MFCC-Calib: A generalized algorithm framework for calibrating LiDAR-IMU exterior orientation elements based on multi-feature control and constraint method
The Mobile Mapping System (MMS), comprised of Light Detection and Ranging (LiDAR), the Global Navigation Satellite System (GNSS) and the Inertial Measurement Unit (IMU), is frequently utilized for the acquisition of 3D spatial data. It is essential to note that the exterior orientation elements betw...
Saved in:
| Published in | Optics and laser technology Vol. 189; p. 113019 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.11.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0030-3992 |
| DOI | 10.1016/j.optlastec.2025.113019 |
Cover
| Abstract | The Mobile Mapping System (MMS), comprised of Light Detection and Ranging (LiDAR), the Global Navigation Satellite System (GNSS) and the Inertial Measurement Unit (IMU), is frequently utilized for the acquisition of 3D spatial data. It is essential to note that the exterior orientation elements between LiDAR and IMU directly influence the overall quality and accuracy of the acquired data. This paper proposes a generalized algorithm for calibrating LiDAR-IMU exterior orientation elements based on the combination of multi-feature control and constraint method, which makes the calibration model more general, reduces memory usage, and enhances the computational speed. In the calibration model, we first present the construction method for a single-feature calibration model in a general sense, which is subsequently extended to develop multi-feature calibration models. Additionally, the least squares adjustment with conditions and constraints method is employed to formulate the feature calibration model, which expresses the calibration method based on feature control and constraints in a unified form. Finally, this model is versatile and can be applied to calibration tasks involving diverse observations and exterior orientation elements. In terms of algorithm implementation, the feature calibration model presented in this paper employs the summation of normals algorithm during the construction of the single-feature calibration model. This approach eliminates the need for high-dimensional matrix storage and operations, thereby enhancing computational efficiency. Furthermore, the parallel construction of multi-feature, based on the independence of different features in the normal equation construction process, significantly reduces computational time. In a dataset comprising 2 million data points of 15 features, the calibration process requires less than 3s of computational time and occupies less than 1MB of memory usage. To assess the performance of the algorithm, we analyze both time and space complexity. The time complexity is represented as O(n), being directly proportional to the size of the observation dataset and inversely proportional to the available parallel computing resources. Simultaneously, space complexity scales linearly with the number of features. These patterns are verified using empirical datasets.
•A generalized framework for calibrating LiDAR-IMU exterior orientation is proposed.•The calibration framework flexibly combines multi-features with control and constraint method.•The framework based on the parallel structure of MFCC method, which improves the speed of calibration. |
|---|---|
| AbstractList | The Mobile Mapping System (MMS), comprised of Light Detection and Ranging (LiDAR), the Global Navigation Satellite System (GNSS) and the Inertial Measurement Unit (IMU), is frequently utilized for the acquisition of 3D spatial data. It is essential to note that the exterior orientation elements between LiDAR and IMU directly influence the overall quality and accuracy of the acquired data. This paper proposes a generalized algorithm for calibrating LiDAR-IMU exterior orientation elements based on the combination of multi-feature control and constraint method, which makes the calibration model more general, reduces memory usage, and enhances the computational speed. In the calibration model, we first present the construction method for a single-feature calibration model in a general sense, which is subsequently extended to develop multi-feature calibration models. Additionally, the least squares adjustment with conditions and constraints method is employed to formulate the feature calibration model, which expresses the calibration method based on feature control and constraints in a unified form. Finally, this model is versatile and can be applied to calibration tasks involving diverse observations and exterior orientation elements. In terms of algorithm implementation, the feature calibration model presented in this paper employs the summation of normals algorithm during the construction of the single-feature calibration model. This approach eliminates the need for high-dimensional matrix storage and operations, thereby enhancing computational efficiency. Furthermore, the parallel construction of multi-feature, based on the independence of different features in the normal equation construction process, significantly reduces computational time. In a dataset comprising 2 million data points of 15 features, the calibration process requires less than 3s of computational time and occupies less than 1MB of memory usage. To assess the performance of the algorithm, we analyze both time and space complexity. The time complexity is represented as O(n), being directly proportional to the size of the observation dataset and inversely proportional to the available parallel computing resources. Simultaneously, space complexity scales linearly with the number of features. These patterns are verified using empirical datasets.
•A generalized framework for calibrating LiDAR-IMU exterior orientation is proposed.•The calibration framework flexibly combines multi-features with control and constraint method.•The framework based on the parallel structure of MFCC method, which improves the speed of calibration. |
| ArticleNumber | 113019 |
| Author | Zhao, Kai Yang, Fanlin Shi, Bo Yang, Xingyi Ren, Hongwei |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0001-9592-1002 surname: Shi fullname: Shi, Bo – sequence: 2 givenname: Xingyi surname: Yang fullname: Yang, Xingyi – sequence: 3 givenname: Kai orcidid: 0000-0002-5746-2770 surname: Zhao fullname: Zhao, Kai email: zhaokai218232@sdust.edu.cn – sequence: 4 givenname: Hongwei surname: Ren fullname: Ren, Hongwei – sequence: 5 givenname: Fanlin surname: Yang fullname: Yang, Fanlin |
| BookMark | eNqFUMlOwzAQ9aFIlOUb8A8keMnScIvCKhUhIXq2HHvSuiQ2ss36KXwtroq4cpp58-Y9zbwjNLPOAkJnlOSU0Op8m7uXOMoQQeWMsDKnlBPazNCcEE4y3jTsEB2FsCWEFFXJ5-j7_rrrsk6Opr_ALV6DBZ_AF2gsx7XzJm4mPHg5wbvzz3hwHqvdspfR2DVemsv2Mbu7X2H4iOBNopMGbEy0sxhGmBIIuJchOabJ9DpGkw0g46sHrJyN3o1YWr3rQ_TS2IgniBunT9DBIMcAp7_1GK2ur56622z5cHPXtctMsYrHrKkHtqio1hVRRckHYKwB1vCygIbVUOi-Lxa8Kuu-7Jtq0fOe1kC1qgmjXFWUH6N676u8C8HDIF68maT_FJSIXaxiK_5iFbtYxT7WpGz3SkjnvRnwIqj0vAJtPKgotDP_evwABj-L9Q |
| Cites_doi | 10.3390/s23063119 10.1109/TIM.2017.2757148 10.1016/j.isprsjprs.2013.04.005 10.3390/rs9100975 10.1007/s12517-022-10303-2 10.1016/j.measurement.2013.03.006 10.3390/rs11040442 10.3390/rs11131540 10.1007/s12524-014-0443-z 10.5194/isprs-archives-XL-3-W4-55-2016 10.1016/j.robot.2019.01.010 10.1109/TIE.2019.2956368 10.1007/s12518-018-0222-6 10.1007/s10462-022-10317-y 10.1088/1361-6501/abecec 10.1109/JSTARS.2018.2812796 10.1016/j.isprsjprs.2021.08.020 10.3390/s17030474 10.1016/j.measurement.2020.108759 10.1109/ACCESS.2023.3247195 10.1109/TGRS.2021.3050789 10.1080/19475705.2021.1964617 10.1109/TRO.2022.3172474 10.14358/PERS.69.11.1235 10.1016/j.isprsjprs.2006.07.003 10.1109/TRO.2021.3078287 10.1109/ACCESS.2021.3114618 10.4218/etrij.08.0106.0306 10.1016/j.isprsjprs.2023.04.004 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.optlastec.2025.113019 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| ExternalDocumentID | 10_1016_j_optlastec_2025_113019 S0030399225006103 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABXZ AAEDT AAEDW AAEPC AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO ABDPE ABJNI ABMAC ABNEU ABWVN ABXDB ABXRA ACBEA ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEZYN AFFNX AFJKZ AFPUW AFRZQ AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BBWZM BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMV HVGLF HZ~ IHE J1W JJJVA KOM LY7 M38 M41 MAGPM MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SPD SPG SSH SSM SSQ SST SSZ T5K TN5 UHS WH7 WUQ ZMT ~G- AAYXX ACLOT CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c263t-97f2861dd60c453fe229e29354e927e4dbb483657b5b968b3b17e1dc70213c613 |
| IEDL.DBID | .~1 |
| ISSN | 0030-3992 |
| IngestDate | Wed Oct 01 05:51:52 EDT 2025 Sat Jul 05 17:12:27 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Control calibration method Mobile mapping system (MMS) Multi-feature calibration method Constraint calibration method Light Detection and Ranging (LiDAR) Inertial Measurement Unit (IMU) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-97f2861dd60c453fe229e29354e927e4dbb483657b5b968b3b17e1dc70213c613 |
| ORCID | 0000-0002-5746-2770 0000-0001-9592-1002 |
| ParticipantIDs | crossref_primary_10_1016_j_optlastec_2025_113019 elsevier_sciencedirect_doi_10_1016_j_optlastec_2025_113019 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | November 2025 2025-11-00 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: November 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Optics and laser technology |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Xiao, Wang, Ren, Zhang, Ji (b37) 2023; 56 Huai, Lin, Zhuang, Toth, Chen (b22) 2022; 38 Di Stefano, Chiappini, Gorreja, Balestra, Pierdicca (b6) 2021; 12 Ravi, Lin, Elbahnasawy, Shamseldin, Habib (b19) 2018; 11 Li, Wang, Li, Tian, Chen, Li (b18) 2021; 9 Lv, Xu, Hu, Liu, Zuo (b39) 2020 Gong, Wen, Wang, Li (b38) 2018; 67 Al Bayari (b4) 2018; 11 Wu, Li, Chen, Yang, Zou, Yang, Xu, Zhong, Chen (b24) 2023; 199 Liu, Gardoni, Li, Krolczyk, Du, Li, Sotelo (b28) 2022; 60 Mikhail, Ackermann (b26) 1976 Goebbels (b2) 2021; 5 Glennie, Kusari, Facchin (b14) 2016; XL-3/W4 Filin (b16) 2003; 69 Javanmardi, Javanmardi, Gu, Kamijo (b9) 2017; 9 Liu, Li, Malekian, Angel Sotelo, Ma, Li (b34) 2020; 67 Hou, Xu, Ito, Yao (b8) 2022 Yu, Lu, Tian, Chan, Chen (b35) 2021; 32 Fan, Yu, Xu, Zhao (b21) 2023; 11 Wang, Zhu, Li (b3) 2019; 11 Vallet, Mallet (b25) 2016 Rieger, Studnicka, Pfennigbauer, Zach (b31) 2010; 4 Shi, Bai, Zhang, Zhong, Li (b41) 2021; 171 Toth, Shin, Grejner-Brzezinska, Kwon (b5) 2008; 2 Li, Tan, Liu (b15) 2019; 11 Liu, Li (b33) 2019; 114 Puente, González-Jorge, Martínez-Sánchez, Arias (b1) 2013; 46 Ding, Wang, Li, Mumford, Rizos (b11) 2008; 30 Hong, Park, Lee, Lim, Choi, Sohn (b32) 2017; 17 Jiang, Hu, Si, Zhang, Chen, Guo, Ding, Zhong, Zhu (b12) 2023; 118 Zhou, Hasheminasab, Habib (b20) 2021; 180 Dhall, Chelani, Radhakrishnan, Krishna (b36) 2017 Jiao, Ye, Zhu, Liu (b23) 2022; 38 Kuçak, Erol, Erol (b29) 2022; 15 Grewal, Andrews, Bartone (b7) 2020 Goel, Lohani (b10) 2015; 43 Skaloud, Lichti (b17) 2006; 61 Yan, Liu, Wang, Shi, Wei, Cai, Ma, Liu, Zhong, Liu, Zhao, Ma, Li (b40) 2022 Yin, Xie, Fu, Wang, Zhong (b13) 2023; 23 Ji, Yang, Tang, Xu (b27) 2021; 59 Chan, Lichti, Glennie (b30) 2013; 82 Jiang (10.1016/j.optlastec.2025.113019_b12) 2023; 118 Goebbels (10.1016/j.optlastec.2025.113019_b2) 2021; 5 Hou (10.1016/j.optlastec.2025.113019_b8) 2022 Kuçak (10.1016/j.optlastec.2025.113019_b29) 2022; 15 Goel (10.1016/j.optlastec.2025.113019_b10) 2015; 43 Glennie (10.1016/j.optlastec.2025.113019_b14) 2016; XL-3/W4 Huai (10.1016/j.optlastec.2025.113019_b22) 2022; 38 Al Bayari (10.1016/j.optlastec.2025.113019_b4) 2018; 11 Rieger (10.1016/j.optlastec.2025.113019_b31) 2010; 4 Ravi (10.1016/j.optlastec.2025.113019_b19) 2018; 11 Shi (10.1016/j.optlastec.2025.113019_b41) 2021; 171 Yu (10.1016/j.optlastec.2025.113019_b35) 2021; 32 Di Stefano (10.1016/j.optlastec.2025.113019_b6) 2021; 12 Puente (10.1016/j.optlastec.2025.113019_b1) 2013; 46 Wu (10.1016/j.optlastec.2025.113019_b24) 2023; 199 Liu (10.1016/j.optlastec.2025.113019_b33) 2019; 114 Lv (10.1016/j.optlastec.2025.113019_b39) 2020 Toth (10.1016/j.optlastec.2025.113019_b5) 2008; 2 Li (10.1016/j.optlastec.2025.113019_b18) 2021; 9 Chan (10.1016/j.optlastec.2025.113019_b30) 2013; 82 Zhou (10.1016/j.optlastec.2025.113019_b20) 2021; 180 Li (10.1016/j.optlastec.2025.113019_b15) 2019; 11 Fan (10.1016/j.optlastec.2025.113019_b21) 2023; 11 Liu (10.1016/j.optlastec.2025.113019_b28) 2022; 60 Hong (10.1016/j.optlastec.2025.113019_b32) 2017; 17 Vallet (10.1016/j.optlastec.2025.113019_b25) 2016 Yan (10.1016/j.optlastec.2025.113019_b40) 2022 Gong (10.1016/j.optlastec.2025.113019_b38) 2018; 67 Yin (10.1016/j.optlastec.2025.113019_b13) 2023; 23 Filin (10.1016/j.optlastec.2025.113019_b16) 2003; 69 Javanmardi (10.1016/j.optlastec.2025.113019_b9) 2017; 9 Dhall (10.1016/j.optlastec.2025.113019_b36) 2017 Ding (10.1016/j.optlastec.2025.113019_b11) 2008; 30 Liu (10.1016/j.optlastec.2025.113019_b34) 2020; 67 Mikhail (10.1016/j.optlastec.2025.113019_b26) 1976 Ji (10.1016/j.optlastec.2025.113019_b27) 2021; 59 Wang (10.1016/j.optlastec.2025.113019_b3) 2019; 11 Grewal (10.1016/j.optlastec.2025.113019_b7) 2020 Li (10.1016/j.optlastec.2025.113019_b37) 2023; 56 Skaloud (10.1016/j.optlastec.2025.113019_b17) 2006; 61 Jiao (10.1016/j.optlastec.2025.113019_b23) 2022; 38 |
| References_xml | – volume: 15 year: 2022 ident: b29 article-title: The strip adjustment of mobile LiDAR point clouds using iterative closest point (ICP) algorithm publication-title: Arab. J. Geosci. – volume: 9 start-page: 975 year: 2017 ident: b9 article-title: Towards high-definition 3D urban mapping: Road feature-based registration of mobile mapping systems and aerial imagery publication-title: Remote. Sens. – start-page: 9968 year: 2020 end-page: 9975 ident: b39 article-title: Targetless calibration of LiDAR-IMU system based on continuous-time batch estimation publication-title: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems – volume: 2 year: 2008 ident: b5 article-title: On accurate time synchronization of multi-sensor mobile mapping systems publication-title: J. Appl. Geod. – volume: 9 start-page: 138803 year: 2021 end-page: 138816 ident: b18 article-title: 3D lidar/IMU calibration based on continuous-time trajectory estimation in structured environments publication-title: IEEE Access – year: 1976 ident: b26 article-title: Observations and least squares – volume: 60 start-page: 1 year: 2022 end-page: 14 ident: b28 article-title: Multiple natural features fusion for on-site calibration of LiDAR boresight angle misalignment publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 61 start-page: 47 year: 2006 end-page: 59 ident: b17 article-title: Rigorous approach to bore-sight self-calibration in airborne laser scanning publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2022 ident: b40 article-title: OpenCalib: A multi-sensor calibration toolbox for autonomous driving – volume: 11 start-page: 18750 year: 2023 end-page: 18760 ident: b21 article-title: High-precision external parameter calibration method for camera and lidar based on a calibration device publication-title: IEEE Access – volume: 67 start-page: 238 year: 2018 end-page: 240 ident: b38 article-title: A target-free automatic self-calibration approach for multibeam laser scanners publication-title: IEEE Trans. Instrum. Meas. – volume: 11 start-page: 1 year: 2018 end-page: 13 ident: b4 article-title: Mobile mapping systems in civil engineering projects (case studies) publication-title: Appl. Geomatics – volume: XL-3/W4 start-page: 55 year: 2016 end-page: 60 ident: b14 article-title: Calibration and stability analysis of the VLP-16 laser scanner publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. – year: 2022 ident: b8 article-title: An optimization-based IMU/Lidar/Camera co-calibration method publication-title: 2022 7th International Conference on Robotics and Automation Engineering – volume: 38 start-page: 351 year: 2022 end-page: 371 ident: b23 article-title: Robust odometry and mapping for multi-LiDAR systems with online extrinsic calibration publication-title: IEEE Trans. Robot. – volume: 17 start-page: 474 year: 2017 ident: b32 article-title: Utilization of a terrestrial laser scanner for the calibration of mobile mapping systems publication-title: Sensors – start-page: 63 year: 2016 end-page: 100 ident: b25 article-title: Urban scene analysis with mobile mapping technology publication-title: Land Surface Remote Sensing in Urban and Coastal Areas – volume: 59 start-page: 8129 year: 2021 end-page: 8142 ident: b27 article-title: A coarse-to-fine strip mosaicing model for airborne bathymetric LiDAR data publication-title: IEEE Trans. Geosci. Remote Sens. – volume: 171 year: 2021 ident: b41 article-title: Reference-plane-based approach for accuracy assessment of mobile mapping point clouds publication-title: Measurement – volume: 46 start-page: 2127 year: 2013 end-page: 2145 ident: b1 article-title: Review of mobile mapping and surveying technologies publication-title: Measurement – volume: 43 start-page: 639 year: 2015 end-page: 645 ident: b10 article-title: Relative contribution and effect of various error sources on the performance of mobile mapping system (MMS) publication-title: J. the Indian Soc. Remote. Sens. – volume: 180 start-page: 336 year: 2021 end-page: 356 ident: b20 article-title: Tightly-coupled camera/LiDAR integration for point cloud generation from GNSS/INS-assisted UAV mapping systems publication-title: ISPRS J. Photogramm. Remote Sens. – year: 2020 ident: b7 article-title: Global Navigation Satellite Systems, Inertial Navigation, and Integration – volume: 118 year: 2023 ident: b12 article-title: A flexible calibration method with multi-stage optimization for the axial error of mobile mapping systems publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 11 start-page: 442 year: 2019 ident: b15 article-title: Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by strip adjustment publication-title: Remote. Sens. – volume: 69 start-page: 1235 year: 2003 end-page: 1242 ident: b16 article-title: Recovery of systematic biases in laser altimetry data using natural surfaces publication-title: Photogramm. Eng. Remote Sens. – volume: 4 start-page: 13 year: 2010 end-page: 21 ident: b31 article-title: Boresight alignment method for mobile laser scanning systems publication-title: J. Appl. Geod. – volume: 38 start-page: 3219 year: 2022 end-page: 3237 ident: b22 article-title: Observability analysis and keyframe-based filtering for visual inertial odometry with full self-calibration publication-title: IEEE Trans. Robot. – volume: 67 start-page: 9851 year: 2020 end-page: 9861 ident: b34 article-title: A novel multifeature based on-site calibration method for LiDAR-IMU system publication-title: Ieee Trans. Ind. Electron. – volume: 5 year: 2021 ident: b2 article-title: 3D reconstruction of bridges from airborne laser scanning data and cadastral footprints publication-title: J. Geovisualization Spat. Anal. – volume: 30 start-page: 59 year: 2008 end-page: 67 ident: b11 article-title: Time synchronization error and calibration in integrated GPS/INS systems publication-title: ETRI J. – volume: 23 start-page: 3119 year: 2023 ident: b13 article-title: Uncontrolled two-step iterative calibration algorithm for Lidar–IMU system publication-title: Sensors – year: 2017 ident: b36 article-title: LiDAR-Camera Calibration using 3D-3D Point correspondences – volume: 11 start-page: 1694 year: 2018 end-page: 1714 ident: b19 article-title: Simultaneous system calibration of a Multi-LiDAR multicamera mobile mapping platform publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. – volume: 12 start-page: 2387 year: 2021 end-page: 2429 ident: b6 article-title: Mobile 3D scan LiDAR: a literature review publication-title: Geomatics, Nat. Hazards Risk – volume: 82 start-page: 112 year: 2013 end-page: 124 ident: b30 article-title: Multi-feature based boresight self-calibration of a terrestrial mobile mapping system publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 114 start-page: 124 year: 2019 end-page: 133 ident: b33 article-title: Error modeling and extrinsic-intrinsic calibration for LiDAR-IMU system based on cone-cylinder features publication-title: Robot. Auton. Syst. – volume: 32 year: 2021 ident: b35 article-title: Automatic extrinsic self-calibration of mobile LiDAR systems based on planar and spherical features publication-title: Meas. Sci. Technol. – volume: 56 start-page: 9949 year: 2023 end-page: 9987 ident: b37 article-title: Automatic targetless lidar-camera calibration: a survey publication-title: Artif. Intell. Rev. – volume: 11 start-page: 1540 year: 2019 ident: b3 article-title: A survey of mobile laser scanning applications and key techniques over urban areas publication-title: Remote. Sens. – volume: 199 start-page: 157 year: 2023 end-page: 181 ident: b24 article-title: AFLI-Calib: Robust lidar-IMU extrinsic self-calibration based on adaptive frame length LiDAR odometry publication-title: ISPRS J. Photogramm. Remote Sens. – volume: 23 start-page: 3119 issue: 6 year: 2023 ident: 10.1016/j.optlastec.2025.113019_b13 article-title: Uncontrolled two-step iterative calibration algorithm for Lidar–IMU system publication-title: Sensors doi: 10.3390/s23063119 – volume: 67 start-page: 238 issue: 1 year: 2018 ident: 10.1016/j.optlastec.2025.113019_b38 article-title: A target-free automatic self-calibration approach for multibeam laser scanners publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2017.2757148 – volume: 82 start-page: 112 year: 2013 ident: 10.1016/j.optlastec.2025.113019_b30 article-title: Multi-feature based boresight self-calibration of a terrestrial mobile mapping system publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2013.04.005 – start-page: 9968 year: 2020 ident: 10.1016/j.optlastec.2025.113019_b39 article-title: Targetless calibration of LiDAR-IMU system based on continuous-time batch estimation – year: 2020 ident: 10.1016/j.optlastec.2025.113019_b7 – volume: 9 start-page: 975 issue: 10 year: 2017 ident: 10.1016/j.optlastec.2025.113019_b9 article-title: Towards high-definition 3D urban mapping: Road feature-based registration of mobile mapping systems and aerial imagery publication-title: Remote. Sens. doi: 10.3390/rs9100975 – volume: 15 issue: 11 year: 2022 ident: 10.1016/j.optlastec.2025.113019_b29 article-title: The strip adjustment of mobile LiDAR point clouds using iterative closest point (ICP) algorithm publication-title: Arab. J. Geosci. doi: 10.1007/s12517-022-10303-2 – volume: 46 start-page: 2127 issue: 7 year: 2013 ident: 10.1016/j.optlastec.2025.113019_b1 article-title: Review of mobile mapping and surveying technologies publication-title: Measurement doi: 10.1016/j.measurement.2013.03.006 – volume: 2 issue: 3 year: 2008 ident: 10.1016/j.optlastec.2025.113019_b5 article-title: On accurate time synchronization of multi-sensor mobile mapping systems publication-title: J. Appl. Geod. – year: 2017 ident: 10.1016/j.optlastec.2025.113019_b36 – volume: 11 start-page: 442 issue: 4 year: 2019 ident: 10.1016/j.optlastec.2025.113019_b15 article-title: Rigorous boresight self-calibration of mobile and UAV LiDAR scanning systems by strip adjustment publication-title: Remote. Sens. doi: 10.3390/rs11040442 – volume: 11 start-page: 1540 issue: 13 year: 2019 ident: 10.1016/j.optlastec.2025.113019_b3 article-title: A survey of mobile laser scanning applications and key techniques over urban areas publication-title: Remote. Sens. doi: 10.3390/rs11131540 – volume: 43 start-page: 639 issue: 3 year: 2015 ident: 10.1016/j.optlastec.2025.113019_b10 article-title: Relative contribution and effect of various error sources on the performance of mobile mapping system (MMS) publication-title: J. the Indian Soc. Remote. Sens. doi: 10.1007/s12524-014-0443-z – volume: 118 year: 2023 ident: 10.1016/j.optlastec.2025.113019_b12 article-title: A flexible calibration method with multi-stage optimization for the axial error of mobile mapping systems publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: XL-3/W4 start-page: 55 year: 2016 ident: 10.1016/j.optlastec.2025.113019_b14 article-title: Calibration and stability analysis of the VLP-16 laser scanner publication-title: Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. doi: 10.5194/isprs-archives-XL-3-W4-55-2016 – volume: 4 start-page: 13 issue: 1 year: 2010 ident: 10.1016/j.optlastec.2025.113019_b31 article-title: Boresight alignment method for mobile laser scanning systems publication-title: J. Appl. Geod. – volume: 114 start-page: 124 year: 2019 ident: 10.1016/j.optlastec.2025.113019_b33 article-title: Error modeling and extrinsic-intrinsic calibration for LiDAR-IMU system based on cone-cylinder features publication-title: Robot. Auton. Syst. doi: 10.1016/j.robot.2019.01.010 – volume: 67 start-page: 9851 issue: 11 year: 2020 ident: 10.1016/j.optlastec.2025.113019_b34 article-title: A novel multifeature based on-site calibration method for LiDAR-IMU system publication-title: Ieee Trans. Ind. Electron. doi: 10.1109/TIE.2019.2956368 – volume: 11 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.optlastec.2025.113019_b4 article-title: Mobile mapping systems in civil engineering projects (case studies) publication-title: Appl. Geomatics doi: 10.1007/s12518-018-0222-6 – volume: 56 start-page: 9949 issue: 9 year: 2023 ident: 10.1016/j.optlastec.2025.113019_b37 article-title: Automatic targetless lidar-camera calibration: a survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-022-10317-y – volume: 32 issue: 6 year: 2021 ident: 10.1016/j.optlastec.2025.113019_b35 article-title: Automatic extrinsic self-calibration of mobile LiDAR systems based on planar and spherical features publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/abecec – volume: 11 start-page: 1694 issue: 5 year: 2018 ident: 10.1016/j.optlastec.2025.113019_b19 article-title: Simultaneous system calibration of a Multi-LiDAR multicamera mobile mapping platform publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. doi: 10.1109/JSTARS.2018.2812796 – volume: 180 start-page: 336 year: 2021 ident: 10.1016/j.optlastec.2025.113019_b20 article-title: Tightly-coupled camera/LiDAR integration for point cloud generation from GNSS/INS-assisted UAV mapping systems publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.08.020 – volume: 5 issue: 1 year: 2021 ident: 10.1016/j.optlastec.2025.113019_b2 article-title: 3D reconstruction of bridges from airborne laser scanning data and cadastral footprints publication-title: J. Geovisualization Spat. Anal. – year: 2022 ident: 10.1016/j.optlastec.2025.113019_b8 article-title: An optimization-based IMU/Lidar/Camera co-calibration method – volume: 17 start-page: 474 issue: 3 year: 2017 ident: 10.1016/j.optlastec.2025.113019_b32 article-title: Utilization of a terrestrial laser scanner for the calibration of mobile mapping systems publication-title: Sensors doi: 10.3390/s17030474 – volume: 171 year: 2021 ident: 10.1016/j.optlastec.2025.113019_b41 article-title: Reference-plane-based approach for accuracy assessment of mobile mapping point clouds publication-title: Measurement doi: 10.1016/j.measurement.2020.108759 – year: 1976 ident: 10.1016/j.optlastec.2025.113019_b26 – volume: 11 start-page: 18750 year: 2023 ident: 10.1016/j.optlastec.2025.113019_b21 article-title: High-precision external parameter calibration method for camera and lidar based on a calibration device publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3247195 – year: 2022 ident: 10.1016/j.optlastec.2025.113019_b40 – volume: 59 start-page: 8129 issue: 10 year: 2021 ident: 10.1016/j.optlastec.2025.113019_b27 article-title: A coarse-to-fine strip mosaicing model for airborne bathymetric LiDAR data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2021.3050789 – volume: 12 start-page: 2387 issue: 1 year: 2021 ident: 10.1016/j.optlastec.2025.113019_b6 article-title: Mobile 3D scan LiDAR: a literature review publication-title: Geomatics, Nat. Hazards Risk doi: 10.1080/19475705.2021.1964617 – volume: 38 start-page: 3219 issue: 5 year: 2022 ident: 10.1016/j.optlastec.2025.113019_b22 article-title: Observability analysis and keyframe-based filtering for visual inertial odometry with full self-calibration publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2022.3172474 – volume: 69 start-page: 1235 issue: 11 year: 2003 ident: 10.1016/j.optlastec.2025.113019_b16 article-title: Recovery of systematic biases in laser altimetry data using natural surfaces publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.69.11.1235 – volume: 61 start-page: 47 issue: 1 year: 2006 ident: 10.1016/j.optlastec.2025.113019_b17 article-title: Rigorous approach to bore-sight self-calibration in airborne laser scanning publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2006.07.003 – volume: 38 start-page: 351 issue: 1 year: 2022 ident: 10.1016/j.optlastec.2025.113019_b23 article-title: Robust odometry and mapping for multi-LiDAR systems with online extrinsic calibration publication-title: IEEE Trans. Robot. doi: 10.1109/TRO.2021.3078287 – volume: 9 start-page: 138803 year: 2021 ident: 10.1016/j.optlastec.2025.113019_b18 article-title: 3D lidar/IMU calibration based on continuous-time trajectory estimation in structured environments publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3114618 – start-page: 63 year: 2016 ident: 10.1016/j.optlastec.2025.113019_b25 article-title: Urban scene analysis with mobile mapping technology – volume: 30 start-page: 59 issue: 1 year: 2008 ident: 10.1016/j.optlastec.2025.113019_b11 article-title: Time synchronization error and calibration in integrated GPS/INS systems publication-title: ETRI J. doi: 10.4218/etrij.08.0106.0306 – volume: 199 start-page: 157 year: 2023 ident: 10.1016/j.optlastec.2025.113019_b24 article-title: AFLI-Calib: Robust lidar-IMU extrinsic self-calibration based on adaptive frame length LiDAR odometry publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2023.04.004 – volume: 60 start-page: 1 year: 2022 ident: 10.1016/j.optlastec.2025.113019_b28 article-title: Multiple natural features fusion for on-site calibration of LiDAR boresight angle misalignment publication-title: IEEE Trans. Geosci. Remote Sens. |
| SSID | ssj0004653 |
| Score | 2.4143791 |
| Snippet | The Mobile Mapping System (MMS), comprised of Light Detection and Ranging (LiDAR), the Global Navigation Satellite System (GNSS) and the Inertial Measurement... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 113019 |
| SubjectTerms | Constraint calibration method Control calibration method Inertial Measurement Unit (IMU) Light Detection and Ranging (LiDAR) Mobile mapping system (MMS) Multi-feature calibration method |
| Title | MFCC-Calib: A generalized algorithm framework for calibrating LiDAR-IMU exterior orientation elements based on multi-feature control and constraint method |
| URI | https://dx.doi.org/10.1016/j.optlastec.2025.113019 |
| Volume | 189 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0030-3992 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004653 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) issn: 0030-3992 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004653 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0030-3992 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004653 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0030-3992 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0004653 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0030-3992 databaseCode: AKRWK dateStart: 19710201 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004653 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6LIuhBfOL6WHLwWnXbpGn3VqrL-lgP4oK30iRTrWi77NaLB3-Iv9ZJ2soKggcvpU2bUDJh5hv45htCjrnnY5qcgcNBY4LiBuDgKUnxgvmWZkIpSx4f3_qjCbt64A8dEre1MIZW2fj-2qdbb92MnDa7eTrNc1Pji-7XyKpyE4et4idjwnQxOPnoL9RGNkqUHvob_PoHx6ucVohRKzBahi43_U2s5M5vEWoh6gw3yHoDF2lU_9Em6UCxRdYWRAS3yIolcar5NvkcD-PYMdVWckAj-lgrSufvoGn68ljO8urplWYtG4siXKUqtfmy4T7Tm_w8unMuxxNqHXaOr8tZ3tQmFRRqovmcmsCnKY5YMqKTgdUGpQ3pnaaFNvdz23yionWL6h0yGV7cxyOn6b3gKNf3KicUmRv4fa39M8U4GtN1Q0BowBmErgCmpWSB53MhuQz9QHqyL6CvlUDM4CnECLtkqSgL2CM0DUB4POWZyhgLAWQWprhsoFMRyAB0l5y1-51Ma4mNpOWePSffJkqMiZLaRF0yaO2S_DgtCQaCvybv_2fyAVk1T3U14iFZqmZvcISwpJI9e-56ZDm6vB7dfgEAFeU8 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5DEfUg_sT5MwevVdcmTbvbmI5Ntx1kg91Kk7xqRbux1YsH_xD_Wl_SViYIHryUkjQl5IX3vgff-x4hF9zzMU1OwOGgMUFxA3DwlsT4wHxLM6GUJY8Phn53zO4mfFIj7aoWxtAqS99f-HTrrcuRq_I0r2Zpamp80f0aWVVu4rBR_Fxl3BUmA7v8aCwVR5ZSlB46HPz8B8lrOssRpOZgxAxdbhqcWM2d30LUUtjpbJOtEi_SVrGlHVKDbJdsLqkI7pI1y-JUiz3yOei0244pt5JN2qKPhaR0-g6axi-P03maP73SpKJjUcSrVMU2YTbkZ9pPb1oPTm8wptZjpzg9nadlcVJGoWCaL6iJfJriiGUjOglYcVBast5pnGnzvrDdJ3Ja9KjeJ-PO7ajddcrmC45yfS93QpG4gd_Q2r9WjKM1XTcExAacQegKYFpKFng-F5LL0A-kJxsCGloJBA2eQpBwQFayaQaHhMYBCI_HPFEJYyGATMIYfxvoWAQyAF0n19V5R7NCYyOqyGfP0beJImOiqDBRnTQru0Q_rkuEkeCvxUf_WXxO1rujQT_q94b3x2TDzBSliSdkJZ-_wSlilFye2Tv4BV835tE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=MFCC-Calib%3A+A+generalized+algorithm+framework+for+calibrating+LiDAR-IMU+exterior+orientation+elements+based+on+multi-feature+control+and+constraint+method&rft.jtitle=Optics+and+laser+technology&rft.au=Shi%2C+Bo&rft.au=Yang%2C+Xingyi&rft.au=Zhao%2C+Kai&rft.au=Ren%2C+Hongwei&rft.date=2025-11-01&rft.issn=0030-3992&rft.volume=189&rft.spage=113019&rft_id=info:doi/10.1016%2Fj.optlastec.2025.113019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_optlastec_2025_113019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0030-3992&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0030-3992&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0030-3992&client=summon |