MFCC-Calib: A generalized algorithm framework for calibrating LiDAR-IMU exterior orientation elements based on multi-feature control and constraint method

The Mobile Mapping System (MMS), comprised of Light Detection and Ranging (LiDAR), the Global Navigation Satellite System (GNSS) and the Inertial Measurement Unit (IMU), is frequently utilized for the acquisition of 3D spatial data. It is essential to note that the exterior orientation elements betw...

Full description

Saved in:
Bibliographic Details
Published inOptics and laser technology Vol. 189; p. 113019
Main Authors Shi, Bo, Yang, Xingyi, Zhao, Kai, Ren, Hongwei, Yang, Fanlin
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2025
Subjects
Online AccessGet full text
ISSN0030-3992
DOI10.1016/j.optlastec.2025.113019

Cover

Abstract The Mobile Mapping System (MMS), comprised of Light Detection and Ranging (LiDAR), the Global Navigation Satellite System (GNSS) and the Inertial Measurement Unit (IMU), is frequently utilized for the acquisition of 3D spatial data. It is essential to note that the exterior orientation elements between LiDAR and IMU directly influence the overall quality and accuracy of the acquired data. This paper proposes a generalized algorithm for calibrating LiDAR-IMU exterior orientation elements based on the combination of multi-feature control and constraint method, which makes the calibration model more general, reduces memory usage, and enhances the computational speed. In the calibration model, we first present the construction method for a single-feature calibration model in a general sense, which is subsequently extended to develop multi-feature calibration models. Additionally, the least squares adjustment with conditions and constraints method is employed to formulate the feature calibration model, which expresses the calibration method based on feature control and constraints in a unified form. Finally, this model is versatile and can be applied to calibration tasks involving diverse observations and exterior orientation elements. In terms of algorithm implementation, the feature calibration model presented in this paper employs the summation of normals algorithm during the construction of the single-feature calibration model. This approach eliminates the need for high-dimensional matrix storage and operations, thereby enhancing computational efficiency. Furthermore, the parallel construction of multi-feature, based on the independence of different features in the normal equation construction process, significantly reduces computational time. In a dataset comprising 2 million data points of 15 features, the calibration process requires less than 3s of computational time and occupies less than 1MB of memory usage. To assess the performance of the algorithm, we analyze both time and space complexity. The time complexity is represented as O(n), being directly proportional to the size of the observation dataset and inversely proportional to the available parallel computing resources. Simultaneously, space complexity scales linearly with the number of features. These patterns are verified using empirical datasets. •A generalized framework for calibrating LiDAR-IMU exterior orientation is proposed.•The calibration framework flexibly combines multi-features with control and constraint method.•The framework based on the parallel structure of MFCC method, which improves the speed of calibration.
AbstractList The Mobile Mapping System (MMS), comprised of Light Detection and Ranging (LiDAR), the Global Navigation Satellite System (GNSS) and the Inertial Measurement Unit (IMU), is frequently utilized for the acquisition of 3D spatial data. It is essential to note that the exterior orientation elements between LiDAR and IMU directly influence the overall quality and accuracy of the acquired data. This paper proposes a generalized algorithm for calibrating LiDAR-IMU exterior orientation elements based on the combination of multi-feature control and constraint method, which makes the calibration model more general, reduces memory usage, and enhances the computational speed. In the calibration model, we first present the construction method for a single-feature calibration model in a general sense, which is subsequently extended to develop multi-feature calibration models. Additionally, the least squares adjustment with conditions and constraints method is employed to formulate the feature calibration model, which expresses the calibration method based on feature control and constraints in a unified form. Finally, this model is versatile and can be applied to calibration tasks involving diverse observations and exterior orientation elements. In terms of algorithm implementation, the feature calibration model presented in this paper employs the summation of normals algorithm during the construction of the single-feature calibration model. This approach eliminates the need for high-dimensional matrix storage and operations, thereby enhancing computational efficiency. Furthermore, the parallel construction of multi-feature, based on the independence of different features in the normal equation construction process, significantly reduces computational time. In a dataset comprising 2 million data points of 15 features, the calibration process requires less than 3s of computational time and occupies less than 1MB of memory usage. To assess the performance of the algorithm, we analyze both time and space complexity. The time complexity is represented as O(n), being directly proportional to the size of the observation dataset and inversely proportional to the available parallel computing resources. Simultaneously, space complexity scales linearly with the number of features. These patterns are verified using empirical datasets. •A generalized framework for calibrating LiDAR-IMU exterior orientation is proposed.•The calibration framework flexibly combines multi-features with control and constraint method.•The framework based on the parallel structure of MFCC method, which improves the speed of calibration.
ArticleNumber 113019
Author Zhao, Kai
Yang, Fanlin
Shi, Bo
Yang, Xingyi
Ren, Hongwei
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0001-9592-1002
  surname: Shi
  fullname: Shi, Bo
– sequence: 2
  givenname: Xingyi
  surname: Yang
  fullname: Yang, Xingyi
– sequence: 3
  givenname: Kai
  orcidid: 0000-0002-5746-2770
  surname: Zhao
  fullname: Zhao, Kai
  email: zhaokai218232@sdust.edu.cn
– sequence: 4
  givenname: Hongwei
  surname: Ren
  fullname: Ren, Hongwei
– sequence: 5
  givenname: Fanlin
  surname: Yang
  fullname: Yang, Fanlin
BookMark eNqFUMlOwzAQ9aFIlOUb8A8keMnScIvCKhUhIXq2HHvSuiQ2ss36KXwtroq4cpp58-Y9zbwjNLPOAkJnlOSU0Op8m7uXOMoQQeWMsDKnlBPazNCcEE4y3jTsEB2FsCWEFFXJ5-j7_rrrsk6Opr_ALV6DBZ_AF2gsx7XzJm4mPHg5wbvzz3hwHqvdspfR2DVemsv2Mbu7X2H4iOBNopMGbEy0sxhGmBIIuJchOabJ9DpGkw0g46sHrJyN3o1YWr3rQ_TS2IgniBunT9DBIMcAp7_1GK2ur56622z5cHPXtctMsYrHrKkHtqio1hVRRckHYKwB1vCygIbVUOi-Lxa8Kuu-7Jtq0fOe1kC1qgmjXFWUH6N676u8C8HDIF68maT_FJSIXaxiK_5iFbtYxT7WpGz3SkjnvRnwIqj0vAJtPKgotDP_evwABj-L9Q
Cites_doi 10.3390/s23063119
10.1109/TIM.2017.2757148
10.1016/j.isprsjprs.2013.04.005
10.3390/rs9100975
10.1007/s12517-022-10303-2
10.1016/j.measurement.2013.03.006
10.3390/rs11040442
10.3390/rs11131540
10.1007/s12524-014-0443-z
10.5194/isprs-archives-XL-3-W4-55-2016
10.1016/j.robot.2019.01.010
10.1109/TIE.2019.2956368
10.1007/s12518-018-0222-6
10.1007/s10462-022-10317-y
10.1088/1361-6501/abecec
10.1109/JSTARS.2018.2812796
10.1016/j.isprsjprs.2021.08.020
10.3390/s17030474
10.1016/j.measurement.2020.108759
10.1109/ACCESS.2023.3247195
10.1109/TGRS.2021.3050789
10.1080/19475705.2021.1964617
10.1109/TRO.2022.3172474
10.14358/PERS.69.11.1235
10.1016/j.isprsjprs.2006.07.003
10.1109/TRO.2021.3078287
10.1109/ACCESS.2021.3114618
10.4218/etrij.08.0106.0306
10.1016/j.isprsjprs.2023.04.004
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.optlastec.2025.113019
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
ExternalDocumentID 10_1016_j_optlastec_2025_113019
S0030399225006103
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABXZ
AAEDT
AAEDW
AAEPC
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABJNI
ABMAC
ABNEU
ABWVN
ABXDB
ABXRA
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFFNX
AFJKZ
AFPUW
AFRZQ
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AIVDX
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMV
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M38
M41
MAGPM
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SPD
SPG
SSH
SSM
SSQ
SST
SSZ
T5K
TN5
UHS
WH7
WUQ
ZMT
~G-
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c263t-97f2861dd60c453fe229e29354e927e4dbb483657b5b968b3b17e1dc70213c613
IEDL.DBID .~1
ISSN 0030-3992
IngestDate Wed Oct 01 05:51:52 EDT 2025
Sat Jul 05 17:12:27 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Control calibration method
Mobile mapping system (MMS)
Multi-feature calibration method
Constraint calibration method
Light Detection and Ranging (LiDAR)
Inertial Measurement Unit (IMU)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-97f2861dd60c453fe229e29354e927e4dbb483657b5b968b3b17e1dc70213c613
ORCID 0000-0002-5746-2770
0000-0001-9592-1002
ParticipantIDs crossref_primary_10_1016_j_optlastec_2025_113019
elsevier_sciencedirect_doi_10_1016_j_optlastec_2025_113019
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2025
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: November 2025
PublicationDecade 2020
PublicationTitle Optics and laser technology
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Xiao, Wang, Ren, Zhang, Ji (b37) 2023; 56
Huai, Lin, Zhuang, Toth, Chen (b22) 2022; 38
Di Stefano, Chiappini, Gorreja, Balestra, Pierdicca (b6) 2021; 12
Ravi, Lin, Elbahnasawy, Shamseldin, Habib (b19) 2018; 11
Li, Wang, Li, Tian, Chen, Li (b18) 2021; 9
Lv, Xu, Hu, Liu, Zuo (b39) 2020
Gong, Wen, Wang, Li (b38) 2018; 67
Al Bayari (b4) 2018; 11
Wu, Li, Chen, Yang, Zou, Yang, Xu, Zhong, Chen (b24) 2023; 199
Liu, Gardoni, Li, Krolczyk, Du, Li, Sotelo (b28) 2022; 60
Mikhail, Ackermann (b26) 1976
Goebbels (b2) 2021; 5
Glennie, Kusari, Facchin (b14) 2016; XL-3/W4
Filin (b16) 2003; 69
Javanmardi, Javanmardi, Gu, Kamijo (b9) 2017; 9
Liu, Li, Malekian, Angel Sotelo, Ma, Li (b34) 2020; 67
Hou, Xu, Ito, Yao (b8) 2022
Yu, Lu, Tian, Chan, Chen (b35) 2021; 32
Fan, Yu, Xu, Zhao (b21) 2023; 11
Wang, Zhu, Li (b3) 2019; 11
Vallet, Mallet (b25) 2016
Rieger, Studnicka, Pfennigbauer, Zach (b31) 2010; 4
Shi, Bai, Zhang, Zhong, Li (b41) 2021; 171
Toth, Shin, Grejner-Brzezinska, Kwon (b5) 2008; 2
Li, Tan, Liu (b15) 2019; 11
Liu, Li (b33) 2019; 114
Puente, González-Jorge, Martínez-Sánchez, Arias (b1) 2013; 46
Ding, Wang, Li, Mumford, Rizos (b11) 2008; 30
Hong, Park, Lee, Lim, Choi, Sohn (b32) 2017; 17
Jiang, Hu, Si, Zhang, Chen, Guo, Ding, Zhong, Zhu (b12) 2023; 118
Zhou, Hasheminasab, Habib (b20) 2021; 180
Dhall, Chelani, Radhakrishnan, Krishna (b36) 2017
Jiao, Ye, Zhu, Liu (b23) 2022; 38
Kuçak, Erol, Erol (b29) 2022; 15
Grewal, Andrews, Bartone (b7) 2020
Goel, Lohani (b10) 2015; 43
Skaloud, Lichti (b17) 2006; 61
Yan, Liu, Wang, Shi, Wei, Cai, Ma, Liu, Zhong, Liu, Zhao, Ma, Li (b40) 2022
Yin, Xie, Fu, Wang, Zhong (b13) 2023; 23
Ji, Yang, Tang, Xu (b27) 2021; 59
Chan, Lichti, Glennie (b30) 2013; 82
Jiang (10.1016/j.optlastec.2025.113019_b12) 2023; 118
Goebbels (10.1016/j.optlastec.2025.113019_b2) 2021; 5
Hou (10.1016/j.optlastec.2025.113019_b8) 2022
Kuçak (10.1016/j.optlastec.2025.113019_b29) 2022; 15
Goel (10.1016/j.optlastec.2025.113019_b10) 2015; 43
Glennie (10.1016/j.optlastec.2025.113019_b14) 2016; XL-3/W4
Huai (10.1016/j.optlastec.2025.113019_b22) 2022; 38
Al Bayari (10.1016/j.optlastec.2025.113019_b4) 2018; 11
Rieger (10.1016/j.optlastec.2025.113019_b31) 2010; 4
Ravi (10.1016/j.optlastec.2025.113019_b19) 2018; 11
Shi (10.1016/j.optlastec.2025.113019_b41) 2021; 171
Yu (10.1016/j.optlastec.2025.113019_b35) 2021; 32
Di Stefano (10.1016/j.optlastec.2025.113019_b6) 2021; 12
Puente (10.1016/j.optlastec.2025.113019_b1) 2013; 46
Wu (10.1016/j.optlastec.2025.113019_b24) 2023; 199
Liu (10.1016/j.optlastec.2025.113019_b33) 2019; 114
Lv (10.1016/j.optlastec.2025.113019_b39) 2020
Toth (10.1016/j.optlastec.2025.113019_b5) 2008; 2
Li (10.1016/j.optlastec.2025.113019_b18) 2021; 9
Chan (10.1016/j.optlastec.2025.113019_b30) 2013; 82
Zhou (10.1016/j.optlastec.2025.113019_b20) 2021; 180
Li (10.1016/j.optlastec.2025.113019_b15) 2019; 11
Fan (10.1016/j.optlastec.2025.113019_b21) 2023; 11
Liu (10.1016/j.optlastec.2025.113019_b28) 2022; 60
Hong (10.1016/j.optlastec.2025.113019_b32) 2017; 17
Vallet (10.1016/j.optlastec.2025.113019_b25) 2016
Yan (10.1016/j.optlastec.2025.113019_b40) 2022
Gong (10.1016/j.optlastec.2025.113019_b38) 2018; 67
Yin (10.1016/j.optlastec.2025.113019_b13) 2023; 23
Filin (10.1016/j.optlastec.2025.113019_b16) 2003; 69
Javanmardi (10.1016/j.optlastec.2025.113019_b9) 2017; 9
Dhall (10.1016/j.optlastec.2025.113019_b36) 2017
Ding (10.1016/j.optlastec.2025.113019_b11) 2008; 30
Liu (10.1016/j.optlastec.2025.113019_b34) 2020; 67
Mikhail (10.1016/j.optlastec.2025.113019_b26) 1976
Ji (10.1016/j.optlastec.2025.113019_b27) 2021; 59
Wang (10.1016/j.optlastec.2025.113019_b3) 2019; 11
Grewal (10.1016/j.optlastec.2025.113019_b7) 2020
Li (10.1016/j.optlastec.2025.113019_b37) 2023; 56
Skaloud (10.1016/j.optlastec.2025.113019_b17) 2006; 61
Jiao (10.1016/j.optlastec.2025.113019_b23) 2022; 38
References_xml – volume: 15
  year: 2022
  ident: b29
  article-title: The strip adjustment of mobile LiDAR point clouds using iterative closest point (ICP) algorithm
  publication-title: Arab. J. Geosci.
– volume: 9
  start-page: 975
  year: 2017
  ident: b9
  article-title: Towards high-definition 3D urban mapping: Road feature-based registration of mobile mapping systems and aerial imagery
  publication-title: Remote. Sens.
– start-page: 9968
  year: 2020
  end-page: 9975
  ident: b39
  article-title: Targetless calibration of LiDAR-IMU system based on continuous-time batch estimation
  publication-title: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 2
  year: 2008
  ident: b5
  article-title: On accurate time synchronization of multi-sensor mobile mapping systems
  publication-title: J. Appl. Geod.
– volume: 9
  start-page: 138803
  year: 2021
  end-page: 138816
  ident: b18
  article-title: 3D lidar/IMU calibration based on continuous-time trajectory estimation in structured environments
  publication-title: IEEE Access
– year: 1976
  ident: b26
  article-title: Observations and least squares
– volume: 60
  start-page: 1
  year: 2022
  end-page: 14
  ident: b28
  article-title: Multiple natural features fusion for on-site calibration of LiDAR boresight angle misalignment
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 61
  start-page: 47
  year: 2006
  end-page: 59
  ident: b17
  article-title: Rigorous approach to bore-sight self-calibration in airborne laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2022
  ident: b40
  article-title: OpenCalib: A multi-sensor calibration toolbox for autonomous driving
– volume: 11
  start-page: 18750
  year: 2023
  end-page: 18760
  ident: b21
  article-title: High-precision external parameter calibration method for camera and lidar based on a calibration device
  publication-title: IEEE Access
– volume: 67
  start-page: 238
  year: 2018
  end-page: 240
  ident: b38
  article-title: A target-free automatic self-calibration approach for multibeam laser scanners
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 11
  start-page: 1
  year: 2018
  end-page: 13
  ident: b4
  article-title: Mobile mapping systems in civil engineering projects (case studies)
  publication-title: Appl. Geomatics
– volume: XL-3/W4
  start-page: 55
  year: 2016
  end-page: 60
  ident: b14
  article-title: Calibration and stability analysis of the VLP-16 laser scanner
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
– year: 2022
  ident: b8
  article-title: An optimization-based IMU/Lidar/Camera co-calibration method
  publication-title: 2022 7th International Conference on Robotics and Automation Engineering
– volume: 38
  start-page: 351
  year: 2022
  end-page: 371
  ident: b23
  article-title: Robust odometry and mapping for multi-LiDAR systems with online extrinsic calibration
  publication-title: IEEE Trans. Robot.
– volume: 17
  start-page: 474
  year: 2017
  ident: b32
  article-title: Utilization of a terrestrial laser scanner for the calibration of mobile mapping systems
  publication-title: Sensors
– start-page: 63
  year: 2016
  end-page: 100
  ident: b25
  article-title: Urban scene analysis with mobile mapping technology
  publication-title: Land Surface Remote Sensing in Urban and Coastal Areas
– volume: 59
  start-page: 8129
  year: 2021
  end-page: 8142
  ident: b27
  article-title: A coarse-to-fine strip mosaicing model for airborne bathymetric LiDAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 171
  year: 2021
  ident: b41
  article-title: Reference-plane-based approach for accuracy assessment of mobile mapping point clouds
  publication-title: Measurement
– volume: 46
  start-page: 2127
  year: 2013
  end-page: 2145
  ident: b1
  article-title: Review of mobile mapping and surveying technologies
  publication-title: Measurement
– volume: 43
  start-page: 639
  year: 2015
  end-page: 645
  ident: b10
  article-title: Relative contribution and effect of various error sources on the performance of mobile mapping system (MMS)
  publication-title: J. the Indian Soc. Remote. Sens.
– volume: 180
  start-page: 336
  year: 2021
  end-page: 356
  ident: b20
  article-title: Tightly-coupled camera/LiDAR integration for point cloud generation from GNSS/INS-assisted UAV mapping systems
  publication-title: ISPRS J. Photogramm. Remote Sens.
– year: 2020
  ident: b7
  article-title: Global Navigation Satellite Systems, Inertial Navigation, and Integration
– volume: 118
  year: 2023
  ident: b12
  article-title: A flexible calibration method with multi-stage optimization for the axial error of mobile mapping systems
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 11
  start-page: 442
  year: 2019
  ident: b15
  article-title: Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by strip adjustment
  publication-title: Remote. Sens.
– volume: 69
  start-page: 1235
  year: 2003
  end-page: 1242
  ident: b16
  article-title: Recovery of systematic biases in laser altimetry data using natural surfaces
  publication-title: Photogramm. Eng. Remote Sens.
– volume: 4
  start-page: 13
  year: 2010
  end-page: 21
  ident: b31
  article-title: Boresight alignment method for mobile laser scanning systems
  publication-title: J. Appl. Geod.
– volume: 38
  start-page: 3219
  year: 2022
  end-page: 3237
  ident: b22
  article-title: Observability analysis and keyframe-based filtering for visual inertial odometry with full self-calibration
  publication-title: IEEE Trans. Robot.
– volume: 67
  start-page: 9851
  year: 2020
  end-page: 9861
  ident: b34
  article-title: A novel multifeature based on-site calibration method for LiDAR-IMU system
  publication-title: Ieee Trans. Ind. Electron.
– volume: 5
  year: 2021
  ident: b2
  article-title: 3D reconstruction of bridges from airborne laser scanning data and cadastral footprints
  publication-title: J. Geovisualization Spat. Anal.
– volume: 30
  start-page: 59
  year: 2008
  end-page: 67
  ident: b11
  article-title: Time synchronization error and calibration in integrated GPS/INS systems
  publication-title: ETRI J.
– volume: 23
  start-page: 3119
  year: 2023
  ident: b13
  article-title: Uncontrolled two-step iterative calibration algorithm for Lidar–IMU system
  publication-title: Sensors
– year: 2017
  ident: b36
  article-title: LiDAR-Camera Calibration using 3D-3D Point correspondences
– volume: 11
  start-page: 1694
  year: 2018
  end-page: 1714
  ident: b19
  article-title: Simultaneous system calibration of a Multi-LiDAR multicamera mobile mapping platform
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
– volume: 12
  start-page: 2387
  year: 2021
  end-page: 2429
  ident: b6
  article-title: Mobile 3D scan LiDAR: a literature review
  publication-title: Geomatics, Nat. Hazards Risk
– volume: 82
  start-page: 112
  year: 2013
  end-page: 124
  ident: b30
  article-title: Multi-feature based boresight self-calibration of a terrestrial mobile mapping system
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 114
  start-page: 124
  year: 2019
  end-page: 133
  ident: b33
  article-title: Error modeling and extrinsic-intrinsic calibration for LiDAR-IMU system based on cone-cylinder features
  publication-title: Robot. Auton. Syst.
– volume: 32
  year: 2021
  ident: b35
  article-title: Automatic extrinsic self-calibration of mobile LiDAR systems based on planar and spherical features
  publication-title: Meas. Sci. Technol.
– volume: 56
  start-page: 9949
  year: 2023
  end-page: 9987
  ident: b37
  article-title: Automatic targetless lidar-camera calibration: a survey
  publication-title: Artif. Intell. Rev.
– volume: 11
  start-page: 1540
  year: 2019
  ident: b3
  article-title: A survey of mobile laser scanning applications and key techniques over urban areas
  publication-title: Remote. Sens.
– volume: 199
  start-page: 157
  year: 2023
  end-page: 181
  ident: b24
  article-title: AFLI-Calib: Robust lidar-IMU extrinsic self-calibration based on adaptive frame length LiDAR odometry
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 23
  start-page: 3119
  issue: 6
  year: 2023
  ident: 10.1016/j.optlastec.2025.113019_b13
  article-title: Uncontrolled two-step iterative calibration algorithm for Lidar–IMU system
  publication-title: Sensors
  doi: 10.3390/s23063119
– volume: 67
  start-page: 238
  issue: 1
  year: 2018
  ident: 10.1016/j.optlastec.2025.113019_b38
  article-title: A target-free automatic self-calibration approach for multibeam laser scanners
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2017.2757148
– volume: 82
  start-page: 112
  year: 2013
  ident: 10.1016/j.optlastec.2025.113019_b30
  article-title: Multi-feature based boresight self-calibration of a terrestrial mobile mapping system
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2013.04.005
– start-page: 9968
  year: 2020
  ident: 10.1016/j.optlastec.2025.113019_b39
  article-title: Targetless calibration of LiDAR-IMU system based on continuous-time batch estimation
– year: 2020
  ident: 10.1016/j.optlastec.2025.113019_b7
– volume: 9
  start-page: 975
  issue: 10
  year: 2017
  ident: 10.1016/j.optlastec.2025.113019_b9
  article-title: Towards high-definition 3D urban mapping: Road feature-based registration of mobile mapping systems and aerial imagery
  publication-title: Remote. Sens.
  doi: 10.3390/rs9100975
– volume: 15
  issue: 11
  year: 2022
  ident: 10.1016/j.optlastec.2025.113019_b29
  article-title: The strip adjustment of mobile LiDAR point clouds using iterative closest point (ICP) algorithm
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-022-10303-2
– volume: 46
  start-page: 2127
  issue: 7
  year: 2013
  ident: 10.1016/j.optlastec.2025.113019_b1
  article-title: Review of mobile mapping and surveying technologies
  publication-title: Measurement
  doi: 10.1016/j.measurement.2013.03.006
– volume: 2
  issue: 3
  year: 2008
  ident: 10.1016/j.optlastec.2025.113019_b5
  article-title: On accurate time synchronization of multi-sensor mobile mapping systems
  publication-title: J. Appl. Geod.
– year: 2017
  ident: 10.1016/j.optlastec.2025.113019_b36
– volume: 11
  start-page: 442
  issue: 4
  year: 2019
  ident: 10.1016/j.optlastec.2025.113019_b15
  article-title: Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by strip adjustment
  publication-title: Remote. Sens.
  doi: 10.3390/rs11040442
– volume: 11
  start-page: 1540
  issue: 13
  year: 2019
  ident: 10.1016/j.optlastec.2025.113019_b3
  article-title: A survey of mobile laser scanning applications and key techniques over urban areas
  publication-title: Remote. Sens.
  doi: 10.3390/rs11131540
– volume: 43
  start-page: 639
  issue: 3
  year: 2015
  ident: 10.1016/j.optlastec.2025.113019_b10
  article-title: Relative contribution and effect of various error sources on the performance of mobile mapping system (MMS)
  publication-title: J. the Indian Soc. Remote. Sens.
  doi: 10.1007/s12524-014-0443-z
– volume: 118
  year: 2023
  ident: 10.1016/j.optlastec.2025.113019_b12
  article-title: A flexible calibration method with multi-stage optimization for the axial error of mobile mapping systems
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: XL-3/W4
  start-page: 55
  year: 2016
  ident: 10.1016/j.optlastec.2025.113019_b14
  article-title: Calibration and stability analysis of the VLP-16 laser scanner
  publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci.
  doi: 10.5194/isprs-archives-XL-3-W4-55-2016
– volume: 4
  start-page: 13
  issue: 1
  year: 2010
  ident: 10.1016/j.optlastec.2025.113019_b31
  article-title: Boresight alignment method for mobile laser scanning systems
  publication-title: J. Appl. Geod.
– volume: 114
  start-page: 124
  year: 2019
  ident: 10.1016/j.optlastec.2025.113019_b33
  article-title: Error modeling and extrinsic-intrinsic calibration for LiDAR-IMU system based on cone-cylinder features
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2019.01.010
– volume: 67
  start-page: 9851
  issue: 11
  year: 2020
  ident: 10.1016/j.optlastec.2025.113019_b34
  article-title: A novel multifeature based on-site calibration method for LiDAR-IMU system
  publication-title: Ieee Trans. Ind. Electron.
  doi: 10.1109/TIE.2019.2956368
– volume: 11
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.optlastec.2025.113019_b4
  article-title: Mobile mapping systems in civil engineering projects (case studies)
  publication-title: Appl. Geomatics
  doi: 10.1007/s12518-018-0222-6
– volume: 56
  start-page: 9949
  issue: 9
  year: 2023
  ident: 10.1016/j.optlastec.2025.113019_b37
  article-title: Automatic targetless lidar-camera calibration: a survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-022-10317-y
– volume: 32
  issue: 6
  year: 2021
  ident: 10.1016/j.optlastec.2025.113019_b35
  article-title: Automatic extrinsic self-calibration of mobile LiDAR systems based on planar and spherical features
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/abecec
– volume: 11
  start-page: 1694
  issue: 5
  year: 2018
  ident: 10.1016/j.optlastec.2025.113019_b19
  article-title: Simultaneous system calibration of a Multi-LiDAR multicamera mobile mapping platform
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens.
  doi: 10.1109/JSTARS.2018.2812796
– volume: 180
  start-page: 336
  year: 2021
  ident: 10.1016/j.optlastec.2025.113019_b20
  article-title: Tightly-coupled camera/LiDAR integration for point cloud generation from GNSS/INS-assisted UAV mapping systems
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.08.020
– volume: 5
  issue: 1
  year: 2021
  ident: 10.1016/j.optlastec.2025.113019_b2
  article-title: 3D reconstruction of bridges from airborne laser scanning data and cadastral footprints
  publication-title: J. Geovisualization Spat. Anal.
– year: 2022
  ident: 10.1016/j.optlastec.2025.113019_b8
  article-title: An optimization-based IMU/Lidar/Camera co-calibration method
– volume: 17
  start-page: 474
  issue: 3
  year: 2017
  ident: 10.1016/j.optlastec.2025.113019_b32
  article-title: Utilization of a terrestrial laser scanner for the calibration of mobile mapping systems
  publication-title: Sensors
  doi: 10.3390/s17030474
– volume: 171
  year: 2021
  ident: 10.1016/j.optlastec.2025.113019_b41
  article-title: Reference-plane-based approach for accuracy assessment of mobile mapping point clouds
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.108759
– year: 1976
  ident: 10.1016/j.optlastec.2025.113019_b26
– volume: 11
  start-page: 18750
  year: 2023
  ident: 10.1016/j.optlastec.2025.113019_b21
  article-title: High-precision external parameter calibration method for camera and lidar based on a calibration device
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3247195
– year: 2022
  ident: 10.1016/j.optlastec.2025.113019_b40
– volume: 59
  start-page: 8129
  issue: 10
  year: 2021
  ident: 10.1016/j.optlastec.2025.113019_b27
  article-title: A coarse-to-fine strip mosaicing model for airborne bathymetric LiDAR data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2021.3050789
– volume: 12
  start-page: 2387
  issue: 1
  year: 2021
  ident: 10.1016/j.optlastec.2025.113019_b6
  article-title: Mobile 3D scan LiDAR: a literature review
  publication-title: Geomatics, Nat. Hazards Risk
  doi: 10.1080/19475705.2021.1964617
– volume: 38
  start-page: 3219
  issue: 5
  year: 2022
  ident: 10.1016/j.optlastec.2025.113019_b22
  article-title: Observability analysis and keyframe-based filtering for visual inertial odometry with full self-calibration
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2022.3172474
– volume: 69
  start-page: 1235
  issue: 11
  year: 2003
  ident: 10.1016/j.optlastec.2025.113019_b16
  article-title: Recovery of systematic biases in laser altimetry data using natural surfaces
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.69.11.1235
– volume: 61
  start-page: 47
  issue: 1
  year: 2006
  ident: 10.1016/j.optlastec.2025.113019_b17
  article-title: Rigorous approach to bore-sight self-calibration in airborne laser scanning
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2006.07.003
– volume: 38
  start-page: 351
  issue: 1
  year: 2022
  ident: 10.1016/j.optlastec.2025.113019_b23
  article-title: Robust odometry and mapping for multi-LiDAR systems with online extrinsic calibration
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2021.3078287
– volume: 9
  start-page: 138803
  year: 2021
  ident: 10.1016/j.optlastec.2025.113019_b18
  article-title: 3D lidar/IMU calibration based on continuous-time trajectory estimation in structured environments
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3114618
– start-page: 63
  year: 2016
  ident: 10.1016/j.optlastec.2025.113019_b25
  article-title: Urban scene analysis with mobile mapping technology
– volume: 30
  start-page: 59
  issue: 1
  year: 2008
  ident: 10.1016/j.optlastec.2025.113019_b11
  article-title: Time synchronization error and calibration in integrated GPS/INS systems
  publication-title: ETRI J.
  doi: 10.4218/etrij.08.0106.0306
– volume: 199
  start-page: 157
  year: 2023
  ident: 10.1016/j.optlastec.2025.113019_b24
  article-title: AFLI-Calib: Robust lidar-IMU extrinsic self-calibration based on adaptive frame length LiDAR odometry
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2023.04.004
– volume: 60
  start-page: 1
  year: 2022
  ident: 10.1016/j.optlastec.2025.113019_b28
  article-title: Multiple natural features fusion for on-site calibration of LiDAR boresight angle misalignment
  publication-title: IEEE Trans. Geosci. Remote Sens.
SSID ssj0004653
Score 2.4143791
Snippet The Mobile Mapping System (MMS), comprised of Light Detection and Ranging (LiDAR), the Global Navigation Satellite System (GNSS) and the Inertial Measurement...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113019
SubjectTerms Constraint calibration method
Control calibration method
Inertial Measurement Unit (IMU)
Light Detection and Ranging (LiDAR)
Mobile mapping system (MMS)
Multi-feature calibration method
Title MFCC-Calib: A generalized algorithm framework for calibrating LiDAR-IMU exterior orientation elements based on multi-feature control and constraint method
URI https://dx.doi.org/10.1016/j.optlastec.2025.113019
Volume 189
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0030-3992
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004653
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  issn: 0030-3992
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004653
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0030-3992
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004653
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0030-3992
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0004653
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0030-3992
  databaseCode: AKRWK
  dateStart: 19710201
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004653
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LIuhBfOL6WHLwWnXbpGn3VqrL-lgP4oK30iRTrWi77NaLB3-Iv9ZJ2soKggcvpU2bUDJh5hv45htCjrnnY5qcgcNBY4LiBuDgKUnxgvmWZkIpSx4f3_qjCbt64A8dEre1MIZW2fj-2qdbb92MnDa7eTrNc1Pji-7XyKpyE4et4idjwnQxOPnoL9RGNkqUHvob_PoHx6ucVohRKzBahi43_U2s5M5vEWoh6gw3yHoDF2lU_9Em6UCxRdYWRAS3yIolcar5NvkcD-PYMdVWckAj-lgrSufvoGn68ljO8urplWYtG4siXKUqtfmy4T7Tm_w8unMuxxNqHXaOr8tZ3tQmFRRqovmcmsCnKY5YMqKTgdUGpQ3pnaaFNvdz23yionWL6h0yGV7cxyOn6b3gKNf3KicUmRv4fa39M8U4GtN1Q0BowBmErgCmpWSB53MhuQz9QHqyL6CvlUDM4CnECLtkqSgL2CM0DUB4POWZyhgLAWQWprhsoFMRyAB0l5y1-51Ma4mNpOWePSffJkqMiZLaRF0yaO2S_DgtCQaCvybv_2fyAVk1T3U14iFZqmZvcISwpJI9e-56ZDm6vB7dfgEAFeU8
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5DEfUg_sT5MwevVdcmTbvbmI5Ntx1kg91Kk7xqRbux1YsH_xD_Wl_SViYIHryUkjQl5IX3vgff-x4hF9zzMU1OwOGgMUFxA3DwlsT4wHxLM6GUJY8Phn53zO4mfFIj7aoWxtAqS99f-HTrrcuRq_I0r2Zpamp80f0aWVVu4rBR_Fxl3BUmA7v8aCwVR5ZSlB46HPz8B8lrOssRpOZgxAxdbhqcWM2d30LUUtjpbJOtEi_SVrGlHVKDbJdsLqkI7pI1y-JUiz3yOei0244pt5JN2qKPhaR0-g6axi-P03maP73SpKJjUcSrVMU2YTbkZ9pPb1oPTm8wptZjpzg9nadlcVJGoWCaL6iJfJriiGUjOglYcVBast5pnGnzvrDdJ3Ja9KjeJ-PO7ajddcrmC45yfS93QpG4gd_Q2r9WjKM1XTcExAacQegKYFpKFng-F5LL0A-kJxsCGloJBA2eQpBwQFayaQaHhMYBCI_HPFEJYyGATMIYfxvoWAQyAF0n19V5R7NCYyOqyGfP0beJImOiqDBRnTQru0Q_rkuEkeCvxUf_WXxO1rujQT_q94b3x2TDzBSliSdkJZ-_wSlilFye2Tv4BV835tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFCC-Calib%3A+A+generalized+algorithm+framework+for+calibrating+LiDAR-IMU+exterior+orientation+elements+based+on+multi-feature+control+and+constraint+method&rft.jtitle=Optics+and+laser+technology&rft.au=Shi%2C+Bo&rft.au=Yang%2C+Xingyi&rft.au=Zhao%2C+Kai&rft.au=Ren%2C+Hongwei&rft.date=2025-11-01&rft.issn=0030-3992&rft.volume=189&rft.spage=113019&rft_id=info:doi/10.1016%2Fj.optlastec.2025.113019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2025_113019
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon