An Improved Auto-Calibration Algorithm Based on Sparse Bayesian Learning Framework
This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust performance for practical applications. The problem is formulated in a probabilistic model and an auto-calibration sparse Bayesian learning algor...
        Saved in:
      
    
          | Published in | IEEE signal processing letters Vol. 20; no. 9; pp. 889 - 892 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        01.09.2013
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1070-9908 1558-2361  | 
| DOI | 10.1109/LSP.2013.2272462 | 
Cover
| Abstract | This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust performance for practical applications. The problem is formulated in a probabilistic model and an auto-calibration sparse Bayesian learning algorithm is proposed. In this algorithm, signal and perturbation are iteratively estimated to achieve sparsity by leveraging a variational Bayesian expectation maximization technique. Results from numerical experiments have demonstrated that the proposed algorithm has achieved improvements on the accuracy of signal reconstruction. | 
    
|---|---|
| AbstractList | This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust performance for practical applications. The problem is formulated in a probabilistic model and an auto-calibration sparse Bayesian learning algorithm is proposed. In this algorithm, signal and perturbation are iteratively estimated to achieve sparsity by leveraging a variational Bayesian expectation maximization technique. Results from numerical experiments have demonstrated that the proposed algorithm has achieved improvements on the accuracy of signal reconstruction. | 
    
| Author | Haijian Zhang Lifan Zhao Guoan Bi Lu Wang  | 
    
| Author_xml | – sequence: 1 surname: Lifan Zhao fullname: Lifan Zhao email: zhao0145@e.ntu.edu.sg organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 2 surname: Guoan Bi fullname: Guoan Bi email: egbi@ntu.edu.sg organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 3 surname: Lu Wang fullname: Lu Wang email: wa0001lu@e.ntu.edu.sg organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 4 surname: Haijian Zhang fullname: Haijian Zhang email: zhaijian@ntu.edu.sg organization: Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore  | 
    
| BookMark | eNp9kEtLAzEQgINUsK3eBS_7B7ZOku5mc1yL1cKCYvW8JNnZGt1HSVal_97UFg8ehIF5MN8wfBMy6voOCbmkMKMU5HWxfpwxoHzGmGDzlJ2QMU2SLGY8paNQg4BYSsjOyMT7NwDIaJaMyVPeRat26_pPrKL8Y-jjhWqsdmqwfRflzaZ3dnhtoxvlw0IYrbfKeQz9Dr1VXVSgcp3tNtHSqRa_evd-Tk5r1Xi8OOYpeVnePi_u4-LhbrXIi9iwlA9xJkRlUFGGXFRQ6yzVxhiQpgKtBSoERFlxVs81A60yCVwbmSSVUCHonE9JerhrXO-9w7o0dvj5e3DKNiWFcm-mDGbKvZnyaCaA8AfcOtsqt_sPuTogFhF_19MkGBaSfwOcEHIW | 
    
| CODEN | ISPLEM | 
    
| CitedBy_id | crossref_primary_10_1109_LSP_2014_2306326 crossref_primary_10_1117_1_JEI_25_1_013018 crossref_primary_10_1016_j_dsp_2016_09_008 crossref_primary_10_1016_j_sigpro_2016_06_016 crossref_primary_10_1109_TGRS_2022_3188879 crossref_primary_10_1109_ACCESS_2019_2949152 crossref_primary_10_1109_JSEN_2017_2723611 crossref_primary_10_1109_LGRS_2014_2300170 crossref_primary_10_1016_j_sigpro_2018_05_007 crossref_primary_10_1109_ACCESS_2019_2932330 crossref_primary_10_1109_LSP_2016_2636319 crossref_primary_10_1016_j_specom_2017_02_003 crossref_primary_10_1016_j_dsp_2021_102967 crossref_primary_10_1109_TGRS_2013_2292074 crossref_primary_10_1109_TAES_2017_2768938 crossref_primary_10_1109_TASLP_2018_2819819 crossref_primary_10_1016_j_image_2015_09_008 crossref_primary_10_1109_TGRS_2013_2296497 crossref_primary_10_3390_electronics8121386 crossref_primary_10_1109_TWC_2014_2360191 crossref_primary_10_3390_electronics7100217 crossref_primary_10_1016_j_sigpro_2014_09_018 crossref_primary_10_3390_s17112631 crossref_primary_10_1109_TVT_2017_2732168 crossref_primary_10_1080_15325008_2016_1201874 crossref_primary_10_1049_iet_spr_2013_0260 crossref_primary_10_1007_s00034_016_0245_3 crossref_primary_10_1049_iet_spr_2014_0228 crossref_primary_10_1109_LSP_2024_3416824 crossref_primary_10_1155_2016_3982360 crossref_primary_10_1016_j_envsoft_2017_12_014 crossref_primary_10_1109_MSP_2017_2671412 crossref_primary_10_1061__ASCE_CP_1943_5487_0000668 crossref_primary_10_1109_LSP_2013_2292589 crossref_primary_10_3390_s151026267 crossref_primary_10_1109_MSP_2016_2573847 crossref_primary_10_1016_j_sigpro_2016_02_004 crossref_primary_10_1109_TSP_2017_2773420  | 
    
| Cites_doi | 10.1109/TSP.2012.2201152 10.1109/TIP.2009.2032894 10.1109/ICASSP.2012.6288477 10.1109/JSTSP.2009.2039170 10.1109/LGRS.2011.2158797 10.1109/8.509886 10.1109/TSP.2007.914345 10.1109/TSP.2004.831016 10.1007/978-1-4612-5698-4 10.1109/MSP.2007.914731 10.1109/ACSSC.2011.6190118 10.1162/15324430152748236 10.1109/TSP.2007.894265 10.1109/MSP.2008.929620  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/LSP.2013.2272462 | 
    
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1558-2361 | 
    
| EndPage | 892 | 
    
| ExternalDocumentID | 10_1109_LSP_2013_2272462 6555879  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c263t-877dcea12e37d0fb86bccc09cd0bb7eae0ee9d32f4b20ba8903bc955d7ad7a143 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 1070-9908 | 
    
| IngestDate | Thu Apr 24 22:56:32 EDT 2025 Wed Oct 01 01:11:12 EDT 2025 Tue Aug 26 16:49:19 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 9 | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c263t-877dcea12e37d0fb86bccc09cd0bb7eae0ee9d32f4b20ba8903bc955d7ad7a143 | 
    
| PageCount | 4 | 
    
| ParticipantIDs | ieee_primary_6555879 crossref_primary_10_1109_LSP_2013_2272462 crossref_citationtrail_10_1109_LSP_2013_2272462  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2013-09-01 | 
    
| PublicationDateYYYYMMDD | 2013-09-01 | 
    
| PublicationDate_xml | – month: 09 year: 2013 text: 2013-09-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | IEEE signal processing letters | 
    
| PublicationTitleAbbrev | LSP | 
    
| PublicationYear | 2013 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref12 ref11 ref10 ref2 ref1 j rgensen (ref14) 1982 ref8 ref7 ng (ref9) 1996; 44 ref4 ref3 ref6 ref5  | 
    
| References_xml | – ident: ref7 doi: 10.1109/TSP.2012.2201152 – ident: ref12 doi: 10.1109/TIP.2009.2032894 – ident: ref11 doi: 10.1109/ICASSP.2012.6288477 – ident: ref6 doi: 10.1109/JSTSP.2009.2039170 – ident: ref10 doi: 10.1109/LGRS.2011.2158797 – volume: 44 start-page: 827 year: 1996 ident: ref9 article-title: Sensor-array calibration using a maximum-likelihood approach publication-title: IEEE Trans Antennas Propag doi: 10.1109/8.509886 – ident: ref4 doi: 10.1109/TSP.2007.914345 – ident: ref3 doi: 10.1109/TSP.2004.831016 – year: 1982 ident: ref14 publication-title: Statistical Properties of the Generalized Inverse Gaussian Distribution doi: 10.1007/978-1-4612-5698-4 – ident: ref1 doi: 10.1109/MSP.2007.914731 – ident: ref8 doi: 10.1109/ACSSC.2011.6190118 – ident: ref2 doi: 10.1162/15324430152748236 – ident: ref5 doi: 10.1109/TSP.2007.894265 – ident: ref13 doi: 10.1109/MSP.2008.929620  | 
    
| SSID | ssj0008185 | 
    
| Score | 2.3057868 | 
    
| Snippet | This letter considers the multiplicative perturbation problem in compressive sensing, which has become an increasingly important issue on obtaining robust... | 
    
| SourceID | crossref ieee  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 889 | 
    
| SubjectTerms | Auto-calibration Bayes methods Compressed sensing compressive sensing Gaussian distribution multiplicative perturbation Noise Numerical models Signal processing algorithms sparse Bayesian framework Sparse matrices  | 
    
| Title | An Improved Auto-Calibration Algorithm Based on Sparse Bayesian Learning Framework | 
    
| URI | https://ieeexplore.ieee.org/document/6555879 | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2361 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008185 issn: 1070-9908 databaseCode: RIE dateStart: 19940101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFA9zJz34NcX5RQ5eBNulaZs0xymOIU7EOditNMnrFOc6RnfQv96k7coUEaGHNqQlvPf6PpL3fg-hC2GsMFep55jgIXICHXiOAJo6zDfaMuUsIUVLlsED64-Cu3E4bqCruhYGAIrkM3DtbXGWrzO1tFtlHWbBqbjYQBs8YmWtVq11reEp8wuJYzRstDqSJKJzP3y0OVy-SymnAaPfTNBaT5XCpPR20GC1mDKT5M1d5tJVnz9wGv-72l20XfmWuFsKwx5qwGwfba0hDrbQU3eGy30E0Li7zDPHFmfJUgxwdzrJFq_5yzu-NsZNYzM0nJvIF8zzB9hyS1zhsU5wb5XVdYBGvdvnm75TtVVwFGV-bvQf1woSj4LPNUllxKRSigiliZQcEiAAQvs0DSQlMokE8aUyPNU8MZfxrw5Rc5bN4AhhKkLipyBVqFhg_2aaekSn5ut-Ekql26izonSsKsxx2_piGhexBxGx4U1seRNXvGmjy_qNeYm38cfclqV6Pa8i-PHvwydokxatLGx-2Clq5oslnBmHIpfnhSR9Aa3Rx90 | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3ojxzIELEt2yNH3kOBDTgA0hYNJuVZO4gIB1mroD_HqStpsGQgiphzZKq8h2_UjszwAnwljhQCVNxwQPocM1bzoCWeL4rtGWSeDHNG_J0rv1O31-PfAGFTib1cIgYp58hnV7m5_l61RN7FZZw7fgVIFYgEWPc-4V1VozvWtNT5FhSB2jY8PpoSQVje7Dnc3icuuMBYz77JsRmuuqkhuV9hr0psspckle65NM1tXnD6TG_653HVZL75K0CnHYgAoON2FlDnNwC-5bQ1LsJKAmrUmWOrY8SxaCQFpvT-n4JXt-J-fGvGlihh5GJvZF8_yBtuCSlIisT6Q9zevahn778vGi45SNFRzFfDczGjDQCuMmQzfQNJGhL5VSVChNpQwwRoootMsSLhmVcSioK5Xhqg5icxkPaweqw3SIu0CY8KiboFSe8rn9n1nSpDoxX3djTypdg8aU0pEqUcdt84u3KI8-qIgMbyLLm6jkTQ1OZ2-MCsSNP-ZuWarP5pUE3_t9-BiWOo-9btS9ur3Zh2WWN7aw2WIHUM3GEzw07kUmj3Kp-gJPU8sq | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Auto-Calibration+Algorithm+Based+on+Sparse+Bayesian+Learning+Framework&rft.jtitle=IEEE+signal+processing+letters&rft.au=Lifan+Zhao&rft.au=Guoan+Bi&rft.au=Lu+Wang&rft.au=Haijian+Zhang&rft.date=2013-09-01&rft.pub=IEEE&rft.issn=1070-9908&rft.volume=20&rft.issue=9&rft.spage=889&rft.epage=892&rft_id=info:doi/10.1109%2FLSP.2013.2272462&rft.externalDocID=6555879 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-9908&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-9908&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-9908&client=summon |