8
2017; 8
2021; 66
2010; 13
2020; 2604
2019; 18
2017; 08
2024
2023; 3
2023; 83
2023; 43
2017; 31
2022; 2022
2021; 11
2023
2023; 130
2021
2019
2022; 13
2020; 117
2018
2017
2016
2015
2020; 43
2022; 11
2020; 136
2020; 21
2022; 18
e_1_2_8_28_1
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
e_1_2_8_3_1
Schuster A.K. (e_1_2_8_5_1) 2020; 117
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_7_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_23_1
Abbas Q. (e_1_2_8_11_1) 2017; 8
e_1_2_8_17_1
e_1_2_8_18_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
Vijayalakshmi D. (e_1_2_8_14_1) 2024
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
Cheung C.Y. (e_1_2_8_9_1) 2019; 8
e_1_2_8_30_1
References_xml – volume: 8
  issue: 6
  year: 2017
  article-title: Glaucoma‐deep: detection of glaucoma eye disease on retinal fundus images using deep learning
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– year: 2015
  article-title: Very deep convolutional networks for large‐scale image recognition
– volume: 130
  year: 2023
  article-title: A systematic approach for enhancement of homogeneous background images using structural information
  publication-title: Graph. Models
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 10
  article-title: Design of intelligent diagnosis and treatment system for ophthalmic diseases based on deep neural network model
  publication-title: Contrast Media Mol. Imaging
– volume: 66
  year: 2021
  article-title: Multi‐class multi‐label ophthalmological disease detection using transfer learning based convolutional neural network
  publication-title: Biomed. Signal Process. Control
– start-page: 1
  year: 2023
  end-page: 6
  article-title: A transfer learning approach for retinal disease classification
– volume: 18
  start-page: 1
  year: 2019
  end-page: 19
  article-title: CNNs for automatic glaucoma assessment using fundus images: an extensive validation
  publication-title: Biomed. Eng. Online
– volume: 11
  start-page: 23
  year: 2021
  article-title: Deep feature vectors concatenation for eye disease detection using fundus image
  publication-title: Electronics
– volume: 3
  start-page: 455
  year: 2023
  end-page: 466
  article-title: Automatic facial palsy, age and gender detection using a raspberry Pi
  publication-title: BioMedInformatics
– volume: 21
  start-page: 1
  year: 2020
  end-page: 13
  article-title: The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation
  publication-title: BMC Genomics
– year: 2024
– start-page: 4510
  year: 2018
  end-page: 4520
  article-title: Mobilenetv2: Inverted residuals and linear bottlenecks
– volume: 13
  start-page: 197
  year: 2010
  end-page: 211
  article-title: The architecture and performance of the face and eyes detection system based on the Haar cascade classifiers
  publication-title: Pattern Anal. Appl.
– start-page: 104
  year: 2019
  end-page: 114
  article-title: Eye disease prediction from optical coherence tomography images with transfer learning
– start-page: 137
  year: 2021
  end-page: 142
  article-title: Classification of eye diseases and detection of cataract using digital fundus imaging (DFI) and inception‐V4 deep learning model
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– volume: 13
  start-page: 37
  year: 2022
  article-title: Retinal nerve fiber layer analysis using deep learning to improve glaucoma detection in eye disease assessment
  publication-title: Appl. Sci.
– volume: 31
  issue: 1
  year: 2017
  article-title: Inception‐v4, inception‐resnet and the impact of residual connections on learning
– start-page: 483
  year: 2017
  end-page: 487
  article-title: Human face detection algorithm via Haar cascade classifier combined with three additional classifiers
– volume: 3
  start-page: 543
  year: 2023
  end-page: 552
  article-title: NJN: A dataset for the normal and jaundiced newborns
  publication-title: BioMedInformatics
– start-page: 2818
  year: 2016
  end-page: 2826
  article-title: Rethinking the inception architecture for computer vision
– volume: 2022
  start-page: 1
  year: 2022
  end-page: 15
  article-title: Diagnosis of retinal diseases based on Bayesian optimization deep learning network using optical coherence tomography images
  publication-title: Comput. Intell. Neurosci.
– volume: 43
  start-page: 2385
  year: 2023
  end-page: 2408
  article-title: Covid‐19net: An effective and robust approach for covid‐19 detection using ensemble of convnet‐24 and customized pre‐trained models
  publication-title: Circuits Syst. Signal Process.
– volume: 8
  start-page: 158
  year: 2019
  end-page: 164
  article-title: Artificial intelligence in diabetic eye disease screening
  publication-title: Asia‐Pacific J. Ophthalmol.
– volume: 18
  start-page: 115
  issue: 9
  year: 2022
  end-page: 130
  article-title: Convolutional neural network modeling for eye disease recognition
  publication-title: Int. J. Online Biomed. Eng.
– volume: 83
  start-page: 11957
  year: 2023
  end-page: 11975
  article-title: Multiple ocular disease detection using novel ensemble models
  publication-title: Multimedia Tools Appl.
– volume: 2604
  start-page: 715
  year: 2020
  end-page: 729
  article-title: Bagging of convolutional neural networks for diagnostic of eye diseases
– volume: 136
  start-page: 71
  year: 2020
  end-page: 80
  article-title: On the performance of Matthews correlation coefficient (MCC) for imbalanced dataset
  publication-title: Pattern Recognit. Lett.
– volume: 117
  start-page: 225
  year: 2020
  article-title: The diagnosis and treatment of glaucoma
  publication-title: Dtsch. Arztebl. Int.
– year: 2017
– start-page: 8697
  year: 2018
  end-page: 8710
  article-title: Learning transferable architectures for scalable image recognition
– volume: 43
  start-page: 653
  year: 2020
  end-page: 659
  article-title: Signs, symptoms, and clinical forms of cataract in adults
  publication-title: J. Fr. Ophtalmol.
– volume: 08
  start-page:
  year: 2017
  article-title: Ocular foreign bodies: A review
  publication-title: J. Clin. Exp. Ophthalmol.
– year: 2019
– volume: 11
  start-page: 3850
  year: 2022
  article-title: Retinal glaucoma public datasets: What do we have and what is missing?
  publication-title: J. Clin. Med.
– ident: e_1_2_8_22_1
  doi: 10.1109/IConSCEPT57958.2023.10170532
– ident: e_1_2_8_33_1
  doi: 10.1609/aaai.v31i1.11231
– ident: e_1_2_8_34_1
  doi: 10.3390/biomedinformatics3030037
– ident: e_1_2_8_31_1
  doi: 10.1109/CVPR.2016.308
– ident: e_1_2_8_25_1
  doi: 10.3390/biomedinformatics3020031
– ident: e_1_2_8_6_1
– ident: e_1_2_8_12_1
  doi: 10.1155/2022/8014979
– ident: e_1_2_8_17_1
– ident: e_1_2_8_4_1
  doi: 10.4172/2155-9570.1000645
– ident: e_1_2_8_35_1
  doi: 10.1016/j.patrec.2020.03.030
– volume: 8
  issue: 6
  year: 2017
  ident: e_1_2_8_11_1
  article-title: Glaucoma‐deep: detection of glaucoma eye disease on retinal fundus images using deep learning
  publication-title: Int. J. Adv. Comput. Sci. Appl.
– ident: e_1_2_8_8_1
  doi: 10.3390/app13010037
– ident: e_1_2_8_20_1
  doi: 10.3390/jcm11133850
– ident: e_1_2_8_28_1
  doi: 10.1109/CVPR.2018.00907
– ident: e_1_2_8_7_1
– start-page: 2450008
  volume-title: Biomedical Engineering: Applications, Basis and Communications
  year: 2024
  ident: e_1_2_8_14_1
– ident: e_1_2_8_23_1
  doi: 10.1007/s11042-023-16000-w
– ident: e_1_2_8_3_1
  doi: 10.1016/j.jfo.2019.11.009
– ident: e_1_2_8_10_1
  doi: 10.3390/electronics11010023
– ident: e_1_2_8_2_1
– ident: e_1_2_8_15_1
  doi: 10.1007/978-3-030-20257-6_9
– ident: e_1_2_8_37_1
  doi: 10.1016/j.gmod.2023.101206
– ident: e_1_2_8_24_1
  doi: 10.3991/ijoe.v18i09.29847
– ident: e_1_2_8_26_1
  doi: 10.1007/s10044-009-0150-5
– ident: e_1_2_8_36_1
  doi: 10.1186/s12864-019-6413-7
– volume: 117
  start-page: 225
  year: 2020
  ident: e_1_2_8_5_1
  article-title: The diagnosis and treatment of glaucoma
  publication-title: Dtsch. Arztebl. Int.
– ident: e_1_2_8_13_1
  doi: 10.1007/s00034-023-02564-3
– ident: e_1_2_8_16_1
  doi: 10.1186/s12938-019-0649-y
– ident: e_1_2_8_32_1
  doi: 10.1109/CVPR.2018.00474
– ident: e_1_2_8_21_1
  doi: 10.1155/2022/4934190
– ident: e_1_2_8_29_1
– ident: e_1_2_8_18_1
  doi: 10.1109/FIT53504.2021.00034
– ident: e_1_2_8_30_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_27_1
  doi: 10.1109/ICEMI.2017.8265863
– ident: e_1_2_8_19_1
  doi: 10.1016/j.bspc.2020.102329
– volume: 8
  start-page: 158
  year: 2019
  ident: e_1_2_8_9_1
  article-title: Artificial intelligence in diabetic eye disease screening
  publication-title: Asia‐Pacific J. Ophthalmol.
SSID ssj0001342041
Score 2.2793577
Snippet Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique approach...
Abstract Early diagnosis of eye diseases is very important to prevent visual impairment and guide appropriate treatment methods. This paper presents a unique...
SourceID doaj
unpaywall
crossref
wiley
SourceType Open Website
Open Access Repository
Index Database
Publisher
SubjectTerms artificial intelligence
biomedical signal and image processing
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3PS8MwFMeD7KI7iD9x_iLgTkJd26RNc1TZGAPFwwa7laRJpiK1dB2ym3-Cf6N_ia9pN-plXryVNtDwXtp8krz3fQh1JQmDJGDaMUIyB4hYwCeVwFiWKgoMALq0-x0Pj-FwQkfTYNoo9VXGhFXywJXhepFWnAbcUBn4lCWRNASg3kjPVTLhxKbuuRFvLKbs7gqhvku9lR4p5b3iVfs3MJmVqbKNGcgK9bfR9iLNxPJDvL39hlQ7ywz20G6Nh_i26tY-2tLpAWo3RAMP0fOqEAOu8sIxYCfWS43rs5Y5VrqwAVYpLqPaZzjL9ffnly0GoRU81Rmui0XM8FrDdY5FqnAu5pnUeb7ETy9HaDLoj--HTl0vwUkAa1xHBp5g0kifRtQAqBnGAyYSWPQR5rpgfMAz7glOjWeA67TnhxH8d6UioTbc0-QYtdL3VJ8gzKXxWUIVDxWhinLJSZnFCzAEyx0RsQ66WtkwzipZjNgeZ1Mel5aOraU76K4077pFKWVtb4CD49rB8V8O7qDu2jkb33Vt_bahSTwe9X17dfofHTtDOz4QThW7e45aRb7QF0Aohby0g_EHXKPj3g
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1LS-UwFICD6EJdiK9hrqMS0JVQp82jacCNiiKC4kLBXclpkquD1NJ7Zbi7-QnzG_0lnqS9V90I7kqbUjiP5jtJzjmE7APPZSWVS7wBlSARG3SpCm0ZbCE9AjrE9Y6r6_ziTlzey_s5cjTNhenqQ8wW3IJnxP91cHADXRcShFpU4viPY4c4O4X8qoUMQSbYNxM37yssXLA0tq5kaHkJBu5yWp9U6N_vr3-akWLh_mWy-FI3ZvLXPD19htY465yvkpUeF-lxp981MufqdbL8oYjgBnmYNmagXZ44RQylbuJov_cyotaN44GrmoZT7kPatO713__YHMJZfOoa2jePGNJZTdcRNbWlrRk14Np2Qm8eN8nd-dnt6UXS909IKsScNAGZGQUemCiER3DzSktlKgwCuUpTVAbims6MFj7zyHkuY3mB_2GwPHdeZ47_IPP1c-1-EqrBM1UJq3PLhRUaNA9ZvQhHGP6YQg3I3lSGZdOVySjj9rbQZZB0GSU9ICdBvLMRobR1vPHcDsveU8rCWS2k9gIkE6oqwHOM4jxkqYVKcz0g-zPlfPmtg6i3L4aUt5dnLF5tfWfwL7LEkGy6M7vbZH7cvrgdJJMx7EYDfAOrkt2T
  priority: 102
  providerName: Wiley-Blackwell
Title Computer vision for eye diseases detection using pre‐trained deep learning techniques and raspberry Pi
URI https://onlinelibrary.wiley.com/doi/abs/10.1049%2Ftje2.12410
https://doi.org/10.1049/tje2.12410
https://doaj.org/article/8ed9459f4b5247c8bf3149fb10dbc939
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: KQ8
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 20241231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: ADMLS
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVBHI
  databaseName: IET Digital Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: IDLOA
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://digital-library.theiet.org/content/collections
  providerName: Institution of Engineering and Technology
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: BENPR
  dateStart: 20210201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: KBPluse Wiley Online Library: Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: AVUZU
  dateStart: 20130601
  isFulltext: true
  titleUrlDefault: https://www.kbplus.ac.uk/kbplus7/publicExport/pkg/559
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 2051-3305
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001342041
  issn: 2051-3305
  databaseCode: 24P
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NbtswDCa65DD00P1jGdZA2Hoa4Cy2Jcs6Zv1BUaxFgDVAdzJES2q3Fa7hOBiy0x6hz9gnGa3YwbJDsJthy7ZAUtZHk_wIcIBxInIhbeA0yoAQsaYllZMto0mFI4CO_n_H-UVyOuNnV-JqB951tTAb8XuuPtbfbTSiPaipouongvB2D_qzi-nka9M1jiwqIIdcdLyjGzds7DSekH8XHi-KUi9_6tvbTTDqd5OTJ3DYzWOVRPJjtKhxlP_6h6Jx-0Sfwl4LJtlkpf1nsGOL57D7F8XgC7jp2jawVRU5I5DK7NKyNjIzZ8bWPh2rYE0O_DUrK_vw-963jrCGrtqSta0lrtma8XXOdGFYpecl2qpasum3lzA7Ob48PA3a7gpBTiBoHKAItUSHEU-5I1jnpBJS5-QixnI8JlURmFOhVtyFjlCgDaMkpa80mjixToU2fgW94q6wr4EpdJHMuVGJibnhClXc1PwSdCLnSKdyAO87TWTlikQj88FvrrJGbpmX2wA-NUpaj2iIr_0JEnPWrqMstUZxoRxHEXGZp-hi8vEchmODuYrVAA7WKt76rg9e-1uGZJdnx5E_evN_z3wLvbpa2H0CKTUO4VHEp0PoT47OP38Zeld_2FruH0e-6Q4
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NTtwwELbQ9gAcqpZSdaG0luBUKZD4J46PgEDLr_awK-0tsmN7W4RClA2q9sYj9Bn7JB072VAuSNyixFakGY_9zXjmG4QONE15wYWNnNIiAkSswKQKWMvaZNwBQNch3nFzm46m7HLGZ11ujq-Fafkh-oCbt4ywX3sD9wHp1uFkniSzubPkEI4nX2D1jqVJ6n0vwsbPIRbKSBx6VxJYehF47nxFUMrk0fP0F0dSYO7fROuPZaWWv9X9_UvUGo6d8w_ofYcX8XGr4I9ozZZbaPM_FsFP6OeqMwNuC8Ux4FBslxZ3ly8LbGwTMq5K7NPc57iq7d-nP6E7hDXw1Va46x4xxz2p6wKr0uBaLSpt63qJx7-20fT8bHI6iroGClEBOCeONE-U0E4TljEHyM0JyYUqwAukIo5BG4DXZKIkc4kDoGcTkmawEWtDU-tkYulnNCgfSvsFYakdEQUzMjWUGSa1pL6sF9AR-D8qE0O0v5JhXrU8GXm432Yy95LOg6SH6MSLtx_hua3Di4d6nnemkmfWSMalY5oTJopMOwpunNNJbHQhqRyig145r_7rR9DbK0PyyeUZCU87bxn8Ha2PJjfX-fXF7dUu2iAAc9oE3q9o0NSPdg9gSqO_hcX4D6s44P8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwEB6hrVToAfUH1AVKLdFTpUDinzg-tqWrUmjVQxdVXCI7thdQlUbZrdDeeASekSdh7GS37aUStyixHGnG4_nGnvkGYM-wXFRCusRrIxNExBpNqsK1bGwhPAJ0E887zs7zkzE_vRJXfW5OqIXp-CGWB27BMuJ-HQzcNdZ3AScPJJmzn46-R_cUCqxW0JGnfAArB1_H38Z3hyyM0zR2r6S4-BKM3cWCopSrD3cTPHBKkbt_DZ7e1o2e_9LX1w9xa3Q8o3V43iNGctCpeAOeuHoT1u7xCG7B90VvBtKVihNEosTNHemvX6bEulnMuapJSHSfkKZ1f3__if0hnMWvriF9_4gJWdK6TomuLWn1tDGubefk4scLGI-OL49Okr6FQlIh0kkTIzItjTeUF9wjdvNSCakrjAOZTFPUByI2lWnFfeYR6rmM5gVuxcay3HmVOfYSBvVN7baBKOOprLhVuWXccmUUC4W9iI8wAtKFHMK7hQzLpmPKKOMNN1dlkHQZJT2EwyDe5YjAbh1f3LSTsjeWsnBWcaE8N4JyWRXGMwzkvMlSayrF1BD2lsp59F_7UW-PDCkvT49pfHr1P4N3YfXi46j88un882t4RhHndBm8b2Awa2_dDuKUmXnbr8Z_zVriUw
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3BTtwwEB2h5YA4QAut2Ioiq3BCynaT2HF8BARCSEUcWAlOkSe2KbBKo2xWaDnxCXxjv6QTb7Lq9rDqLUqcxJoZx28yM28AjjBORC6kDZxGGRAi1rSkcrJlNKlwBNDR_-_4cZ1cjvjVnbhbg29dLcxS_J6r7_WTjQa0BzVVVOuJILzdg_XR9c3JfdM1jiwqIIdcdLyjSzcs7TSekH8TNqZFqWcvejxeBqN-N7nYhrNuHvMkkufBtMZB_voPRePqiX6ArRZMspO59j_Cmi12YPMvisFd-Nm1bWDzKnJGIJXZmWVtZGbCjK19OlbBmhz4B1ZW9vfbu28dYQ1dtSVrW0s8sAXj64TpwrBKT0q0VTVjN4-fYHRxfnt2GbTdFYKcQNAwQBFqiQ4jnnJHsM5JJaTOyUWM5XBIqiIwp0KtuAsdoUAbRklKX2k0cWKdCm38GXrFr8LuAVPoIplzoxITc8MVqrip-SXoRM6RTmUfDjtNZOWcRCPzwW-uskZumZdbH04bJS1GNMTX_gSJOWvXUZZao7hQjqOIuMxTdDH5eA7DocFcxaoPRwsVr3zXsdf-iiHZ7dV55I--_N8z96FXV1P7lUBKjQetlf4BPPDlrg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computer+vision+for+eye+diseases+detection+using+pre%E2%80%90trained+deep+learning+techniques+and+raspberry+Pi&rft.jtitle=Journal+of+engineering+%28Stevenage%2C+England%29&rft.au=Al%E2%80%90Naji%2C+Ali&rft.au=Khalid%2C+Ghaidaa+A.&rft.au=Mahmood%2C+Mustafa+F.&rft.au=Chahl%2C+Javaan&rft.date=2024-07-01&rft.issn=2051-3305&rft.eissn=2051-3305&rft.volume=2024&rft.issue=7&rft_id=info:doi/10.1049%2Ftje2.12410&rft.externalDBID=n%2Fa&rft.externalDocID=10_1049_tje2_12410
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2051-3305&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2051-3305&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2051-3305&client=summon