Predicting interfacial bonding performance of CRTS III slab ballastless track structure via interfacial defects using the PSO-BP algorithm
The judgment of interfacial bonding performance of the CRTS III slab ballastless track structure in the existing technical standard was mainly an empirical assessment through the area of interfacial defects. The evaluation method lacked the use of appropriate mechanical parameters for assessment. Th...
Saved in:
| Published in | Engineering structures Vol. 341; p. 120807 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
15.10.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0141-0296 |
| DOI | 10.1016/j.engstruct.2025.120807 |
Cover
| Abstract | The judgment of interfacial bonding performance of the CRTS III slab ballastless track structure in the existing technical standard was mainly an empirical assessment through the area of interfacial defects. The evaluation method lacked the use of appropriate mechanical parameters for assessment. This study introduced a PSO-BP algorithm, which combined the Particle Swarm Optimization (PSO) algorithm and the Back Propagation (BP) algorithm to predict the splitting tensile strength, using the splitting tensile strength as a mechanical parameter to evaluate interfacial bonding performance. During this study, field-fabricated experimental plates were meticulously segmented into samples for testing splitting tensile strength. By analyzing defect area distribution and splitting tensile strength value, 22 critical feature labels were constructed for accurate prediction. Compared to the BP algorithm alone, the PSO-BP algorithm performed even better with a relative error of less than 10 %. In order to further improve the accuracy of the PSO-BP algorithm, various factors affecting its prediction performance were thoroughly investigated. An empirical formula was employed to minimize the mean square error of the training set, leading to the determination of an optimal solution for the number of hidden layer nodes. This study also found that setting the population size to 10 yielded optimal prediction results. Additionally, by fine-tuning the learning factors c1 and c2 to both be 2, the relative error was kept below 10 %. This study underscored the effectiveness of the PSO-BP algorithm in providing a straightforward and efficient solution for intelligent assessment of interfacial defects.
•Used PSO-BP algorithm to closely link bubble defects with splitting tensile strength.•Produced experimental plates on-site and conducted field experiment.•Constructed 22 feature label values in the PSO-BP algorithm.•Analyzed various factors affecting the predictive performance of the PSO-BP algorithm. |
|---|---|
| AbstractList | The judgment of interfacial bonding performance of the CRTS III slab ballastless track structure in the existing technical standard was mainly an empirical assessment through the area of interfacial defects. The evaluation method lacked the use of appropriate mechanical parameters for assessment. This study introduced a PSO-BP algorithm, which combined the Particle Swarm Optimization (PSO) algorithm and the Back Propagation (BP) algorithm to predict the splitting tensile strength, using the splitting tensile strength as a mechanical parameter to evaluate interfacial bonding performance. During this study, field-fabricated experimental plates were meticulously segmented into samples for testing splitting tensile strength. By analyzing defect area distribution and splitting tensile strength value, 22 critical feature labels were constructed for accurate prediction. Compared to the BP algorithm alone, the PSO-BP algorithm performed even better with a relative error of less than 10 %. In order to further improve the accuracy of the PSO-BP algorithm, various factors affecting its prediction performance were thoroughly investigated. An empirical formula was employed to minimize the mean square error of the training set, leading to the determination of an optimal solution for the number of hidden layer nodes. This study also found that setting the population size to 10 yielded optimal prediction results. Additionally, by fine-tuning the learning factors c1 and c2 to both be 2, the relative error was kept below 10 %. This study underscored the effectiveness of the PSO-BP algorithm in providing a straightforward and efficient solution for intelligent assessment of interfacial defects.
•Used PSO-BP algorithm to closely link bubble defects with splitting tensile strength.•Produced experimental plates on-site and conducted field experiment.•Constructed 22 feature label values in the PSO-BP algorithm.•Analyzed various factors affecting the predictive performance of the PSO-BP algorithm. |
| ArticleNumber | 120807 |
| Author | Ni, Yi-Qing Long, Guangcheng Lei, Bin Chen, Zhengwei Jiang, Wei Ding, Siqi Wang, En Peng, Yiming |
| Author_xml | – sequence: 1 givenname: Wei orcidid: 0000-0002-7800-9721 surname: Jiang fullname: Jiang, Wei email: railwaywilliam@163.com organization: School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China – sequence: 2 givenname: Bin surname: Lei fullname: Lei, Bin organization: School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China – sequence: 3 givenname: En surname: Wang fullname: Wang, En organization: School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China – sequence: 4 givenname: Yi-Qing orcidid: 0000-0003-1527-7777 surname: Ni fullname: Ni, Yi-Qing organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR – sequence: 5 givenname: Zhengwei surname: Chen fullname: Chen, Zhengwei organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR – sequence: 6 givenname: Siqi surname: Ding fullname: Ding, Siqi organization: Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR – sequence: 7 givenname: Yiming surname: Peng fullname: Peng, Yiming organization: Department of Mechanical, Aerospace and Civil Engineering, University of Manchester, Manchester M13 9PL, United Kingdom – sequence: 8 givenname: Guangcheng surname: Long fullname: Long, Guangcheng email: longguangcheng@csu.edu.cn organization: School of Civil Engineering, Central South University, Changsha 410075, China |
| BookMark | eNqFkEtuwjAQhr2gUqHtGeoLJB2bQJIlRX0gIYEKXVt-jME0JMg2SL1CT91EqSp11dVIv2a-mflGZFA3NRJyzyBlwKYPhxTrXYj-rGPKgU9SxqGAfECGwDKWAC-n12QUwgEAeFHAkHytPRqno6t31NURvZXayYqqpjZddmqTxh9lrZE2ls7fthu6WCxoqKSiSlaVDLHCEGj0Un_QfvfZI704-Qdo0KKOgZ5Dh417pOvNKnlcU1ntGu_i_nhLrqysAt791Bvy_vy0nb8my9XLYj5bJppPxzEx2liWlSXY3KDKNJOKSwBjobAKxmXGDbfj0nCpOfKc2azMlZoolvO2NZuMb0jec7VvQvBoxcm7o_SfgoHoNIqD-NUoOo2i19hOzvpJbM-7OPQiaIetGuN8-5wwjfuX8Q2iu4dg |
| Cites_doi | 10.1016/j.engstruct.2024.117685 10.1016/j.coldregions.2023.104091 10.1016/j.conbuildmat.2024.137475 10.1016/j.cemconres.2021.106614 10.1016/j.cemconcomp.2024.105431 10.1016/j.engstruct.2020.111429 10.1016/j.conbuildmat.2019.03.080 10.1016/S0890-6955(96)00012-0 10.1016/j.conbuildmat.2024.135560 10.1016/j.conbuildmat.2024.138633 10.1016/j.conbuildmat.2024.137370 10.1016/j.neunet.2025.107180 10.1016/S0008-8846(00)00345-8 10.1016/j.cemconcomp.2021.104242 10.1016/S0020-0190(02)00447-7 10.1016/j.cemconres.2004.08.004 10.1016/j.engstruct.2024.118626 10.1016/j.energy.2025.135840 10.1016/j.engstruct.2024.118061 10.1061/(ASCE)0733-9445(2008)134:8(1310) 10.1016/j.engfailanal.2023.107302 10.1016/j.cemconcomp.2023.105073 10.1016/j.tafmec.2023.104206 10.1016/j.cemconcomp.2020.103597 10.1016/j.conbuildmat.2023.134297 10.1016/j.engstruct.2023.116651 10.1016/j.conbuildmat.2023.133685 10.1016/j.engstruct.2024.118134 10.1016/0360-8352(94)00021-E 10.1016/j.conbuildmat.2012.09.101 10.1016/j.engstruct.2024.117672 10.1016/j.cemconcomp.2021.104378 10.1016/j.cemconcomp.2022.104725 10.1016/j.conbuildmat.2024.137583 10.1016/j.engstruct.2023.117371 10.1121/1.401235 10.1016/j.cemconcomp.2021.104103 10.1016/j.conbuildmat.2024.135328 10.1016/j.conbuildmat.2024.135181 10.1016/j.engstruct.2024.118741 10.1016/j.conbuildmat.2024.136944 10.1016/j.conbuildmat.2023.134414 10.1016/S0008-8846(02)01090-6 10.1016/j.conbuildmat.2024.135732 10.1016/j.conbuildmat.2023.134606 10.1016/j.conbuildmat.2024.136873 10.1016/j.istruc.2023.04.066 10.1016/j.engstruct.2024.118841 10.1016/j.engstruct.2023.117131 10.1016/j.engstruct.2024.119001 10.1016/j.engstruct.2024.118376 10.1016/j.engstruct.2024.118531 10.1016/j.cemconres.2021.106685 10.1016/j.conbuildmat.2024.136201 10.1016/j.commatsci.2007.04.009 10.1016/j.engstruct.2023.117290 10.1016/j.conbuildmat.2020.120787 10.1016/j.engstruct.2024.118785 10.1007/BFb0040810 10.1061/(ASCE)MT.1943-5533.0002129 10.1016/j.conbuildmat.2024.134999 10.1016/j.cemconcomp.2005.10.003 10.1016/j.cemconres.2005.06.002 10.1016/j.engstruct.2024.118752 10.1016/j.soildyn.2022.107432 10.1016/j.engfailanal.2023.107896 10.1016/j.conbuildmat.2024.136414 10.1016/j.autcon.2022.104525 10.1016/j.conbuildmat.2024.137614 10.1016/j.conbuildmat.2024.136783 10.1016/j.conbuildmat.2021.124465 10.1016/S0008-8846(00)00504-4 10.1016/j.cemconres.2021.106449 10.1016/j.istruc.2024.107456 10.1016/j.engstruct.2021.113390 10.1016/j.engstruct.2024.117504 10.1016/j.cemconcomp.2019.103460 10.1016/j.engstruct.2024.118855 10.1016/j.engstruct.2024.117761 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engstruct.2025.120807 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_engstruct_2025_120807 S0141029625011988 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABQEM ABQYD ACDAQ ACGFS ACIWK ACLVX ACRLP ACSBN ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ATOGT AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE IMUCA J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SDP SES SEW SPC SPCBC SSE SST SSZ T5K TN5 XPP ZMT ~02 ~G- ~HD 29G AAQXK AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET VH1 WUQ ZY4 |
| ID | FETCH-LOGICAL-c263t-dcdf14990f7deb4c1ab2a00df08fb03942d2f39d2ac2e271f497bb5b1721ab453 |
| IEDL.DBID | .~1 |
| ISSN | 0141-0296 |
| IngestDate | Wed Oct 01 05:35:30 EDT 2025 Sat Sep 13 17:00:44 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Interfacial defect PSO-BP algorithm Interfacial bonding performance CRTS III slab ballastless track structure |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-dcdf14990f7deb4c1ab2a00df08fb03942d2f39d2ac2e271f497bb5b1721ab453 |
| ORCID | 0000-0003-1527-7777 0000-0002-7800-9721 |
| ParticipantIDs | crossref_primary_10_1016_j_engstruct_2025_120807 elsevier_sciencedirect_doi_10_1016_j_engstruct_2025_120807 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-10-15 |
| PublicationDateYYYYMMDD | 2025-10-15 |
| PublicationDate_xml | – month: 10 year: 2025 text: 2025-10-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering structures |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Jiang, Xie, Long, Wang, Ni (bib14) 2024; 304 Li, Zheng, Dong, Wang, Sang, Wen (bib49) 2024; 417 Ni, Wang (bib37) 2000; 30 Zhao, Sun, Bi, Beer, Moens (bib60) 2024; 318 Domone (bib9) 2006; 28 Xue, Shao, Burlion (bib45) 2021; 150 Trinh, Luong, Lee (bib53) 2024; 301 Zhou, Zhu, Huang, Ba, Wang (bib77) 2024; 318 GB/T 50081-2019, Standard for test methods of concrete physical and mechanical properties, Beijing:China Architecture & Building Press (2019). Ali, Ouni, Qureshi, Islam, Mahmood, Ahmed (bib29) 2024; 440 Song, Wang, Deng, Su, Jia, Zaheer (bib31) 2024; 306 Chen, Sun, Zhu, Zhai (bib1) 2021; 249 Xie, Zhang, Yang (bib57) 2003; 18 Chen, Zheng, Zhao, Wu, Jiang, Liu (bib69) 2024; 428 Zhu, Bartos (bib7) 2003 Song, Shi, Wu, Cui, Liu, Yu (bib18) 2024; 303 Almustafa, Nehdi (bib47) 2022; 126 Pereira, Barros, Camoes (bib11) 2008; 134 Asteris, Skentou, Bardhan, Samui, Pilakoutas (bib34) 2021; 145 Liu, Song (bib84) 2023; 294 Zhang, Guo, Zhu, Zhong, Rong (bib32) 2024; 442 Jiang, Xie, Wu, Guo, Long (bib13) 2021; 227 Sun, Xu, Wang, Fan, Xu, Zhang (bib79) 2025; 57 Allahyari, Heidarpour, Shayan, Nguyen (bib39) 2020; 106 Jia, Qiao, Han (bib68) 2022; 133 Chen, Zhang, Li, Pan, Lou (bib19) 2024; 157 Zheng, Cai (bib28) 2024; 411 Zeng, Huang, Yan, Wang, Shuaibu, He (bib20) 2021; 303 Xu, Yue, Liu (bib33) 2024; 314 Yan, Wang, Chen (bib86) 2025; 185 Cheng, Liu (bib65) 2024; 304 Huang, Wang, Lu, Wu, Li, Deng (bib46) 2024; 429 Zeng, Wang, Shen, Li, Shuaibu, Wang (bib21) 2019; 210 Zhang, Gao, Zhong, Wang, Huang (bib81) 2024; 436 Jiang, Xie, Wu, Long (bib4) 2020; 265 Bouzouba, Lachemi (bib8) 2001; 31 Zhang, Zhao, Shao, Xie, Hu, Zeng (bib54) 2024; 319 Seventekidis, Giagopoulos (bib55) 2024; 319 Zhang, Huang, Ma, Yuan, Nener (bib71) 2021; 121 Ning, Feng, Ren, Xu (bib36) 2024; 411 Araz, Elias (bib63) 2024; 319 Liu, Wang, Liu, Liu, Zhou, Chen (bib72) 2024; 417 Cuenca, Rodríguez, Martín-Morales, Sánchez-Roldán, Zamorano (bib6) 2013; 40 Fan, Yu, Shui, Wu, Song, Liu (bib42) 2020; 110 Zhu, Zhou, Wang, Yu, Wu, Chen (bib62) 2024; 426 Tian, Qiao, Zhang, Feng, Wang, Xie (bib51) 2024; 441 Wang, Zhang, Liu, Ma, Huang, Wang (bib35) 2024; 442 Gu, Zhou, Nagai, Zhang, Yu (bib56) 2024; 316 Ji, Li, Zhang, Xie, Liao (bib43) 2024; 310 Liu, Jiang, Zhou, Peng, Liu (bib23) 2022; 161 Yang, Lai, Xu, Hu, Su, Cusatis (bib73) 2023; 140 Brouwers, Radix (bib10) 2005; 35 Jahangiri, Sun, Babaei (bib61) 2024; 302 Fakhry, Fang, Tokhi, Salem (bib64) 2024; 299 Pei, Guo, Tang, An, Qin (bib80) 2024; 89 Sun, Guo (bib76) 2024; 316 Chen, Li, Wang, Pan, Lou, Li (bib15) 2024; 129 Huang, Wang, Li, Su, Luo (bib48) 2024; 414 Ma, Liu, Yang, Sun, Liang, Tsangouri (bib27) 2024; 435 Xu, Xu (bib22) 2023; 53 Liu, Ren (bib87) 2025; 323 Benjamin, Chi, Gaber, Riordan (bib24) 1995; 28 Shahin, Ahmed, Liang, Yehia (bib70) 2024; 309 Wu, Zhang, Gao (bib85) 2024; 96 Trelea (bib59) 2003; 85 Chen, Sun, Sun, Yin, Hou (bib44) 2024; 425 Cai, Zhang, Zhang, Chen, Wang (bib82) 2024; 218 Du, Ren, Liu, Zhang (bib83) 2023; 408 Chen, Liu, Chen, Li, Luo, Luo (bib3) 2022; 142 Long, Liu, Ma, Xie, Li (bib2) 2018; 30 Yuhas, Goldstein (bib25) 1991; 90 Topcu, Saridemir (bib52) 2008; 41 Talebi, Bahrami, Ahmadian, Nejati, Ayatollahi (bib67) 2024; 435 Walubita, Li, Li, Shi (bib16) 2024; 69 Sun, Xu (bib17) 2023; 150 Liu, Andersen, Wu (bib74) 2024; 148 Liu, Yang, Zheng, Xie, Zhu, Yu (bib5) 2023; 18 Zeng, Yang, Cui, Luan, Xiao, Xu (bib75) 2024; 450 Fuh, Wang (bib26) 1997; 37 Park, Noguchi, Plawsky (bib41) 2005; 35 Zhou, Wu, Ouyang, Hu, Shi (bib50) 2021; 124 Shi Y., Eberhart R. Parameter Selection in Particle Swarm Optimization. Springer, Berlin, Heidelberg. 1998. Zhou, Zheng, Li, Ma, Miao (bib38) 2022; 152 Cao, Cao, Tan, Shi, Liu, Wang (bib40) 2024; 411 Qu, Song, Xin, Shang, Sun (bib66) 2024; 321 Q/CR 596–2017. Specification of Self-compacting Concrete for High-speed Railway CRTS III Slab Ballastless Track, Beijing: China Railway Publishing House (2017). Cao, Cao, Wang, Tan, Shi, Wang (bib30) 2024; 419 Ning (10.1016/j.engstruct.2025.120807_bib36) 2024; 411 Chen (10.1016/j.engstruct.2025.120807_bib1) 2021; 249 Domone (10.1016/j.engstruct.2025.120807_bib9) 2006; 28 Chen (10.1016/j.engstruct.2025.120807_bib69) 2024; 428 Chen (10.1016/j.engstruct.2025.120807_bib3) 2022; 142 Zhang (10.1016/j.engstruct.2025.120807_bib32) 2024; 442 Jiang (10.1016/j.engstruct.2025.120807_bib13) 2021; 227 Liu (10.1016/j.engstruct.2025.120807_bib74) 2024; 148 10.1016/j.engstruct.2025.120807_bib12 Ma (10.1016/j.engstruct.2025.120807_bib27) 2024; 435 Seventekidis (10.1016/j.engstruct.2025.120807_bib55) 2024; 319 Sun (10.1016/j.engstruct.2025.120807_bib79) 2025; 57 Zhao (10.1016/j.engstruct.2025.120807_bib60) 2024; 318 Zhang (10.1016/j.engstruct.2025.120807_bib71) 2021; 121 Trinh (10.1016/j.engstruct.2025.120807_bib53) 2024; 301 Chen (10.1016/j.engstruct.2025.120807_bib15) 2024; 129 Fakhry (10.1016/j.engstruct.2025.120807_bib64) 2024; 299 Long (10.1016/j.engstruct.2025.120807_bib2) 2018; 30 Trelea (10.1016/j.engstruct.2025.120807_bib59) 2003; 85 Du (10.1016/j.engstruct.2025.120807_bib83) 2023; 408 Liu (10.1016/j.engstruct.2025.120807_bib5) 2023; 18 Cuenca (10.1016/j.engstruct.2025.120807_bib6) 2013; 40 Jahangiri (10.1016/j.engstruct.2025.120807_bib61) 2024; 302 Huang (10.1016/j.engstruct.2025.120807_bib46) 2024; 429 Zhu (10.1016/j.engstruct.2025.120807_bib62) 2024; 426 Talebi (10.1016/j.engstruct.2025.120807_bib67) 2024; 435 Cai (10.1016/j.engstruct.2025.120807_bib82) 2024; 218 Pei (10.1016/j.engstruct.2025.120807_bib80) 2024; 89 Zeng (10.1016/j.engstruct.2025.120807_bib21) 2019; 210 Jiang (10.1016/j.engstruct.2025.120807_bib14) 2024; 304 Chen (10.1016/j.engstruct.2025.120807_bib44) 2024; 425 Asteris (10.1016/j.engstruct.2025.120807_bib34) 2021; 145 Yang (10.1016/j.engstruct.2025.120807_bib73) 2023; 140 Zhou (10.1016/j.engstruct.2025.120807_bib50) 2021; 124 Chen (10.1016/j.engstruct.2025.120807_bib19) 2024; 157 Zeng (10.1016/j.engstruct.2025.120807_bib75) 2024; 450 Xue (10.1016/j.engstruct.2025.120807_bib45) 2021; 150 Jiang (10.1016/j.engstruct.2025.120807_bib4) 2020; 265 Topcu (10.1016/j.engstruct.2025.120807_bib52) 2008; 41 Liu (10.1016/j.engstruct.2025.120807_bib72) 2024; 417 Park (10.1016/j.engstruct.2025.120807_bib41) 2005; 35 Liu (10.1016/j.engstruct.2025.120807_bib87) 2025; 323 Allahyari (10.1016/j.engstruct.2025.120807_bib39) 2020; 106 Song (10.1016/j.engstruct.2025.120807_bib31) 2024; 306 Ni (10.1016/j.engstruct.2025.120807_bib37) 2000; 30 Bouzouba (10.1016/j.engstruct.2025.120807_bib8) 2001; 31 Xu (10.1016/j.engstruct.2025.120807_bib22) 2023; 53 Shahin (10.1016/j.engstruct.2025.120807_bib70) 2024; 309 Huang (10.1016/j.engstruct.2025.120807_bib48) 2024; 414 Zhang (10.1016/j.engstruct.2025.120807_bib54) 2024; 319 Walubita (10.1016/j.engstruct.2025.120807_bib16) 2024; 69 Ali (10.1016/j.engstruct.2025.120807_bib29) 2024; 440 Almustafa (10.1016/j.engstruct.2025.120807_bib47) 2022; 126 Li (10.1016/j.engstruct.2025.120807_bib49) 2024; 417 Xu (10.1016/j.engstruct.2025.120807_bib33) 2024; 314 Song (10.1016/j.engstruct.2025.120807_bib18) 2024; 303 10.1016/j.engstruct.2025.120807_bib78 Fuh (10.1016/j.engstruct.2025.120807_bib26) 1997; 37 Zhou (10.1016/j.engstruct.2025.120807_bib77) 2024; 318 Gu (10.1016/j.engstruct.2025.120807_bib56) 2024; 316 Cao (10.1016/j.engstruct.2025.120807_bib30) 2024; 419 Fan (10.1016/j.engstruct.2025.120807_bib42) 2020; 110 Tian (10.1016/j.engstruct.2025.120807_bib51) 2024; 441 Pereira (10.1016/j.engstruct.2025.120807_bib11) 2008; 134 Liu (10.1016/j.engstruct.2025.120807_bib23) 2022; 161 Xie (10.1016/j.engstruct.2025.120807_bib57) 2003; 18 Cao (10.1016/j.engstruct.2025.120807_bib40) 2024; 411 Yan (10.1016/j.engstruct.2025.120807_bib86) 2025; 185 Qu (10.1016/j.engstruct.2025.120807_bib66) 2024; 321 Sun (10.1016/j.engstruct.2025.120807_bib76) 2024; 316 Zhou (10.1016/j.engstruct.2025.120807_bib38) 2022; 152 Benjamin (10.1016/j.engstruct.2025.120807_bib24) 1995; 28 Wang (10.1016/j.engstruct.2025.120807_bib35) 2024; 442 Cheng (10.1016/j.engstruct.2025.120807_bib65) 2024; 304 Brouwers (10.1016/j.engstruct.2025.120807_bib10) 2005; 35 Zeng (10.1016/j.engstruct.2025.120807_bib20) 2021; 303 Yuhas (10.1016/j.engstruct.2025.120807_bib25) 1991; 90 Ji (10.1016/j.engstruct.2025.120807_bib43) 2024; 310 Zhu (10.1016/j.engstruct.2025.120807_bib7) 2003 10.1016/j.engstruct.2025.120807_bib58 Araz (10.1016/j.engstruct.2025.120807_bib63) 2024; 319 Zheng (10.1016/j.engstruct.2025.120807_bib28) 2024; 411 Sun (10.1016/j.engstruct.2025.120807_bib17) 2023; 150 Jia (10.1016/j.engstruct.2025.120807_bib68) 2022; 133 Liu (10.1016/j.engstruct.2025.120807_bib84) 2023; 294 Zhang (10.1016/j.engstruct.2025.120807_bib81) 2024; 436 Wu (10.1016/j.engstruct.2025.120807_bib85) 2024; 96 |
| References_xml | – reference: Q/CR 596–2017. Specification of Self-compacting Concrete for High-speed Railway CRTS III Slab Ballastless Track, Beijing: China Railway Publishing House (2017). – volume: 318 year: 2024 ident: bib60 article-title: A sub-convex similarity-based model updating method considering multivariate uncertainties publication-title: Eng Struct – volume: 90 start-page: 598 year: 1991 end-page: 600 ident: bib25 article-title: Comparing human and neural network lip readers publication-title: J Acoust Soc Am – volume: 319 year: 2024 ident: bib54 article-title: Enhanced multi-scenario running safety assessment of railway bridges based on graph neural networks with self-evolutionary capability publication-title: Eng Struct – volume: 28 start-page: 43 year: 1995 end-page: 50 ident: bib24 article-title: Comparing BP and ART II neural network classifiers for facility location publication-title: Comput Ind Eng – volume: 309 year: 2024 ident: bib70 article-title: Predicting the web crippling capacity of cold-formed steel lipped channels using hybrid machine learning techniques publication-title: Eng Struct – volume: 30 year: 2018 ident: bib2 article-title: Development of high-performance self-compacting concrete applied as the filling layer of high-speed railway publication-title: J Mater Civ Eng – volume: 442 year: 2024 ident: bib32 article-title: Experimental study on shear mechanical characteristics and its size effect of concrete joints based on BP neural network method publication-title: Constr Build Mater – volume: 411 year: 2024 ident: bib28 article-title: A optimum prediction model of chloride ion diffusion coefficient of machine-made sand concrete based on different machine learning methods publication-title: Constr Build Mater – volume: 436 year: 2024 ident: bib81 article-title: Interlayer damage evolution of CRTS III slab track under passenger and freight train loads publication-title: Constr Build Mater – volume: 303 year: 2021 ident: bib20 article-title: Research on the fatigue performance of self-compacting concrete structure in CRTSIII slab ballastless track under the action of heavy haul train publication-title: Constr Build Mater – volume: 294 year: 2023 ident: bib84 article-title: Early warping deformation of high-speed railway CRTS III track slabs publication-title: Eng Struct – volume: 210 start-page: 639 year: 2019 end-page: 649 ident: bib21 article-title: Experimental study on evolution of mechanical properties of CRTS III ballastless slab track under fatigue load publication-title: Constr Build Mater – volume: 37 start-page: 1167 year: 1997 end-page: 1178 ident: bib26 article-title: Force modeling and forecasting in creep feed grinding using improved bp neural network publication-title: Int J Mach Tools Manuf – volume: 419 year: 2024 ident: bib30 article-title: Application of SCMs and seawater to cement-bonded calcareous sand: macro performance, micro mechanism, and strength prediction publication-title: Constr Build Mater – volume: 316 year: 2024 ident: bib76 article-title: Multiple factors-based damage level assessment method of concrete structures based on evidential reasoning and particle swarm optimization publication-title: Eng Struct – volume: 35 start-page: 2116 year: 2005 end-page: 2136 ident: bib10 article-title: Self-compacting concrete: theoretical and experimental study publication-title: Cem Concr Res – volume: 57 year: 2025 ident: bib79 article-title: Time-varying temperature field and thermal effect of CRTS III slab track structure in curved sections under natural environmental temperature publication-title: Therm Sci Eng Prog – volume: 129 year: 2024 ident: bib15 article-title: Analysis on crack propagation of CRTS III slab ballastless track under temperature loads and freeze–thaw deterioration publication-title: Theor Appl Fract Mech – volume: 304 year: 2024 ident: bib65 article-title: Surrogate model-based multi-objective optimization algorithm for train-ballast turnout system: balancing safety and vibration damping in parameter design publication-title: Eng Struct – volume: 69 year: 2024 ident: bib16 article-title: Damage assessment of the CRTS III ballastless slab track in high temperature regions publication-title: Structures – volume: 303 year: 2024 ident: bib18 article-title: Investigating the fatigue performance of conventional reinforced concrete CRTS III ballastless track structures using a fatigue damage constitutive model publication-title: Eng Struct – volume: 417 year: 2024 ident: bib49 article-title: Mechanical properties of corroded steel bars on the tensile and buckling considering stirrup constraints publication-title: Constr Build Mater – volume: 31 start-page: 413 year: 2001 end-page: 420 ident: bib8 article-title: Self-compacting concrete incorporating high volumes of class F fly ash: preliminary results publication-title: Cem Concr Res – volume: 301 year: 2024 ident: bib53 article-title: An analysis of functionally graded thin-walled beams using physics-informed neural networks publication-title: Eng Struct – volume: 425 year: 2024 ident: bib44 article-title: Curve clustering analysis and intelligent recognition of grid nanoindentation data for cementitious material publication-title: Constr Build Mater – volume: 124 year: 2021 ident: bib50 article-title: Mixture design methods for ultra-high-performance concrete-a review publication-title: Cem Concr Compos – reference: GB/T 50081-2019, Standard for test methods of concrete physical and mechanical properties, Beijing:China Architecture & Building Press (2019). – volume: 304 year: 2024 ident: bib14 article-title: Field detection study of the bonding interface bubble defects in the full scale CRTS III slab ballastless track structure publication-title: Eng Struct – volume: 140 year: 2023 ident: bib73 article-title: Prediction of alkali-silica reaction expansion of concrete using artificial neural networks publication-title: Cem Concr Compos – volume: 314 year: 2024 ident: bib33 article-title: Identification of historical maximum load on concrete beams based on crack and deformation response using knowledge-embedded machine learning algorithms publication-title: Eng Struct – volume: 319 year: 2024 ident: bib55 article-title: Generalization gap estimation for damage classification tasks when finite element simulated data is used for training: a numerical study and experimental validation on a steel truss publication-title: Eng Struct – volume: 133 year: 2022 ident: bib68 article-title: Machine learning algorithms in the environmental corrosion evaluation of reinforced concrete structures - a review publication-title: Cem Concr Compos – volume: 40 start-page: 702 year: 2013 end-page: 709 ident: bib6 article-title: Effects of olive residue biomass fly ash as filler in self-compacting concrete publication-title: Constr Build Mater – volume: 318 year: 2024 ident: bib77 article-title: Post-earthquake damage probability assessment of high-speed railway simply supported bridge based on traffic capacity publication-title: Eng Struct – volume: 408 year: 2023 ident: bib83 article-title: Adhesion performance tests and analysis of interface damage for CRTS III prefabricated slab tracks publication-title: Constr Build Mater – volume: 321 year: 2024 ident: bib66 article-title: Time-convolutional network with joint time-frequency domain loss based on arithmetic optimization algorithm for dynamic response reconstruction publication-title: Eng Struct – volume: 302 year: 2024 ident: bib61 article-title: Application of a new two dimensional nonlinear tuned mass damper in bi-directional vibration mitigation of wind turbine blades publication-title: Eng Struct – volume: 426 year: 2024 ident: bib62 article-title: Integrated design optimization method for pavement structure and materials based on further development of finite element and particle swarm optimization algorithm publication-title: Constr Build Mater – volume: 435 year: 2024 ident: bib67 article-title: An investigation of machine learning algorithms for estimating fracture toughness of asphalt mixtures publication-title: Constr Build Mater – volume: 35 start-page: 1676 year: 2005 end-page: 1684 ident: bib41 article-title: Modeling of hydration reactions using neural networks to predict the average properties of cement paste publication-title: Cem Concr Res – volume: 142 year: 2022 ident: bib3 article-title: Automatic detection system with 3D scanning and robot technology for detecting surface dimension of the track slabs publication-title: Autom Constr – volume: 310 year: 2024 ident: bib43 article-title: AI-aided design and multi-scale optimization of mechanical metastructures with controllable anisotropy publication-title: Eng Struct – volume: 411 year: 2024 ident: bib40 article-title: Mechanical performance prediction of air-entrained mortar by coupling electrochemical testing with back propagation neural network modelling publication-title: Constr Build Mater – volume: 441 year: 2024 ident: bib51 article-title: Predicting the impermeability and mechanical properties of manufactured sand polymer waterproof mortar using an optimised back-propagation neural network publication-title: Constr Build Mater – volume: 145 year: 2021 ident: bib34 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cem Concr Res – volume: 450 year: 2024 ident: bib75 article-title: Prediction of moisture content ratio of emulsified asphalt chip seal based on machine learning and electrical parameters publication-title: Constr Build Mater – volume: 110 year: 2020 ident: bib42 article-title: A new design approach of steel fibre reinforced ultra-high performance concrete composites: experiments and modeling publication-title: Cem Concr Compos – volume: 18 year: 2023 ident: bib5 article-title: Experimental study on the fatigue and freeze-thaw properties of geotextile isolation layer in CRTS III ballastless tracks publication-title: Case Stud Constr Mater – volume: 316 year: 2024 ident: bib56 article-title: Prediction of seismic performance of a masonry-infilled RC frame based on DEM and ANNs publication-title: Eng Struct – volume: 161 year: 2022 ident: bib23 article-title: Investigation of the seismic performance of CRTS III slab ballastless track of high-speed railway under low-cycle reciprocating load publication-title: Soil Dyn Earthq Eng – volume: 299 year: 2024 ident: bib64 article-title: Smart optimized structural control of onshore wind turbines with MR dampers publication-title: Eng Struct – volume: 28 start-page: 197 year: 2006 end-page: 208 ident: bib9 article-title: Self-compacting concrete: an analysis of 11 years of case studies publication-title: Cem Concr Compos – volume: 429 year: 2024 ident: bib46 article-title: Frost durability prediction of rubber concrete based on improved machine learning models publication-title: Constr Build Mater – volume: 96 year: 2024 ident: bib85 article-title: Experimental investigation and fluid-structure interaction modelling of the casting of self-compacting concrete for CRTS III slab track in the curved segments publication-title: J Build Eng – volume: 18 start-page: 129 year: 2003 end-page: 134 ident: bib57 article-title: Overview of particle swarm optimization publication-title: Control Decis – volume: 414 year: 2024 ident: bib48 article-title: Machine learning-based prediction model for CO2-induced corrosion on oil well cement under high-pressure and high-temperature condition publication-title: Constr Build Mater – volume: 306 year: 2024 ident: bib31 article-title: Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs publication-title: Eng Struct – volume: 157 year: 2024 ident: bib19 article-title: Research on crack propagation of CRTS III track slabs under train load publication-title: Eng Fail Anal – volume: 126 year: 2022 ident: bib47 article-title: Machine learning prediction of structural response of steel fiber-reinforced concrete beams subjected to far-field blast loading publication-title: Cem Concr Compos – reference: Shi Y., Eberhart R. Parameter Selection in Particle Swarm Optimization. Springer, Berlin, Heidelberg. 1998. – volume: 440 year: 2024 ident: bib29 article-title: A systematic literature review of AI-based prediction methods for self-compacting, geopolymer, and other eco-friendly concrete types: advancing sustainable concrete publication-title: Constr Build Mater – volume: 89 year: 2024 ident: bib80 article-title: Damage and fracture investigation of self-compacting concrete in the filling layer of CRTS-III using three-point bending tests publication-title: J Build Eng – volume: 150 year: 2021 ident: bib45 article-title: Estimation of constituent properties of concrete materials with an artificial neural network based method publication-title: Cem Concr Res – volume: 319 year: 2024 ident: bib63 article-title: Performance of differently arranged double-tuned mass dampers for structural seismic response control including soil-structure interaction publication-title: Eng Struct – volume: 428 year: 2024 ident: bib69 article-title: Microstructure and deterioration mechanism of hydraulic concrete under variable temperature dry-wet cycles publication-title: Constr Build Mater – volume: 134 start-page: 1310 year: 2008 end-page: 1321 ident: bib11 article-title: Steel fiber-reinforced self-compacting concrete: experimental research and numerical simulation publication-title: J Struct Eng – volume: 435 year: 2024 ident: bib27 article-title: A BP neural network prediction model of compressive strength of green bricks in the Ming Dynasty based on CT scanning technique publication-title: Constr Build Mater – year: 2003 ident: bib7 article-title: Permeation properties of self-compacting concrete publication-title: Cem Concr Res – volume: 323 year: 2025 ident: bib87 article-title: Online incremental learning approach of heat pump and chiller models based on the dynamic random forests in queue structure publication-title: Energy – volume: 41 start-page: 305 year: 2008 end-page: 311 ident: bib52 article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic publication-title: Comput Mater Sci – volume: 265 year: 2020 ident: bib4 article-title: Influence of age on the detection of defects at the bonding interface in the CRTS III slab ballastless track structure via the impact-echo method publication-title: Constr Build Mater – volume: 53 start-page: 62 year: 2023 end-page: 69 ident: bib22 article-title: Experimental study on fatigue damage of self-compacting concrete of CRTS III slab track publication-title: Structures – volume: 227 year: 2021 ident: bib13 article-title: Identifying bonding interface flaws in CRTS III type ballastless track structure using the impact-echo method publication-title: Eng Struct – volume: 411 year: 2024 ident: bib36 article-title: Prediction model for the failure behavior of concrete under impact loading base on back propagation neural network publication-title: Constr Build Mater – volume: 30 start-page: 1245 year: 2000 end-page: 1250 ident: bib37 article-title: Prediction of compressive strength of concrete by neural networks publication-title: Cem Concr Res – volume: 106 year: 2020 ident: bib39 article-title: A robust time-dependent model of alkali-silica reaction at different temperatures publication-title: Cem Concr Compos – volume: 85 start-page: 317 year: 2003 end-page: 325 ident: bib59 article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection publication-title: Inf Process Lett – volume: 121 year: 2021 ident: bib71 article-title: Automating the mixture design of lightweight foamed concrete using multi-objective firefly algorithm and support vector regression publication-title: Cem Concr Compos – volume: 148 year: 2024 ident: bib74 article-title: Prediction of concrete abrasion depth and computational design optimization of concrete mixtures publication-title: Cem Concr Compos – volume: 442 year: 2024 ident: bib35 article-title: Predicting peak tensile stress in mesoscale concrete considering size effects: a data-physical hybrid-driven approach publication-title: Constr Build Mater – volume: 249 year: 2021 ident: bib1 article-title: Dynamic performance comparison of different types of ballastless tracks using vehicle-track-subgrade coupled dynamics model publication-title: Eng Struct – volume: 185 year: 2025 ident: bib86 article-title: Multi-view learning with enhanced multi-weight vector projection support vector machine publication-title: Neural Netw – volume: 218 year: 2024 ident: bib82 article-title: Spatial temperature characteristics of CRTS III slab track of railways on plateaus publication-title: Cold Reg Sci Technol – volume: 150 year: 2023 ident: bib17 article-title: Experimental study on the interface fatigue between track slab and self-compacting concrete for CRTS III slab track publication-title: Eng Fail Anal – volume: 417 year: 2024 ident: bib72 article-title: Cement-based grouting material development and prediction of material properties using PSO-RBF machine learning publication-title: Constr Build Mater – volume: 152 year: 2022 ident: bib38 article-title: A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates publication-title: Cem Concr Res – volume: 304 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib65 article-title: Surrogate model-based multi-objective optimization algorithm for train-ballast turnout system: balancing safety and vibration damping in parameter design publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.117685 – volume: 218 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib82 article-title: Spatial temperature characteristics of CRTS III slab track of railways on plateaus publication-title: Cold Reg Sci Technol doi: 10.1016/j.coldregions.2023.104091 – volume: 441 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib51 article-title: Predicting the impermeability and mechanical properties of manufactured sand polymer waterproof mortar using an optimised back-propagation neural network publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.137475 – volume: 150 year: 2021 ident: 10.1016/j.engstruct.2025.120807_bib45 article-title: Estimation of constituent properties of concrete materials with an artificial neural network based method publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2021.106614 – volume: 148 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib74 article-title: Prediction of concrete abrasion depth and computational design optimization of concrete mixtures publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2024.105431 – volume: 227 year: 2021 ident: 10.1016/j.engstruct.2025.120807_bib13 article-title: Identifying bonding interface flaws in CRTS III type ballastless track structure using the impact-echo method publication-title: Eng Struct doi: 10.1016/j.engstruct.2020.111429 – volume: 210 start-page: 639 year: 2019 ident: 10.1016/j.engstruct.2025.120807_bib21 article-title: Experimental study on evolution of mechanical properties of CRTS III ballastless slab track under fatigue load publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2019.03.080 – volume: 37 start-page: 1167 year: 1997 ident: 10.1016/j.engstruct.2025.120807_bib26 article-title: Force modeling and forecasting in creep feed grinding using improved bp neural network publication-title: Int J Mach Tools Manuf doi: 10.1016/S0890-6955(96)00012-0 – volume: 419 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib30 article-title: Application of SCMs and seawater to cement-bonded calcareous sand: macro performance, micro mechanism, and strength prediction publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.135560 – volume: 450 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib75 article-title: Prediction of moisture content ratio of emulsified asphalt chip seal based on machine learning and electrical parameters publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.138633 – volume: 440 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib29 article-title: A systematic literature review of AI-based prediction methods for self-compacting, geopolymer, and other eco-friendly concrete types: advancing sustainable concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.137370 – volume: 185 year: 2025 ident: 10.1016/j.engstruct.2025.120807_bib86 article-title: Multi-view learning with enhanced multi-weight vector projection support vector machine publication-title: Neural Netw doi: 10.1016/j.neunet.2025.107180 – volume: 30 start-page: 1245 year: 2000 ident: 10.1016/j.engstruct.2025.120807_bib37 article-title: Prediction of compressive strength of concrete by neural networks publication-title: Cem Concr Res doi: 10.1016/S0008-8846(00)00345-8 – volume: 124 year: 2021 ident: 10.1016/j.engstruct.2025.120807_bib50 article-title: Mixture design methods for ultra-high-performance concrete-a review publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104242 – volume: 85 start-page: 317 year: 2003 ident: 10.1016/j.engstruct.2025.120807_bib59 article-title: The particle swarm optimization algorithm: Convergence analysis and parameter selection publication-title: Inf Process Lett doi: 10.1016/S0020-0190(02)00447-7 – volume: 35 start-page: 1676 year: 2005 ident: 10.1016/j.engstruct.2025.120807_bib41 article-title: Modeling of hydration reactions using neural networks to predict the average properties of cement paste publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2004.08.004 – volume: 316 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib76 article-title: Multiple factors-based damage level assessment method of concrete structures based on evidential reasoning and particle swarm optimization publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118626 – volume: 323 year: 2025 ident: 10.1016/j.engstruct.2025.120807_bib87 article-title: Online incremental learning approach of heat pump and chiller models based on the dynamic random forests in queue structure publication-title: Energy doi: 10.1016/j.energy.2025.135840 – volume: 309 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib70 article-title: Predicting the web crippling capacity of cold-formed steel lipped channels using hybrid machine learning techniques publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118061 – volume: 134 start-page: 1310 year: 2008 ident: 10.1016/j.engstruct.2025.120807_bib11 article-title: Steel fiber-reinforced self-compacting concrete: experimental research and numerical simulation publication-title: J Struct Eng doi: 10.1061/(ASCE)0733-9445(2008)134:8(1310) – volume: 150 year: 2023 ident: 10.1016/j.engstruct.2025.120807_bib17 article-title: Experimental study on the interface fatigue between track slab and self-compacting concrete for CRTS III slab track publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2023.107302 – volume: 140 year: 2023 ident: 10.1016/j.engstruct.2025.120807_bib73 article-title: Prediction of alkali-silica reaction expansion of concrete using artificial neural networks publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2023.105073 – volume: 129 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib15 article-title: Analysis on crack propagation of CRTS III slab ballastless track under temperature loads and freeze–thaw deterioration publication-title: Theor Appl Fract Mech doi: 10.1016/j.tafmec.2023.104206 – volume: 110 year: 2020 ident: 10.1016/j.engstruct.2025.120807_bib42 article-title: A new design approach of steel fibre reinforced ultra-high performance concrete composites: experiments and modeling publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2020.103597 – volume: 411 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib36 article-title: Prediction model for the failure behavior of concrete under impact loading base on back propagation neural network publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.134297 – ident: 10.1016/j.engstruct.2025.120807_bib12 – volume: 426 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib62 article-title: Integrated design optimization method for pavement structure and materials based on further development of finite element and particle swarm optimization algorithm publication-title: Constr Build Mater – volume: 294 year: 2023 ident: 10.1016/j.engstruct.2025.120807_bib84 article-title: Early warping deformation of high-speed railway CRTS III track slabs publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.116651 – volume: 96 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib85 article-title: Experimental investigation and fluid-structure interaction modelling of the casting of self-compacting concrete for CRTS III slab track in the curved segments publication-title: J Build Eng – volume: 408 year: 2023 ident: 10.1016/j.engstruct.2025.120807_bib83 article-title: Adhesion performance tests and analysis of interface damage for CRTS III prefabricated slab tracks publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.133685 – volume: 310 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib43 article-title: AI-aided design and multi-scale optimization of mechanical metastructures with controllable anisotropy publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118134 – volume: 28 start-page: 43 year: 1995 ident: 10.1016/j.engstruct.2025.120807_bib24 article-title: Comparing BP and ART II neural network classifiers for facility location publication-title: Comput Ind Eng doi: 10.1016/0360-8352(94)00021-E – volume: 40 start-page: 702 year: 2013 ident: 10.1016/j.engstruct.2025.120807_bib6 article-title: Effects of olive residue biomass fly ash as filler in self-compacting concrete publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2012.09.101 – volume: 304 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib14 article-title: Field detection study of the bonding interface bubble defects in the full scale CRTS III slab ballastless track structure publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.117672 – volume: 126 year: 2022 ident: 10.1016/j.engstruct.2025.120807_bib47 article-title: Machine learning prediction of structural response of steel fiber-reinforced concrete beams subjected to far-field blast loading publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104378 – volume: 57 year: 2025 ident: 10.1016/j.engstruct.2025.120807_bib79 article-title: Time-varying temperature field and thermal effect of CRTS III slab track structure in curved sections under natural environmental temperature publication-title: Therm Sci Eng Prog – volume: 133 year: 2022 ident: 10.1016/j.engstruct.2025.120807_bib68 article-title: Machine learning algorithms in the environmental corrosion evaluation of reinforced concrete structures - a review publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2022.104725 – volume: 442 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib32 article-title: Experimental study on shear mechanical characteristics and its size effect of concrete joints based on BP neural network method publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.137583 – volume: 302 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib61 article-title: Application of a new two dimensional nonlinear tuned mass damper in bi-directional vibration mitigation of wind turbine blades publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.117371 – volume: 90 start-page: 598 year: 1991 ident: 10.1016/j.engstruct.2025.120807_bib25 article-title: Comparing human and neural network lip readers publication-title: J Acoust Soc Am doi: 10.1121/1.401235 – volume: 121 year: 2021 ident: 10.1016/j.engstruct.2025.120807_bib71 article-title: Automating the mixture design of lightweight foamed concrete using multi-objective firefly algorithm and support vector regression publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2021.104103 – volume: 417 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib72 article-title: Cement-based grouting material development and prediction of material properties using PSO-RBF machine learning publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.135328 – volume: 417 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib49 article-title: Mechanical properties of corroded steel bars on the tensile and buckling considering stirrup constraints publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.135181 – volume: 318 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib77 article-title: Post-earthquake damage probability assessment of high-speed railway simply supported bridge based on traffic capacity publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118741 – volume: 436 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib81 article-title: Interlayer damage evolution of CRTS III slab track under passenger and freight train loads publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.136944 – volume: 411 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib28 article-title: A optimum prediction model of chloride ion diffusion coefficient of machine-made sand concrete based on different machine learning methods publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.134414 – year: 2003 ident: 10.1016/j.engstruct.2025.120807_bib7 article-title: Permeation properties of self-compacting concrete publication-title: Cem Concr Res doi: 10.1016/S0008-8846(02)01090-6 – volume: 425 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib44 article-title: Curve clustering analysis and intelligent recognition of grid nanoindentation data for cementitious material publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.135732 – volume: 411 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib40 article-title: Mechanical performance prediction of air-entrained mortar by coupling electrochemical testing with back propagation neural network modelling publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2023.134606 – volume: 435 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib27 article-title: A BP neural network prediction model of compressive strength of green bricks in the Ming Dynasty based on CT scanning technique publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.136873 – volume: 18 start-page: 129 year: 2003 ident: 10.1016/j.engstruct.2025.120807_bib57 article-title: Overview of particle swarm optimization publication-title: Control Decis – volume: 53 start-page: 62 year: 2023 ident: 10.1016/j.engstruct.2025.120807_bib22 article-title: Experimental study on fatigue damage of self-compacting concrete of CRTS III slab track publication-title: Structures doi: 10.1016/j.istruc.2023.04.066 – volume: 319 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib63 article-title: Performance of differently arranged double-tuned mass dampers for structural seismic response control including soil-structure interaction publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118841 – volume: 299 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib64 article-title: Smart optimized structural control of onshore wind turbines with MR dampers publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.117131 – volume: 321 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib66 article-title: Time-convolutional network with joint time-frequency domain loss based on arithmetic optimization algorithm for dynamic response reconstruction publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.119001 – volume: 314 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib33 article-title: Identification of historical maximum load on concrete beams based on crack and deformation response using knowledge-embedded machine learning algorithms publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118376 – volume: 316 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib56 article-title: Prediction of seismic performance of a masonry-infilled RC frame based on DEM and ANNs publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118531 – volume: 152 year: 2022 ident: 10.1016/j.engstruct.2025.120807_bib38 article-title: A deep learning potential applied in tobermorite phases and extended to calcium silicate hydrates publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2021.106685 – volume: 429 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib46 article-title: Frost durability prediction of rubber concrete based on improved machine learning models publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.136201 – volume: 41 start-page: 305 year: 2008 ident: 10.1016/j.engstruct.2025.120807_bib52 article-title: Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic publication-title: Comput Mater Sci doi: 10.1016/j.commatsci.2007.04.009 – volume: 301 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib53 article-title: An analysis of functionally graded thin-walled beams using physics-informed neural networks publication-title: Eng Struct doi: 10.1016/j.engstruct.2023.117290 – volume: 265 year: 2020 ident: 10.1016/j.engstruct.2025.120807_bib4 article-title: Influence of age on the detection of defects at the bonding interface in the CRTS III slab ballastless track structure via the impact-echo method publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2020.120787 – volume: 319 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib54 article-title: Enhanced multi-scenario running safety assessment of railway bridges based on graph neural networks with self-evolutionary capability publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118785 – ident: 10.1016/j.engstruct.2025.120807_bib58 doi: 10.1007/BFb0040810 – volume: 30 year: 2018 ident: 10.1016/j.engstruct.2025.120807_bib2 article-title: Development of high-performance self-compacting concrete applied as the filling layer of high-speed railway publication-title: J Mater Civ Eng doi: 10.1061/(ASCE)MT.1943-5533.0002129 – volume: 18 year: 2023 ident: 10.1016/j.engstruct.2025.120807_bib5 article-title: Experimental study on the fatigue and freeze-thaw properties of geotextile isolation layer in CRTS III ballastless tracks publication-title: Case Stud Constr Mater – volume: 414 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib48 article-title: Machine learning-based prediction model for CO2-induced corrosion on oil well cement under high-pressure and high-temperature condition publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.134999 – ident: 10.1016/j.engstruct.2025.120807_bib78 – volume: 28 start-page: 197 year: 2006 ident: 10.1016/j.engstruct.2025.120807_bib9 article-title: Self-compacting concrete: an analysis of 11 years of case studies publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2005.10.003 – volume: 35 start-page: 2116 year: 2005 ident: 10.1016/j.engstruct.2025.120807_bib10 article-title: Self-compacting concrete: theoretical and experimental study publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2005.06.002 – volume: 318 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib60 article-title: A sub-convex similarity-based model updating method considering multivariate uncertainties publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118752 – volume: 161 year: 2022 ident: 10.1016/j.engstruct.2025.120807_bib23 article-title: Investigation of the seismic performance of CRTS III slab ballastless track of high-speed railway under low-cycle reciprocating load publication-title: Soil Dyn Earthq Eng doi: 10.1016/j.soildyn.2022.107432 – volume: 157 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib19 article-title: Research on crack propagation of CRTS III track slabs under train load publication-title: Eng Fail Anal doi: 10.1016/j.engfailanal.2023.107896 – volume: 428 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib69 article-title: Microstructure and deterioration mechanism of hydraulic concrete under variable temperature dry-wet cycles publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.136414 – volume: 142 year: 2022 ident: 10.1016/j.engstruct.2025.120807_bib3 article-title: Automatic detection system with 3D scanning and robot technology for detecting surface dimension of the track slabs publication-title: Autom Constr doi: 10.1016/j.autcon.2022.104525 – volume: 442 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib35 article-title: Predicting peak tensile stress in mesoscale concrete considering size effects: a data-physical hybrid-driven approach publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.137614 – volume: 435 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib67 article-title: An investigation of machine learning algorithms for estimating fracture toughness of asphalt mixtures publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2024.136783 – volume: 89 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib80 article-title: Damage and fracture investigation of self-compacting concrete in the filling layer of CRTS-III using three-point bending tests publication-title: J Build Eng – volume: 303 year: 2021 ident: 10.1016/j.engstruct.2025.120807_bib20 article-title: Research on the fatigue performance of self-compacting concrete structure in CRTSIII slab ballastless track under the action of heavy haul train publication-title: Constr Build Mater doi: 10.1016/j.conbuildmat.2021.124465 – volume: 31 start-page: 413 year: 2001 ident: 10.1016/j.engstruct.2025.120807_bib8 article-title: Self-compacting concrete incorporating high volumes of class F fly ash: preliminary results publication-title: Cem Concr Res doi: 10.1016/S0008-8846(00)00504-4 – volume: 145 year: 2021 ident: 10.1016/j.engstruct.2025.120807_bib34 article-title: Predicting concrete compressive strength using hybrid ensembling of surrogate machine learning models publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2021.106449 – volume: 69 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib16 article-title: Damage assessment of the CRTS III ballastless slab track in high temperature regions publication-title: Structures doi: 10.1016/j.istruc.2024.107456 – volume: 249 year: 2021 ident: 10.1016/j.engstruct.2025.120807_bib1 article-title: Dynamic performance comparison of different types of ballastless tracks using vehicle-track-subgrade coupled dynamics model publication-title: Eng Struct doi: 10.1016/j.engstruct.2021.113390 – volume: 303 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib18 article-title: Investigating the fatigue performance of conventional reinforced concrete CRTS III ballastless track structures using a fatigue damage constitutive model publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.117504 – volume: 106 year: 2020 ident: 10.1016/j.engstruct.2025.120807_bib39 article-title: A robust time-dependent model of alkali-silica reaction at different temperatures publication-title: Cem Concr Compos doi: 10.1016/j.cemconcomp.2019.103460 – volume: 319 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib55 article-title: Generalization gap estimation for damage classification tasks when finite element simulated data is used for training: a numerical study and experimental validation on a steel truss publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.118855 – volume: 306 year: 2024 ident: 10.1016/j.engstruct.2025.120807_bib31 article-title: Data-driven modeling for residual velocity of projectile penetrating reinforced concrete slabs publication-title: Eng Struct doi: 10.1016/j.engstruct.2024.117761 |
| SSID | ssj0002880 |
| Score | 2.4602551 |
| Snippet | The judgment of interfacial bonding performance of the CRTS III slab ballastless track structure in the existing technical standard was mainly an empirical... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 120807 |
| SubjectTerms | CRTS III slab ballastless track structure Interfacial bonding performance Interfacial defect PSO-BP algorithm |
| Title | Predicting interfacial bonding performance of CRTS III slab ballastless track structure via interfacial defects using the PSO-BP algorithm |
| URI | https://dx.doi.org/10.1016/j.engstruct.2025.120807 |
| Volume | 341 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0141-0296 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002880 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0141-0296 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002880 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals issn: 0141-0296 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002880 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0141-0296 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0002880 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0141-0296 databaseCode: AKRWK dateStart: 19781001 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002880 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EL3oQn_gsc_Aam242L2-1WBpFLbYFb2GftT7akkaP_gB_tTtJqhYEDx4TdpdlZpjXfjNDyIngVFnDZKznxgOH-R5zhPKoEyjmGzSoRmO-4_om6AzY5b1_v0Ra81oYhFVWur_U6YW2rv7UK2rWp6NRvVdAFGlsHXjsWxZhwS9jIU4xOH3_hnnQqJiehosdXL2A8dLjYdmm1QaK1D9tUOs_hb9bqB9Wp71B1it3EZrljTbJkh5vkbUfTQS3yUc3w8cWhC8DNn_IDMc0OIhJUbAC0-_SAJgYaN31e5AkCVhZECAwj44vvbMZ5BmXT1De9DXT8DbiCwcqXUA_AKHyQ7COI3R7t855F_jzcJKN8oeXHTJoX_RbHaeasOBIGni5o6QyNkSKXRMqLZhscEG56yrjRka4XsyoosaLFeWSaho2DItDIXyBcSMXlrO7ZHk8Ges9AppzyWmgsXsOi0zAA6mEoYGUxvc4jfaJO6dqOi0baaRzhNlj-sWIFBmRlozYJ2dz6qcLMpFadf_X5oP_bD4kq_iFNqrhH5Flu0AfW-cjF7VCumpkpZlcdW4-AXfH3dA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9tAEF6l6aHlgCi0IjzaOfRq4ozXL24lAiWUR0SCxM3aZwiPJHICR35AfzU7ttMQqRKHXu3Z1WpmNK_9Zpaxn1Kgdo7JushNRB4PA-5JHaAXaR5acqjWUL3j_CLqXPPTm_CmxtqLXhiCVVa2v7TphbWuvjQrbjano1GzX0AUMXUBPM0tS5IP7CMPMaYM7OBlifPApHg-jag9Il8BeZnxsJzT6jJFDA9a6AKo-N8u6o3bOdlg61W8CL_KI31hNTPeZGtvpghusT-9nG5bCL8MNP0ht4Lq4CAnRccKTJe9ATCx0L4a9KHb7YJTBgmSCul01TubwTwX6h7Kkz7lBp5HYmVDbQrsBxBWfggucoRe_9I76oF4GE7y0fz28Su7PjketDte9cSCpzAK5p5W2rocKfVtrI3kqiUkCt_X1k-s9IOUo0YbpBqFQoNxy_I0ljKUlDgK6UT7jdXHk7HZZmCEUAIjQ-NzeGIjESktLUZK2TAQmDSYv-BqNi0naWQLiNld9lcQGQkiKwXRYIcL7mcrSpE5e__e4p3_WfyDfeoMzs-ys-7F7132mf6Qw2qFe6zuiM2-i0Tm8nuhaa-zkt9l |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+interfacial+bonding+performance+of+CRTS+III+slab+ballastless+track+structure+via+interfacial+defects+using+the+PSO-BP+algorithm&rft.jtitle=Engineering+structures&rft.au=Jiang%2C+Wei&rft.au=Lei%2C+Bin&rft.au=Wang%2C+En&rft.au=Ni%2C+Yi-Qing&rft.date=2025-10-15&rft.pub=Elsevier+Ltd&rft.issn=0141-0296&rft.volume=341&rft_id=info:doi/10.1016%2Fj.engstruct.2025.120807&rft.externalDocID=S0141029625011988 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-0296&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-0296&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-0296&client=summon |