A Weighted Approach for Sparse Signal Support Estimation with Application to EEG Source Localization

In sparse signal recovery problems, 11-norm minimization is typically used as an alternative to more complex 10-norm minimization. The range space property (RSP) provides the conditions under which the least 11 -norm solution is equal to at most one of the least 10-norm solutions. These conditions d...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on signal processing Vol. 65; no. 24; pp. 6551 - 6565
Main Authors Al Hilli, Ahmed, Najafizadeh, Laleh, Petropulu, Athina P.
Format Journal Article
LanguageEnglish
Published IEEE 15.12.2017
Subjects
Online AccessGet full text
ISSN1053-587X
1941-0476
DOI10.1109/TSP.2017.2752690

Cover

Abstract In sparse signal recovery problems, 11-norm minimization is typically used as an alternative to more complex 10-norm minimization. The range space property (RSP) provides the conditions under which the least 11 -norm solution is equal to at most one of the least 10-norm solutions. These conditions depend on the sensing matrix and the support of the underlying sparse solution. In this paper, we address the problem of recovering sparse signals by weighting the corresponding sensing matrix with a diagonal matrix. We show that by appropriately choosing the weights, we can formulate an 11-norm minimization problem that satisfies the RSP, even if the original problem does not. By solving the weighted problem we can obtain the support of the original problem. We provide the conditions which the weights must satisfy, for both noise free and noisy cases. Although the precise conditions involve information about the support of the sparse vector, the class of good weights is very wide, and in most cases encompasses an estimate of the underlying vector obtained via a conventional method, i.e., a method that does not encourage sparsity. The proposed approach is a good candidate for Electroencephalography (EEG) sparse source localization, where the corresponding sensing matrix has high coherence. The performance of the proposed approach is evaluated via simulations and also via experiments on localizing active sources in the brain corresponding to an auditory task from EEG recordings of a human subject.
AbstractList In sparse signal recovery problems, 11-norm minimization is typically used as an alternative to more complex 10-norm minimization. The range space property (RSP) provides the conditions under which the least 11 -norm solution is equal to at most one of the least 10-norm solutions. These conditions depend on the sensing matrix and the support of the underlying sparse solution. In this paper, we address the problem of recovering sparse signals by weighting the corresponding sensing matrix with a diagonal matrix. We show that by appropriately choosing the weights, we can formulate an 11-norm minimization problem that satisfies the RSP, even if the original problem does not. By solving the weighted problem we can obtain the support of the original problem. We provide the conditions which the weights must satisfy, for both noise free and noisy cases. Although the precise conditions involve information about the support of the sparse vector, the class of good weights is very wide, and in most cases encompasses an estimate of the underlying vector obtained via a conventional method, i.e., a method that does not encourage sparsity. The proposed approach is a good candidate for Electroencephalography (EEG) sparse source localization, where the corresponding sensing matrix has high coherence. The performance of the proposed approach is evaluated via simulations and also via experiments on localizing active sources in the brain corresponding to an auditory task from EEG recordings of a human subject.
Author Al Hilli, Ahmed
Najafizadeh, Laleh
Petropulu, Athina P.
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Al Hilli
  fullname: Al Hilli, Ahmed
  email: alhilli@rutgers.edu
  organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA
– sequence: 2
  givenname: Laleh
  surname: Najafizadeh
  fullname: Najafizadeh, Laleh
  email: laleh.najafizadeh@rutgers.edu
  organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA
– sequence: 3
  givenname: Athina P.
  surname: Petropulu
  fullname: Petropulu, Athina P.
  email: athinap@rutgers.edu
  organization: Dept. of Electr. & Comput. Eng., Rutgers Univ., Piscataway, NJ, USA
BookMark eNp9kE1Lw0AQhhepYFu9C172D6Tud7LHUmIrFBRS0VvYbHbblZgNmy2iv970Aw8ePM0wwzPz8kzAqPWtAeAWoxnGSN5viucZQTidkZQTIdEFGGPJcIJYKkZDjzhNeJa-XYFJ378jhBmTYgzqOXw1bruLpobzrgte6R20PsCiU6E3sHDbVjWw2HedDxHmfXQfKjrfwk8Xdwekcfo0iB7m-RIWfh-0gWuvVeO-j6trcGlV05ubc52Cl4d8s1gl66fl42K-TjQRNCayTjnWNa0Ew5wri0lG1JCfY4mF5FRUAllGNEeVJSqlXIlMyIoSy2slWU2nAJ3u6uD7PhhbdmGIG75KjMqDpXKwVB4slWdLAyL-INrFY-gYlGv-A-9OoDPG_P7JEM2QwPQHu0R2nA
CODEN ITPRED
CitedBy_id crossref_primary_10_1109_TBME_2018_2874167
crossref_primary_10_1016_j_bspc_2021_102668
crossref_primary_10_1016_j_jneumeth_2020_108740
crossref_primary_10_1109_TVT_2019_2922369
Cites_doi 10.1016/j.neuroimage.2011.11.086
10.1016/j.neuroimage.2004.11.036
10.1109/10.141192
10.1109/78.558475
10.1109/ICASSP.2012.6288652
10.1109/NFSI-ICFBI.2007.4387677
10.1049/ip-vis:19990445
10.1016/S0013-4694(97)00066-7
10.1016/j.neuroimage.2005.12.003
10.1109/10.623056
10.1109/10.605428
10.1016/j.tics.2004.06.006
10.1016/j.ijpsycho.2007.04.006
10.1155/2011/879716
10.1109/TNSRE.2006.875557
10.1073/pnas.0437847100
10.1109/TBME.2013.2253101
10.1109/TBME.2015.2467312
10.1109/TBME.2006.878119
10.1137/S1064827596304010
10.1109/PROC.1972.8817
10.1097/00029330-200609020-00008
10.1088/1741-2560/1/3/002
10.1016/j.neuroimage.2012.10.032
10.1109/PROC.1969.7278
10.1109/TBME.2006.886640
10.1109/TSP.2004.831016
10.1007/s00041-008-9045-x
10.1016/j.neuroimage.2009.10.049
10.1109/10.930901
10.1088/1741-2560/4/2/R01
10.1016/S0028-3932(98)00019-0
10.1109/TBME.2005.869764
10.1371/journal.pone.0098019
10.1093/schbul/sbn093
10.1006/nimg.1999.0454
10.1109/TSP.2013.2281030
10.1186/1743-0003-5-25
10.1109/TSP.2002.808076
10.1109/TBME.2011.2139210
10.1016/j.neuroimage.2011.03.043
10.1016/j.clinph.2004.04.004
10.1109/CAMSAP.2015.7383787
10.1186/1743-0003-4-46
10.1109/TAP.1986.1143830
10.1088/1741-2552/aa70d2
10.1109/10.704867
10.1090/S0894-0347-08-00610-3
10.1109/10.387200
10.1109/TBME.2013.2294203
10.1016/j.jneumeth.2003.10.009
10.1016/j.neuroimage.2009.06.080
10.1109/TIT.2007.909108
10.1109/TIT.2005.858979
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TSP.2017.2752690
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore Electronic Library
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Xplore Electronic Library
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 6565
ExternalDocumentID 10_1109_TSP_2017_2752690
8038061
Genre orig-research
GrantInformation_xml – fundername: NSF
  grantid: NSF ECCS 1408437
  funderid: 10.13039/100000001
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AJQPL
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
EBS
EJD
F5P
HZ~
IFIPE
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-9d751cd3b64155af1282a047519169536b60f42c50bf2a735a6869b32f5da94d3
IEDL.DBID RIE
ISSN 1053-587X
IngestDate Wed Oct 01 03:34:27 EDT 2025
Thu Apr 24 22:51:13 EDT 2025
Tue Aug 26 17:00:18 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 24
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-9d751cd3b64155af1282a047519169536b60f42c50bf2a735a6869b32f5da94d3
PageCount 15
ParticipantIDs crossref_primary_10_1109_TSP_2017_2752690
ieee_primary_8038061
crossref_citationtrail_10_1109_TSP_2017_2752690
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Dec.15,-15
2017-12-15
PublicationDateYYYYMMDD 2017-12-15
PublicationDate_xml – month: 12
  year: 2017
  text: 2017-Dec.15,-15
  day: 15
PublicationDecade 2010
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
jacobson (ref53) 1997; 8
ref13
ref56
ref12
ref58
ref14
ref52
ref55
ref11
ref54
ref10
he (ref49) 2011; 58
ref17
ref16
ref19
ref18
pascual-marqui (ref34) 1999; 1
ref51
ref50
adler (ref15) 1996; 1
ref46
ref45
ref47
ref42
ref41
ref44
ref43
ref7
ref9
ref4
ref3
zhang (ref59) 2006; 119
xu (ref27) 2014; 61
ref5
ref40
(ref48) 0
ref35
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
candès (ref6) 2006; 3
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
candes (ref8) 2008; 14
ref29
References_xml – ident: ref23
  doi: 10.1016/j.neuroimage.2011.11.086
– ident: ref56
  doi: 10.1016/j.neuroimage.2004.11.036
– ident: ref36
  doi: 10.1109/10.141192
– ident: ref7
  doi: 10.1109/78.558475
– ident: ref12
  doi: 10.1109/ICASSP.2012.6288652
– ident: ref44
  doi: 10.1109/NFSI-ICFBI.2007.4387677
– ident: ref13
  doi: 10.1049/ip-vis:19990445
– ident: ref28
  doi: 10.1016/S0013-4694(97)00066-7
– ident: ref29
  doi: 10.1016/j.neuroimage.2005.12.003
– ident: ref40
  doi: 10.1109/10.623056
– ident: ref43
  doi: 10.1109/10.605428
– ident: ref18
  doi: 10.1016/j.tics.2004.06.006
– ident: ref54
  doi: 10.1016/j.ijpsycho.2007.04.006
– ident: ref17
  doi: 10.1155/2011/879716
– ident: ref25
  doi: 10.1109/TNSRE.2006.875557
– ident: ref2
  doi: 10.1073/pnas.0437847100
– ident: ref46
  doi: 10.1109/TBME.2013.2253101
– ident: ref32
  doi: 10.1109/TBME.2015.2467312
– ident: ref52
  doi: 10.1109/TBME.2006.878119
– ident: ref5
  doi: 10.1137/S1064827596304010
– ident: ref39
  doi: 10.1109/PROC.1972.8817
– volume: 119
  start-page: 1548
  year: 2006
  ident: ref59
  article-title: Auditory cortical responses evoked by pure tones in healthy and sensorineural hearing loss subjects: Functional MRI and magnetoencephalography
  publication-title: Chin Med J
  doi: 10.1097/00029330-200609020-00008
– ident: ref24
  doi: 10.1088/1741-2560/1/3/002
– ident: ref20
  doi: 10.1016/j.neuroimage.2012.10.032
– ident: ref37
  doi: 10.1109/PROC.1969.7278
– ident: ref11
  doi: 10.1109/TBME.2006.886640
– ident: ref9
  doi: 10.1109/TSP.2004.831016
– volume: 14
  start-page: 5
  year: 2008
  ident: ref8
  article-title: Enhancing sparsity by reweighted $\ell _1$ minimization
  publication-title: J Fourier Anal Appl
  doi: 10.1007/s00041-008-9045-x
– volume: 1
  start-page: 75
  year: 1999
  ident: ref34
  article-title: Review of methods for solving the EEG inverse problem
  publication-title: Int J Bioelectromagnetism
– volume: 8
  start-page: 44
  year: 1997
  ident: ref53
  article-title: Auditory evoked gamma band potential in normal subjects
  publication-title: Journal of the American Academy of Audiology
– volume: 1
  start-page: 252
  year: 1996
  ident: ref15
  article-title: Comparison of basis selection methods
  publication-title: Proc Conf Rec 13th Asilomar Conf Signals Syst Comput
– ident: ref19
  doi: 10.1016/j.neuroimage.2009.10.049
– ident: ref38
  doi: 10.1109/10.930901
– ident: ref26
  doi: 10.1088/1741-2560/4/2/R01
– ident: ref58
  doi: 10.1016/S0028-3932(98)00019-0
– ident: ref41
  doi: 10.1109/TBME.2005.869764
– volume: 3
  start-page: 1433
  year: 2006
  ident: ref6
  article-title: Compressive sampling
  publication-title: Proc Int Congr Math
– ident: ref30
  doi: 10.1371/journal.pone.0098019
– ident: ref21
  doi: 10.1093/schbul/sbn093
– ident: ref45
  doi: 10.1006/nimg.1999.0454
– ident: ref1
  doi: 10.1109/TSP.2013.2281030
– ident: ref33
  doi: 10.1186/1743-0003-5-25
– ident: ref10
  doi: 10.1109/TSP.2002.808076
– volume: 58
  start-page: 1918
  year: 2011
  ident: ref49
  article-title: Electrophysiological imaging of brain activity and connectivity challenges and opportunities
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2011.2139210
– ident: ref22
  doi: 10.1016/j.neuroimage.2011.03.043
– ident: ref55
  doi: 10.1016/j.clinph.2004.04.004
– ident: ref16
  doi: 10.1109/CAMSAP.2015.7383787
– ident: ref47
  doi: 10.1186/1743-0003-4-46
– ident: ref35
  doi: 10.1109/TAP.1986.1143830
– year: 0
  ident: ref48
– ident: ref31
  doi: 10.1088/1741-2552/aa70d2
– ident: ref50
  doi: 10.1109/10.704867
– ident: ref4
  doi: 10.1090/S0894-0347-08-00610-3
– ident: ref42
  doi: 10.1109/10.387200
– volume: 61
  start-page: 288
  year: 2014
  ident: ref27
  article-title: Enhanced low-latency detection of motor intention from EEG for closed-loop brain-computer interface applications
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2013.2294203
– ident: ref51
  doi: 10.1016/j.jneumeth.2003.10.009
– ident: ref57
  doi: 10.1016/j.neuroimage.2009.06.080
– ident: ref14
  doi: 10.1109/TIT.2007.909108
– ident: ref3
  doi: 10.1109/TIT.2005.858979
SSID ssj0014496
Score 2.309732
Snippet In sparse signal recovery problems, 11-norm minimization is typically used as an alternative to more complex 10-norm minimization. The range space property...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 6551
SubjectTerms Brain
Dictionaries
EEG source localization
Electroencephalography
Matching pursuit algorithms
Minimization
range space property
Sensors
Sparse matrices
Sparse signal recovery
weighted <named-content xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" content-type="math" xlink:type="simple"> <inline-formula> <tex-math notation="LaTeX"> ell_1</tex-math> </inline-formula> </named-content>-norm minimization
Title A Weighted Approach for Sparse Signal Support Estimation with Application to EEG Source Localization
URI https://ieeexplore.ieee.org/document/8038061
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore Electronic Library
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJz34NcX5RQ5eBNulaZMmxyLVIU6EbrhbSZpURNmGdBf_epO0q1NEvIWQlJAX-n7v4_ceABeayYhLEnsace0oOZ5UJfVEEJeUK1FqR48ePdDhJLqbkmkHXLVcGK21Sz7Tvh26WL6aF0vrKhswFDJkbZ2NmNGaq9VGDKLI9eIycCH0CIunq5Ak4oNx9mhzuGIfx7afNvqmgtZ6qjiVcrMDRqvD1Jkkr_6ykn7x8aNO439Puwu2G2wJk_ox7IGOnu2DrbWKgz2gEvjknKFawaQpJw4NboXZwli4GmYvz_YTttenweUwNT-AmtsIrcMWJl_hbljNYZrewsx5_-G91YkNp_MATG7S8fXQaxoteAWmYeVxFZOgUKGkFl6I0ugsLFBkJg14tPFdSVEZ4YIgWWIRh0RQRrkMcUmU4JEKD0F3Np_pIwANosJYBYFkghlbqOSMCB7qAGtWBAWJ-mCwuvu8aKqQ22YYb7mzRhDPjbRyK628kVYfXLY7FnUFjj_W9qwc2nWNCI5_nz4Bm3azTU4JyCnoVu9LfWYgRiXP3dv6BHW4zHI
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9DD-rBrynOzxy8CHZL06RNjkM2p25D6Ia7laRJRZRtSHfxrzdJuzpFxFsIaQh5oe_3Pn7vAXCpmSRc0sjTiGtHyfGkykJP-FEWciUy7ejRg2HYG5P7CZ3UwHXFhdFau-Qz3bRDF8tXs3RhXWUthgKGrK2zTgkhtGBrVTEDQlw3LgMYAo-yaLIMSiLeGsWPNosrauLIdtRG35TQSlcVp1S6O2CwPE6RS_LaXOSymX78qNT43_Pugu0SXcJ28Rz2QE1P98HWSs3BOlBt-OTcoVrBdllQHBrkCuO5sXE1jF-e7Ra226dB5rBjfgEFuxFaly1sfwW8YT6Dnc4tjJ3_H_atVixZnQdg3O2Mbnpe2WrBS3EY5B5XEfVTFcjQAgyRGa2FBSJm0sBHG-GVIcoITimSGRZRQEXIQi4DnFElOFHBIVibzqb6CECDqTBWvi-ZYMYayjijggfax5qlfkpJA7SWd5-kZR1y2w7jLXH2COKJkVZipZWU0mqAq-qLeVGD44-1dSuHal0pguPfpy_ARm806Cf9u-HDCdi0G9lUFZ-egrX8faHPDODI5bl7Z59Xjs-_
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Weighted+Approach+for+Sparse+Signal+Support+Estimation+with+Application+to+EEG+Source+Localization&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Al+Hilli%2C+Ahmed&rft.au=Najafizadeh%2C+Laleh&rft.au=Petropulu%2C+Athina+P.&rft.date=2017-12-15&rft.pub=IEEE&rft.issn=1053-587X&rft.volume=65&rft.issue=24&rft.spage=6551&rft.epage=6565&rft_id=info:doi/10.1109%2FTSP.2017.2752690&rft.externalDocID=8038061
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon