An Improved Auto-Calibration Algorithm Based on Sparse Bayesian Learning Framework

This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust performance for practical applications. The problem is formulated in a probabilistic model and an auto-calibration sparse Bayesian learning algor...

Full description

Saved in:
Bibliographic Details
Published inIEEE signal processing letters Vol. 20; no. 9; pp. 889 - 892
Main Authors Lifan Zhao, Guoan Bi, Lu Wang, Haijian Zhang
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2013
Subjects
Online AccessGet full text
ISSN1070-9908
1558-2361
DOI10.1109/LSP.2013.2272462

Cover

Abstract This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust performance for practical applications. The problem is formulated in a probabilistic model and an auto-calibration sparse Bayesian learning algorithm is proposed. In this algorithm, signal and perturbation are iteratively estimated to achieve sparsity by leveraging a variational Bayesian expectation maximization technique. Results from numerical experiments have demonstrated that the proposed algorithm has achieved improvements on the accuracy of signal reconstruction.
AbstractList This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust performance for practical applications. The problem is formulated in a probabilistic model and an auto-calibration sparse Bayesian learning algorithm is proposed. In this algorithm, signal and perturbation are iteratively estimated to achieve sparsity by leveraging a variational Bayesian expectation maximization technique. Results from numerical experiments have demonstrated that the proposed algorithm has achieved improvements on the accuracy of signal reconstruction.
Author Haijian Zhang
Lifan Zhao
Guoan Bi
Lu Wang
Author_xml – sequence: 1
  surname: Lifan Zhao
  fullname: Lifan Zhao
  email: zhao0145@e.ntu.edu.sg
  organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 2
  surname: Guoan Bi
  fullname: Guoan Bi
  email: egbi@ntu.edu.sg
  organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 3
  surname: Lu Wang
  fullname: Lu Wang
  email: wa0001lu@e.ntu.edu.sg
  organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 4
  surname: Haijian Zhang
  fullname: Haijian Zhang
  email: zhaijian@ntu.edu.sg
  organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
BookMark eNp9kEtLAzEQgINUsK3eBS_7B7ZOku5mc1yL1cKCYvW8JNnZGt1HSVal_97UFg8ehIF5MN8wfBMy6voOCbmkMKMU5HWxfpwxoHzGmGDzlJ2QMU2SLGY8paNQg4BYSsjOyMT7NwDIaJaMyVPeRat26_pPrKL8Y-jjhWqsdmqwfRflzaZ3dnhtoxvlw0IYrbfKeQz9Dr1VXVSgcp3tNtHSqRa_evd-Tk5r1Xi8OOYpeVnePi_u4-LhbrXIi9iwlA9xJkRlUFGGXFRQ6yzVxhiQpgKtBSoERFlxVs81A60yCVwbmSSVUCHonE9JerhrXO-9w7o0dvj5e3DKNiWFcm-mDGbKvZnyaCaA8AfcOtsqt_sPuTogFhF_19MkGBaSfwOcEHIW
CODEN ISPLEM
CitedBy_id crossref_primary_10_1109_LSP_2014_2306326
crossref_primary_10_1117_1_JEI_25_1_013018
crossref_primary_10_1016_j_dsp_2016_09_008
crossref_primary_10_1016_j_sigpro_2016_06_016
crossref_primary_10_1109_TGRS_2022_3188879
crossref_primary_10_1109_ACCESS_2019_2949152
crossref_primary_10_1109_JSEN_2017_2723611
crossref_primary_10_1109_LGRS_2014_2300170
crossref_primary_10_1016_j_sigpro_2018_05_007
crossref_primary_10_1109_ACCESS_2019_2932330
crossref_primary_10_1109_LSP_2016_2636319
crossref_primary_10_1016_j_specom_2017_02_003
crossref_primary_10_1016_j_dsp_2021_102967
crossref_primary_10_1109_TGRS_2013_2292074
crossref_primary_10_1109_TAES_2017_2768938
crossref_primary_10_1109_TASLP_2018_2819819
crossref_primary_10_1016_j_image_2015_09_008
crossref_primary_10_1109_TGRS_2013_2296497
crossref_primary_10_3390_electronics8121386
crossref_primary_10_1109_TWC_2014_2360191
crossref_primary_10_3390_electronics7100217
crossref_primary_10_1016_j_sigpro_2014_09_018
crossref_primary_10_3390_s17112631
crossref_primary_10_1109_TVT_2017_2732168
crossref_primary_10_1080_15325008_2016_1201874
crossref_primary_10_1049_iet_spr_2013_0260
crossref_primary_10_1007_s00034_016_0245_3
crossref_primary_10_1049_iet_spr_2014_0228
crossref_primary_10_1109_LSP_2024_3416824
crossref_primary_10_1155_2016_3982360
crossref_primary_10_1016_j_envsoft_2017_12_014
crossref_primary_10_1109_MSP_2017_2671412
crossref_primary_10_1061__ASCE_CP_1943_5487_0000668
crossref_primary_10_1109_LSP_2013_2292589
crossref_primary_10_3390_s151026267
crossref_primary_10_1109_MSP_2016_2573847
crossref_primary_10_1016_j_sigpro_2016_02_004
crossref_primary_10_1109_TSP_2017_2773420
Cites_doi 10.1109/TSP.2012.2201152
10.1109/TIP.2009.2032894
10.1109/ICASSP.2012.6288477
10.1109/JSTSP.2009.2039170
10.1109/LGRS.2011.2158797
10.1109/8.509886
10.1109/TSP.2007.914345
10.1109/TSP.2004.831016
10.1007/978-1-4612-5698-4
10.1109/MSP.2007.914731
10.1109/ACSSC.2011.6190118
10.1162/15324430152748236
10.1109/TSP.2007.894265
10.1109/MSP.2008.929620
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/LSP.2013.2272462
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2361
EndPage 892
ExternalDocumentID 10_1109_LSP_2013_2272462
6555879
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-877dcea12e37d0fb86bccc09cd0bb7eae0ee9d32f4b20ba8903bc955d7ad7a143
IEDL.DBID RIE
ISSN 1070-9908
IngestDate Thu Apr 24 22:56:32 EDT 2025
Wed Oct 01 01:11:12 EDT 2025
Tue Aug 26 16:49:19 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-877dcea12e37d0fb86bccc09cd0bb7eae0ee9d32f4b20ba8903bc955d7ad7a143
PageCount 4
ParticipantIDs ieee_primary_6555879
crossref_primary_10_1109_LSP_2013_2272462
crossref_citationtrail_10_1109_LSP_2013_2272462
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-09-01
PublicationDateYYYYMMDD 2013-09-01
PublicationDate_xml – month: 09
  year: 2013
  text: 2013-09-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE signal processing letters
PublicationTitleAbbrev LSP
PublicationYear 2013
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref11
ref10
ref2
ref1
j rgensen (ref14) 1982
ref8
ref7
ng (ref9) 1996; 44
ref4
ref3
ref6
ref5
References_xml – ident: ref7
  doi: 10.1109/TSP.2012.2201152
– ident: ref12
  doi: 10.1109/TIP.2009.2032894
– ident: ref11
  doi: 10.1109/ICASSP.2012.6288477
– ident: ref6
  doi: 10.1109/JSTSP.2009.2039170
– ident: ref10
  doi: 10.1109/LGRS.2011.2158797
– volume: 44
  start-page: 827
  year: 1996
  ident: ref9
  article-title: Sensor-array calibration using a maximum-likelihood approach
  publication-title: IEEE Trans Antennas Propag
  doi: 10.1109/8.509886
– ident: ref4
  doi: 10.1109/TSP.2007.914345
– ident: ref3
  doi: 10.1109/TSP.2004.831016
– year: 1982
  ident: ref14
  publication-title: Statistical Properties of the Generalized Inverse Gaussian Distribution
  doi: 10.1007/978-1-4612-5698-4
– ident: ref1
  doi: 10.1109/MSP.2007.914731
– ident: ref8
  doi: 10.1109/ACSSC.2011.6190118
– ident: ref2
  doi: 10.1162/15324430152748236
– ident: ref5
  doi: 10.1109/TSP.2007.894265
– ident: ref13
  doi: 10.1109/MSP.2008.929620
SSID ssj0008185
Score 2.3057868
Snippet This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 889
SubjectTerms Auto-calibration
Bayes methods
Compressed sensing
compressive sensing
Gaussian distribution
multiplicative perturbation
Noise
Numerical models
Signal processing algorithms
sparse Bayesian framework
Sparse matrices
Title An Improved Auto-Calibration Algorithm Based on Sparse Bayesian Learning Framework
URI https://ieeexplore.ieee.org/document/6555879
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2361
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008185
  issn: 1070-9908
  databaseCode: RIE
  dateStart: 19940101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJz34NcX5RQ5eBNulaZs0xymOIU7EOditNMnrFOc6RnfQv96k7coUEaGHNqQlvPf6PpL3fg-hC2GsMFep55jgIXICHXiOAJo6zDfaMuUsIUVLlsED64-Cu3E4bqCruhYGAIrkM3DtbXGWrzO1tFtlHWbBqbjYQBs8YmWtVq11reEp8wuJYzRstDqSJKJzP3y0OVy-SymnAaPfTNBaT5XCpPR20GC1mDKT5M1d5tJVnz9wGv-72l20XfmWuFsKwx5qwGwfba0hDrbQU3eGy30E0Li7zDPHFmfJUgxwdzrJFq_5yzu-NsZNYzM0nJvIF8zzB9hyS1zhsU5wb5XVdYBGvdvnm75TtVVwFGV-bvQf1woSj4LPNUllxKRSigiliZQcEiAAQvs0DSQlMokE8aUyPNU8MZfxrw5Rc5bN4AhhKkLipyBVqFhg_2aaekSn5ut-Ekql26izonSsKsxx2_piGhexBxGx4U1seRNXvGmjy_qNeYm38cfclqV6Pa8i-PHvwydokxatLGx-2Clq5oslnBmHIpfnhSR9Aa3Rx90
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojxzIELEt2yNH3kOBDTgA0hYNJuVZO4gIB1mroD_HqStpsGQgiphzZKq8h2_UjszwAnwljhQCVNxwQPocM1bzoCWeL4rtGWSeDHNG_J0rv1O31-PfAGFTib1cIgYp58hnV7m5_l61RN7FZZw7fgVIFYgEWPc-4V1VozvWtNT5FhSB2jY8PpoSQVje7Dnc3icuuMBYz77JsRmuuqkhuV9hr0psspckle65NM1tXnD6TG_653HVZL75K0CnHYgAoON2FlDnNwC-5bQ1LsJKAmrUmWOrY8SxaCQFpvT-n4JXt-J-fGvGlihh5GJvZF8_yBtuCSlIisT6Q9zevahn778vGi45SNFRzFfDczGjDQCuMmQzfQNJGhL5VSVChNpQwwRoootMsSLhmVcSioK5Xhqg5icxkPaweqw3SIu0CY8KiboFSe8rn9n1nSpDoxX3djTypdg8aU0pEqUcdt84u3KI8-qIgMbyLLm6jkTQ1OZ2-MCsSNP-ZuWarP5pUE3_t9-BiWOo-9btS9ur3Zh2WWN7aw2WIHUM3GEzw07kUmj3Kp-gJPU8sq
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Auto-Calibration+Algorithm+Based+on+Sparse+Bayesian+Learning+Framework&rft.jtitle=IEEE+signal+processing+letters&rft.au=Lifan+Zhao&rft.au=Guoan+Bi&rft.au=Lu+Wang&rft.au=Haijian+Zhang&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=20&rft.issue=9&rft.spage=889&rft.epage=892&rft_id=info:doi/10.1109%2FLSP.2013.2272462&rft.externalDocID=6555879
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon