A Weighted Approach for Sparse Signal Support Estimation with Application to EEG Source Localization
In sparse signal recovery problems, 11-norm minimization is typically used as an alternative to more complex 10-norm minimization. The range space property (RSP) provides the conditions under which the least 11 -norm solution is equal to at most one of the least 10-norm solutions. These conditions d...
Saved in:
| Published in | IEEE transactions on signal processing Vol. 65; no. 24; pp. 6551 - 6565 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
15.12.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1053-587X 1941-0476 |
| DOI | 10.1109/TSP.2017.2752690 |
Cover
| Abstract | In sparse signal recovery problems, 11-norm minimization is typically used as an alternative to more complex 10-norm minimization. The range space property (RSP) provides the conditions under which the least 11 -norm solution is equal to at most one of the least 10-norm solutions. These conditions depend on the sensing matrix and the support of the underlying sparse solution. In this paper, we address the problem of recovering sparse signals by weighting the corresponding sensing matrix with a diagonal matrix. We show that by appropriately choosing the weights, we can formulate an 11-norm minimization problem that satisfies the RSP, even if the original problem does not. By solving the weighted problem we can obtain the support of the original problem. We provide the conditions which the weights must satisfy, for both noise free and noisy cases. Although the precise conditions involve information about the support of the sparse vector, the class of good weights is very wide, and in most cases encompasses an estimate of the underlying vector obtained via a conventional method, i.e., a method that does not encourage sparsity. The proposed approach is a good candidate for Electroencephalography (EEG) sparse source localization, where the corresponding sensing matrix has high coherence. The performance of the proposed approach is evaluated via simulations and also via experiments on localizing active sources in the brain corresponding to an auditory task from EEG recordings of a human subject. |
|---|---|
| AbstractList | In sparse signal recovery problems, 11-norm minimization is typically used as an alternative to more complex 10-norm minimization. The range space property (RSP) provides the conditions under which the least 11 -norm solution is equal to at most one of the least 10-norm solutions. These conditions depend on the sensing matrix and the support of the underlying sparse solution. In this paper, we address the problem of recovering sparse signals by weighting the corresponding sensing matrix with a diagonal matrix. We show that by appropriately choosing the weights, we can formulate an 11-norm minimization problem that satisfies the RSP, even if the original problem does not. By solving the weighted problem we can obtain the support of the original problem. We provide the conditions which the weights must satisfy, for both noise free and noisy cases. Although the precise conditions involve information about the support of the sparse vector, the class of good weights is very wide, and in most cases encompasses an estimate of the underlying vector obtained via a conventional method, i.e., a method that does not encourage sparsity. The proposed approach is a good candidate for Electroencephalography (EEG) sparse source localization, where the corresponding sensing matrix has high coherence. The performance of the proposed approach is evaluated via simulations and also via experiments on localizing active sources in the brain corresponding to an auditory task from EEG recordings of a human subject. |
| Author | Al Hilli, Ahmed Najafizadeh, Laleh Petropulu, Athina P. |
| Author_xml | – sequence: 1 givenname: Ahmed surname: Al Hilli fullname: Al Hilli, Ahmed email: alhilli@rutgers.edu organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA – sequence: 2 givenname: Laleh surname: Najafizadeh fullname: Najafizadeh, Laleh email: laleh.najafizadeh@rutgers.edu organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA – sequence: 3 givenname: Athina P. surname: Petropulu fullname: Petropulu, Athina P. email: athinap@rutgers.edu organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA |
| BookMark | eNp9kE1Lw0AQhhepYFu9C172D6Tud7LHUmIrFBRS0VvYbHbblZgNmy2iv970Aw8ePM0wwzPz8kzAqPWtAeAWoxnGSN5viucZQTidkZQTIdEFGGPJcIJYKkZDjzhNeJa-XYFJ378jhBmTYgzqOXw1bruLpobzrgte6R20PsCiU6E3sHDbVjWw2HedDxHmfXQfKjrfwk8Xdwekcfo0iB7m-RIWfh-0gWuvVeO-j6trcGlV05ubc52Cl4d8s1gl66fl42K-TjQRNCayTjnWNa0Ew5wri0lG1JCfY4mF5FRUAllGNEeVJSqlXIlMyIoSy2slWU2nAJ3u6uD7PhhbdmGIG75KjMqDpXKwVB4slWdLAyL-INrFY-gYlGv-A-9OoDPG_P7JEM2QwPQHu0R2nA |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_1109_TBME_2018_2874167 crossref_primary_10_1016_j_bspc_2021_102668 crossref_primary_10_1016_j_jneumeth_2020_108740 crossref_primary_10_1109_TVT_2019_2922369 |
| Cites_doi | 10.1016/j.neuroimage.2011.11.086 10.1016/j.neuroimage.2004.11.036 10.1109/10.141192 10.1109/78.558475 10.1109/ICASSP.2012.6288652 10.1109/NFSI-ICFBI.2007.4387677 10.1049/ip-vis:19990445 10.1016/S0013-4694(97)00066-7 10.1016/j.neuroimage.2005.12.003 10.1109/10.623056 10.1109/10.605428 10.1016/j.tics.2004.06.006 10.1016/j.ijpsycho.2007.04.006 10.1155/2011/879716 10.1109/TNSRE.2006.875557 10.1073/pnas.0437847100 10.1109/TBME.2013.2253101 10.1109/TBME.2015.2467312 10.1109/TBME.2006.878119 10.1137/S1064827596304010 10.1109/PROC.1972.8817 10.1097/00029330-200609020-00008 10.1088/1741-2560/1/3/002 10.1016/j.neuroimage.2012.10.032 10.1109/PROC.1969.7278 10.1109/TBME.2006.886640 10.1109/TSP.2004.831016 10.1007/s00041-008-9045-x 10.1016/j.neuroimage.2009.10.049 10.1109/10.930901 10.1088/1741-2560/4/2/R01 10.1016/S0028-3932(98)00019-0 10.1109/TBME.2005.869764 10.1371/journal.pone.0098019 10.1093/schbul/sbn093 10.1006/nimg.1999.0454 10.1109/TSP.2013.2281030 10.1186/1743-0003-5-25 10.1109/TSP.2002.808076 10.1109/TBME.2011.2139210 10.1016/j.neuroimage.2011.03.043 10.1016/j.clinph.2004.04.004 10.1109/CAMSAP.2015.7383787 10.1186/1743-0003-4-46 10.1109/TAP.1986.1143830 10.1088/1741-2552/aa70d2 10.1109/10.704867 10.1090/S0894-0347-08-00610-3 10.1109/10.387200 10.1109/TBME.2013.2294203 10.1016/j.jneumeth.2003.10.009 10.1016/j.neuroimage.2009.06.080 10.1109/TIT.2007.909108 10.1109/TIT.2005.858979 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TSP.2017.2752690 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore Electronic Library CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Xplore Electronic Library url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 6565 |
| ExternalDocumentID | 10_1109_TSP_2017_2752690 8038061 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: NSF grantid: NSF ECCS 1408437 funderid: 10.13039/100000001 |
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AGQYO AHBIQ AJQPL AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 EBS EJD F5P HZ~ IFIPE IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 AAYXX CITATION |
| ID | FETCH-LOGICAL-c263t-9d751cd3b64155af1282a047519169536b60f42c50bf2a735a6869b32f5da94d3 |
| IEDL.DBID | RIE |
| ISSN | 1053-587X |
| IngestDate | Wed Oct 01 03:34:27 EDT 2025 Thu Apr 24 22:51:13 EDT 2025 Tue Aug 26 17:00:18 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 24 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-9d751cd3b64155af1282a047519169536b60f42c50bf2a735a6869b32f5da94d3 |
| PageCount | 15 |
| ParticipantIDs | crossref_primary_10_1109_TSP_2017_2752690 ieee_primary_8038061 crossref_citationtrail_10_1109_TSP_2017_2752690 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Dec.15,-15 2017-12-15 |
| PublicationDateYYYYMMDD | 2017-12-15 |
| PublicationDate_xml | – month: 12 year: 2017 text: 2017-Dec.15,-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref57 jacobson (ref53) 1997; 8 ref13 ref56 ref12 ref58 ref14 ref52 ref55 ref11 ref54 ref10 he (ref49) 2011; 58 ref17 ref16 ref19 ref18 pascual-marqui (ref34) 1999; 1 ref51 ref50 adler (ref15) 1996; 1 ref46 ref45 ref47 ref42 ref41 ref44 ref43 ref7 ref9 ref4 ref3 zhang (ref59) 2006; 119 xu (ref27) 2014; 61 ref5 ref40 (ref48) 0 ref35 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 candès (ref6) 2006; 3 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 candes (ref8) 2008; 14 ref29 |
| References_xml | – ident: ref23 doi: 10.1016/j.neuroimage.2011.11.086 – ident: ref56 doi: 10.1016/j.neuroimage.2004.11.036 – ident: ref36 doi: 10.1109/10.141192 – ident: ref7 doi: 10.1109/78.558475 – ident: ref12 doi: 10.1109/ICASSP.2012.6288652 – ident: ref44 doi: 10.1109/NFSI-ICFBI.2007.4387677 – ident: ref13 doi: 10.1049/ip-vis:19990445 – ident: ref28 doi: 10.1016/S0013-4694(97)00066-7 – ident: ref29 doi: 10.1016/j.neuroimage.2005.12.003 – ident: ref40 doi: 10.1109/10.623056 – ident: ref43 doi: 10.1109/10.605428 – ident: ref18 doi: 10.1016/j.tics.2004.06.006 – ident: ref54 doi: 10.1016/j.ijpsycho.2007.04.006 – ident: ref17 doi: 10.1155/2011/879716 – ident: ref25 doi: 10.1109/TNSRE.2006.875557 – ident: ref2 doi: 10.1073/pnas.0437847100 – ident: ref46 doi: 10.1109/TBME.2013.2253101 – ident: ref32 doi: 10.1109/TBME.2015.2467312 – ident: ref52 doi: 10.1109/TBME.2006.878119 – ident: ref5 doi: 10.1137/S1064827596304010 – ident: ref39 doi: 10.1109/PROC.1972.8817 – volume: 119 start-page: 1548 year: 2006 ident: ref59 article-title: Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: Functional MRI and magnetoencephalography publication-title: Chin Med J doi: 10.1097/00029330-200609020-00008 – ident: ref24 doi: 10.1088/1741-2560/1/3/002 – ident: ref20 doi: 10.1016/j.neuroimage.2012.10.032 – ident: ref37 doi: 10.1109/PROC.1969.7278 – ident: ref11 doi: 10.1109/TBME.2006.886640 – ident: ref9 doi: 10.1109/TSP.2004.831016 – volume: 14 start-page: 5 year: 2008 ident: ref8 article-title: Enhancing sparsity by reweighted $\ell _1$ minimization publication-title: J Fourier Anal Appl doi: 10.1007/s00041-008-9045-x – volume: 1 start-page: 75 year: 1999 ident: ref34 article-title: Review of methods for solving the EEG inverse problem publication-title: Int J Bioelectromagnetism – volume: 8 start-page: 44 year: 1997 ident: ref53 article-title: Auditory evoked gamma band potential in normal subjects publication-title: Journal of the American Academy of Audiology – volume: 1 start-page: 252 year: 1996 ident: ref15 article-title: Comparison of basis selection methods publication-title: Proc Conf Rec 13th Asilomar Conf Signals Syst Comput – ident: ref19 doi: 10.1016/j.neuroimage.2009.10.049 – ident: ref38 doi: 10.1109/10.930901 – ident: ref26 doi: 10.1088/1741-2560/4/2/R01 – ident: ref58 doi: 10.1016/S0028-3932(98)00019-0 – ident: ref41 doi: 10.1109/TBME.2005.869764 – volume: 3 start-page: 1433 year: 2006 ident: ref6 article-title: Compressive sampling publication-title: Proc Int Congr Math – ident: ref30 doi: 10.1371/journal.pone.0098019 – ident: ref21 doi: 10.1093/schbul/sbn093 – ident: ref45 doi: 10.1006/nimg.1999.0454 – ident: ref1 doi: 10.1109/TSP.2013.2281030 – ident: ref33 doi: 10.1186/1743-0003-5-25 – ident: ref10 doi: 10.1109/TSP.2002.808076 – volume: 58 start-page: 1918 year: 2011 ident: ref49 article-title: Electrophysiological imaging of brain activity and connectivity challenges and opportunities publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2011.2139210 – ident: ref22 doi: 10.1016/j.neuroimage.2011.03.043 – ident: ref55 doi: 10.1016/j.clinph.2004.04.004 – ident: ref16 doi: 10.1109/CAMSAP.2015.7383787 – ident: ref47 doi: 10.1186/1743-0003-4-46 – ident: ref35 doi: 10.1109/TAP.1986.1143830 – year: 0 ident: ref48 – ident: ref31 doi: 10.1088/1741-2552/aa70d2 – ident: ref50 doi: 10.1109/10.704867 – ident: ref4 doi: 10.1090/S0894-0347-08-00610-3 – ident: ref42 doi: 10.1109/10.387200 – volume: 61 start-page: 288 year: 2014 ident: ref27 article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2013.2294203 – ident: ref51 doi: 10.1016/j.jneumeth.2003.10.009 – ident: ref57 doi: 10.1016/j.neuroimage.2009.06.080 – ident: ref14 doi: 10.1109/TIT.2007.909108 – ident: ref3 doi: 10.1109/TIT.2005.858979 |
| SSID | ssj0014496 |
| Score | 2.309732 |
| Snippet | In sparse signal recovery problems, 11-norm minimization is typically used as an alternative to more complex 10-norm minimization. The range space property... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 6551 |
| SubjectTerms | Brain Dictionaries EEG source localization Electroencephalography Matching pursuit algorithms Minimization range space property Sensors Sparse matrices Sparse signal recovery weighted <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell_1</tex-math> </inline-formula> </named-content>-norm minimization |
| Title | A Weighted Approach for Sparse Signal Support Estimation with Application to EEG Source Localization |
| URI | https://ieeexplore.ieee.org/document/8038061 |
| Volume | 65 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Electronic Library customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJz34NcX5RQ5eBNulaZMmxyLVIU6EbrhbSZpURNmGdBf_epO0q1NEvIWQlJAX-n7v4_ceABeayYhLEnsace0oOZ5UJfVEEJeUK1FqR48ePdDhJLqbkmkHXLVcGK21Sz7Tvh26WL6aF0vrKhswFDJkbZ2NmNGaq9VGDKLI9eIycCH0CIunq5Ak4oNx9mhzuGIfx7afNvqmgtZ6qjiVcrMDRqvD1Jkkr_6ykn7x8aNO439Puwu2G2wJk_ox7IGOnu2DrbWKgz2gEvjknKFawaQpJw4NboXZwli4GmYvz_YTttenweUwNT-AmtsIrcMWJl_hbljNYZrewsx5_-G91YkNp_MATG7S8fXQaxoteAWmYeVxFZOgUKGkFl6I0ugsLFBkJg14tPFdSVEZ4YIgWWIRh0RQRrkMcUmU4JEKD0F3Np_pIwANosJYBYFkghlbqOSMCB7qAGtWBAWJ-mCwuvu8aKqQ22YYb7mzRhDPjbRyK628kVYfXLY7FnUFjj_W9qwc2nWNCI5_nz4Bm3azTU4JyCnoVu9LfWYgRiXP3dv6BHW4zHI |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9DD-rBrynOzxy8CHZL06RNjkM2p25D6Ia7laRJRZRtSHfxrzdJuzpFxFsIaQh5oe_3Pn7vAXCpmSRc0sjTiGtHyfGkykJP-FEWciUy7ejRg2HYG5P7CZ3UwHXFhdFau-Qz3bRDF8tXs3RhXWUthgKGrK2zTgkhtGBrVTEDQlw3LgMYAo-yaLIMSiLeGsWPNosrauLIdtRG35TQSlcVp1S6O2CwPE6RS_LaXOSymX78qNT43_Pugu0SXcJ28Rz2QE1P98HWSs3BOlBt-OTcoVrBdllQHBrkCuO5sXE1jF-e7Ra226dB5rBjfgEFuxFaly1sfwW8YT6Dnc4tjJ3_H_atVixZnQdg3O2Mbnpe2WrBS3EY5B5XEfVTFcjQAgyRGa2FBSJm0sBHG-GVIcoITimSGRZRQEXIQi4DnFElOFHBIVibzqb6CECDqTBWvi-ZYMYayjijggfax5qlfkpJA7SWd5-kZR1y2w7jLXH2COKJkVZipZWU0mqAq-qLeVGD44-1dSuHal0pguPfpy_ARm806Cf9u-HDCdi0G9lUFZ-egrX8faHPDODI5bl7Z59Xjs-_ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Weighted+Approach+for+Sparse+Signal+Support+Estimation+with+Application+to+EEG+Source+Localization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Al+Hilli%2C+Ahmed&rft.au=Najafizadeh%2C+Laleh&rft.au=Petropulu%2C+Athina+P.&rft.date=2017-12-15&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=65&rft.issue=24&rft.spage=6551&rft.epage=6565&rft_id=info:doi/10.1109%2FTSP.2017.2752690&rft.externalDocID=8038061 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |