The impact of transient heat flux on tungsten fiber-reinforced tungsten materials

•The stability of tungsten fibers and interfaces in Wf/Wm was evaluated for the first time using an electron beam device.•In the experiment, the deflection of transient thermal shock cracks caused by interfacial debonding was observed for the first time, which confirms the special role of the fiber-...

Full description

Saved in:
Bibliographic Details
Published inFusion engineering and design Vol. 222; p. 115475
Main Authors Tianyu, Zhao, Shaoqiang, Xu, Juan, Du, Pan, Wen, Fan, Feng, Jialin, Li, Jun, Tang, Fanya, Jin, Kejia, Zhang
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.01.2026
Subjects
Online AccessGet full text
ISSN0920-3796
DOI10.1016/j.fusengdes.2025.115475

Cover

Abstract •The stability of tungsten fibers and interfaces in Wf/Wm was evaluated for the first time using an electron beam device.•In the experiment, the deflection of transient thermal shock cracks caused by interfacial debonding was observed for the first time, which confirms the special role of the fiber-interface-matrix energy dissipation structure under high thermal flux.•Under transient thermal shock, although Wf/Wm exhibit a higher cracking threshold, their cracking behavior is similar to that of ITER-W. Tungsten fiber-reinforced tungsten materials (Wf/Wm), as an emerging plasma-facing material, hold promise in addressing the brittleness issues associated with traditional tungsten materials. However, the impact of transient thermal loads in nuclear fusion reactors, particularly on the tungsten fibers and interfacial structures, has been less studied, which hampers the further application and development of these materials. This paper simulates Edge Localized Modes (ELMs) events using an EMS-60 electron beam facility to subject Wf/Wm to transient thermal shock and compares the changes in fibers and interfaces before and after the transient thermal shock. The following conclusions are drawn: (1) Compared to pure tungsten materials,Wf/Wm exhibit superior performance under transient thermal loads. (2) Although in this study, the tungsten fibers and interfaces, when directly exposed to high thermal loads, can still effectively prevent crack propagation, they both experience significant performance degradation and loss of integrity. We infer that if the number of thermal shock cycles is further increased, the likelihood of failure of the fibers and interfaces may be significantly enhanced. Therefore, special attention should be paid to the failure of Wf/Wm caused by plasma flux in practical applications. (3) Tungsten fibers have an excellent inhibitory effect on cracks along the heat flux direction, and their ideal arrangement is beneath the material surface, at a position hundreds of micrometers away from the surface, where the fibers and interfacial structures can be preserved intact, effectively impeding crack propagation.
AbstractList •The stability of tungsten fibers and interfaces in Wf/Wm was evaluated for the first time using an electron beam device.•In the experiment, the deflection of transient thermal shock cracks caused by interfacial debonding was observed for the first time, which confirms the special role of the fiber-interface-matrix energy dissipation structure under high thermal flux.•Under transient thermal shock, although Wf/Wm exhibit a higher cracking threshold, their cracking behavior is similar to that of ITER-W. Tungsten fiber-reinforced tungsten materials (Wf/Wm), as an emerging plasma-facing material, hold promise in addressing the brittleness issues associated with traditional tungsten materials. However, the impact of transient thermal loads in nuclear fusion reactors, particularly on the tungsten fibers and interfacial structures, has been less studied, which hampers the further application and development of these materials. This paper simulates Edge Localized Modes (ELMs) events using an EMS-60 electron beam facility to subject Wf/Wm to transient thermal shock and compares the changes in fibers and interfaces before and after the transient thermal shock. The following conclusions are drawn: (1) Compared to pure tungsten materials,Wf/Wm exhibit superior performance under transient thermal loads. (2) Although in this study, the tungsten fibers and interfaces, when directly exposed to high thermal loads, can still effectively prevent crack propagation, they both experience significant performance degradation and loss of integrity. We infer that if the number of thermal shock cycles is further increased, the likelihood of failure of the fibers and interfaces may be significantly enhanced. Therefore, special attention should be paid to the failure of Wf/Wm caused by plasma flux in practical applications. (3) Tungsten fibers have an excellent inhibitory effect on cracks along the heat flux direction, and their ideal arrangement is beneath the material surface, at a position hundreds of micrometers away from the surface, where the fibers and interfacial structures can be preserved intact, effectively impeding crack propagation.
ArticleNumber 115475
Author Fan, Feng
Tianyu, Zhao
Jun, Tang
Pan, Wen
Kejia, Zhang
Juan, Du
Shaoqiang, Xu
Fanya, Jin
Jialin, Li
Author_xml – sequence: 1
  givenname: Zhao
  surname: Tianyu
  fullname: Tianyu, Zhao
  organization: Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
– sequence: 2
  givenname: Xu
  surname: Shaoqiang
  fullname: Shaoqiang, Xu
  organization: Southwestern Institute of Physics, Chengdu 610064, China
– sequence: 3
  givenname: Du
  surname: Juan
  fullname: Juan, Du
  email: dujuan@swip.ac.cn
  organization: Southwestern Institute of Physics, Chengdu 610064, China
– sequence: 4
  givenname: Wen
  surname: Pan
  fullname: Pan, Wen
  organization: Southwestern Institute of Physics, Chengdu 610064, China
– sequence: 5
  givenname: Feng
  surname: Fan
  fullname: Fan, Feng
  organization: Southwestern Institute of Physics, Chengdu 610064, China
– sequence: 6
  givenname: Li
  surname: Jialin
  fullname: Jialin, Li
  organization: Southwestern Institute of Physics, Chengdu 610064, China
– sequence: 7
  givenname: Tang
  surname: Jun
  fullname: Jun, Tang
  email: tangjun@scu.edu.cn
  organization: Key Laboratory of Radiation Physics and Technology of Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China
– sequence: 8
  givenname: Jin
  surname: Fanya
  fullname: Fanya, Jin
  organization: Southwestern Institute of Physics, Chengdu 610064, China
– sequence: 9
  givenname: Zhang
  surname: Kejia
  fullname: Kejia, Zhang
  organization: Southwestern Institute of Physics, Chengdu 610064, China
BookMark eNqFkM1qwzAQhHVIoUnaZ6hewK5WjiTrGEL_IFAK6Vk48iqRieUgKaV9-zqktMfCwhyWGWa-GZmEISAhd8BKYCDvu9KdEoZdi6nkjIsSQCyUmJAp05wVldLymsxS6hgDNd6UvG32SH1_bGymg6M5NiF5DJnuscnUHU6fdAg0n8IuZQzU-S3GIqIPbogW279P32SMvjmkG3LlRsHbH52T98eHzeq5WL8-vayW68JyWeVCcADUgm9rCVYyXIBSCMIJibJFaWtp9ZZroSxW3ArdspqzhXVQc11VUlZzoi65Ng4pRXTmGH3fxC8DzJxpmM780jBnGuZCY3QuL04c6314jCbZcfM4x0e02bSD_zfjG7sncUk
Cites_doi 10.1016/j.fusengdes.2016.06.026
10.1016/j.fusengdes.2012.02.106
10.13182/FST96-A11963018
10.1007/s42864-024-00270-4
10.1016/j.jnucmat.2014.07.041
10.3390/jne3040030
10.1016/j.actamat.2013.07.035
ContentType Journal Article
Copyright 2025
Copyright_xml – notice: 2025
DBID AAYXX
CITATION
DOI 10.1016/j.fusengdes.2025.115475
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_fusengdes_2025_115475
S0920379625006714
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-5211e952b861c60e4177e15f56e6de6c86c9b2957ce32c59d08204cf182933663
IEDL.DBID .~1
ISSN 0920-3796
IngestDate Wed Oct 29 21:27:49 EDT 2025
Sat Oct 25 17:32:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Plasma facing materials
Nuclear fusion
Tungsten fiber-reinforced tungsten materials
Transient heat flux
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-5211e952b861c60e4177e15f56e6de6c86c9b2957ce32c59d08204cf182933663
ParticipantIDs crossref_primary_10_1016_j_fusengdes_2025_115475
elsevier_sciencedirect_doi_10_1016_j_fusengdes_2025_115475
PublicationCentury 2000
PublicationDate January 2026
2026-01-00
PublicationDateYYYYMMDD 2026-01-01
PublicationDate_xml – month: 01
  year: 2026
  text: January 2026
PublicationDecade 2020
PublicationTitle Fusion engineering and design
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References von Preuschen-Liebenstein (bib0002) 2006; 51
Zhao, Li, Tang, Chen, Liu, Tao, Liu, Cheng, Wang, Du (bib0014) 2023; 37
Ohyabu, Komori, Sagara, Suzuki, Morisaki, Masuzaki, Watanabe, Noda, Motojima (bib0004) 1996; 30
Gietl, Olbrich, Riesch, Holzner, Höschen, Coenen, Neu (bib0013) 2020
Riesch, Buffiere, Höschen, di Michiel, Scheel, Linsmeier, You (bib0010) 2013; 61
Wuenderlich, Riedl, Fröschle, Heiler, Navarro, Yordanov, Döring, Fantz (bib0001) 2025
Yang, Wang, Feng, Liu, Gong, Lian, Wang (bib0017) 2024; 6
Mao, Coenen, Liu, Terra, Tan, Riesch, Höschen, Wu, Broeckmann, Linsmeier (bib0007) 2022; 3
Ma, Zhang, Feng, Wang, Liu, Wang, Lv, Lang, Ge, Yan (bib0006) 2023; 34
Du, Li, Wu, Zhang, Wen, Tang, Zhao, Wang, Liu, Chen (bib0011) 2023
Harrison, Theiler, Février, Oliviera, Maurizio, Verhaegh, Perek, Karpushov, Lipschultz, Duval, Feng, Henderson, Labit, Linehan, Merle, Reimerdes, Sheikh, Tsui, Vijvers, Wüthrich (bib0005) 2019
Loewenhoff, Linke, Pintsuk, Thomser (bib0016) 2012; 87
Wang, Ren, Zhu, Ma, Yuan, Cheng, Lu (bib0008) 2022
Liu, Lian, Chen, Cheng, Chen, Duan, Song, Yu (bib0015) 2014; 455
Luo, Luo, Liu, Chen, Lin, Long, Guo (bib0009) 2024
Zheng, Xu, Ryutov, Xia, Duan, He, Pan (bib0003) 2016; 112
Shu, Mao, Coenen, Terra, Liu, Schönen, Höschen, Riesch, Linsmeier, Broeckmann (bib0012) 2023
Ma (10.1016/j.fusengdes.2025.115475_bib0006) 2023; 34
Harrison (10.1016/j.fusengdes.2025.115475_bib0005) 2019
von Preuschen-Liebenstein (10.1016/j.fusengdes.2025.115475_bib0002) 2006; 51
Luo (10.1016/j.fusengdes.2025.115475_bib0009) 2024
Loewenhoff (10.1016/j.fusengdes.2025.115475_bib0016) 2012; 87
Mao (10.1016/j.fusengdes.2025.115475_bib0007) 2022; 3
Du (10.1016/j.fusengdes.2025.115475_bib0011) 2023
Gietl (10.1016/j.fusengdes.2025.115475_bib0013) 2020
Zhao (10.1016/j.fusengdes.2025.115475_bib0014) 2023; 37
Wuenderlich (10.1016/j.fusengdes.2025.115475_bib0001) 2025
Ohyabu (10.1016/j.fusengdes.2025.115475_bib0004) 1996; 30
Zheng (10.1016/j.fusengdes.2025.115475_bib0003) 2016; 112
Riesch (10.1016/j.fusengdes.2025.115475_bib0010) 2013; 61
Yang (10.1016/j.fusengdes.2025.115475_bib0017) 2024; 6
Wang (10.1016/j.fusengdes.2025.115475_bib0008) 2022
Shu (10.1016/j.fusengdes.2025.115475_bib0012) 2023
Liu (10.1016/j.fusengdes.2025.115475_bib0015) 2014; 455
References_xml – volume: 30
  start-page: 699
  year: 1996
  end-page: 705
  ident: bib0004
  article-title: Advanced divertor concepts
  publication-title: Fusion Technol.
– start-page: 33
  year: 2022
  ident: bib0008
  article-title: Effect of initial exposure temperature on the deuterium retention and surface blistering in tungsten
  publication-title: Nuclear Mater. Energy
– volume: 6
  start-page: 759
  year: 2024
  end-page: 766
  ident: bib0017
  article-title: Comparison of thermal shock resistance capabilities of the rotary swaged pure tungsten, potassium-doped tungsten, and W-La
  publication-title: Tungsten
– start-page: 232
  year: 2020
  ident: bib0013
  article-title: Estimation of the fracture toughness of tungsten fibre-reinforced tungsten composites
  publication-title: Eng. Fract. Mech.
– start-page: 598
  year: 2024
  ident: bib0009
  article-title: Dislocation loops and hardening of silicon ion irradiated W and W-3Re alloy at 400 °C and 550 °C
  publication-title: J. Nuclear Mater.
– start-page: 115
  year: 2023
  ident: bib0012
  article-title: Microstructure and mechanical properties of wf/W composites influenced by Y2O3 coating
  publication-title: Int. J. Refract. Metals Hard Mater.
– volume: 87
  start-page: 1201
  year: 2012
  end-page: 1205
  ident: bib0016
  article-title: Tungsten and CFC degradation under combined high cycle transient and steady state heat loads
  publication-title: Fusion Eng. Design
– volume: 61
  start-page: 7060
  year: 2013
  end-page: 7071
  ident: bib0010
  article-title: In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system
  publication-title: Acta Mater.
– volume: 455
  start-page: 382
  year: 2014
  end-page: 386
  ident: bib0015
  article-title: Tungsten joining with copper alloy and its high heat load performance
  publication-title: J. Nuclear Mater.
– volume: 112
  start-page: 450
  year: 2016
  end-page: 459
  ident: bib0003
  article-title: Advanced divertor concept design and analysis for HL-2M
  publication-title: Fusion Eng. Design
– start-page: 61
  year: 2019
  ident: bib0005
  article-title: Progress toward divertor detachment on TCV within H-mode operating parameters
  publication-title: Plasma Phys. Control Fusion.
– volume: 37
  year: 2023
  ident: bib0014
  article-title: Mechanical properties of a novel tungsten fiber-reinforced tungsten composite prepared through powder extrusion printing and high-pressure high-temperature sintering
  publication-title: Nuclear Mater. Energy
– start-page: 13
  year: 2023
  ident: bib0011
  article-title: The microstructural and hardness changes of tungsten fiber after Au
  publication-title: Crystals. (Basel)
– volume: 3
  start-page: 446
  year: 2022
  end-page: 452
  ident: bib0007
  article-title: Powder metallurgy produced aligned long tungsten fiber reinforced tungsten composites
  publication-title: J. Nuclear Eng.
– volume: 34
  year: 2023
  ident: bib0006
  article-title: High-temperature tensile and thermal shock characterization of low-temperature rolled tungsten
  publication-title: Nuclear Mater. Energy
– start-page: 65
  year: 2025
  ident: bib0001
  article-title: ITER-relevant 600 s steady-state extraction of negative hydrogen ions at the test facility elise
  publication-title: Nuclear Fusion
– volume: 51
  year: 2006
  ident: bib0002
  article-title: International ITER fusion energy organization - paving the way to power generation from nuclear fusion
  publication-title: Atw-Int. J. Nuclear Power
– start-page: 598
  year: 2024
  ident: 10.1016/j.fusengdes.2025.115475_bib0009
  article-title: Dislocation loops and hardening of silicon ion irradiated W and W-3Re alloy at 400 °C and 550 °C
  publication-title: J. Nuclear Mater.
– volume: 112
  start-page: 450
  year: 2016
  ident: 10.1016/j.fusengdes.2025.115475_bib0003
  article-title: Advanced divertor concept design and analysis for HL-2M
  publication-title: Fusion Eng. Design
  doi: 10.1016/j.fusengdes.2016.06.026
– volume: 37
  year: 2023
  ident: 10.1016/j.fusengdes.2025.115475_bib0014
  article-title: Mechanical properties of a novel tungsten fiber-reinforced tungsten composite prepared through powder extrusion printing and high-pressure high-temperature sintering
  publication-title: Nuclear Mater. Energy
– start-page: 61
  year: 2019
  ident: 10.1016/j.fusengdes.2025.115475_bib0005
  article-title: Progress toward divertor detachment on TCV within H-mode operating parameters
  publication-title: Plasma Phys. Control Fusion.
– volume: 87
  start-page: 1201
  year: 2012
  ident: 10.1016/j.fusengdes.2025.115475_bib0016
  article-title: Tungsten and CFC degradation under combined high cycle transient and steady state heat loads
  publication-title: Fusion Eng. Design
  doi: 10.1016/j.fusengdes.2012.02.106
– start-page: 33
  year: 2022
  ident: 10.1016/j.fusengdes.2025.115475_bib0008
  article-title: Effect of initial exposure temperature on the deuterium retention and surface blistering in tungsten
  publication-title: Nuclear Mater. Energy
– start-page: 232
  year: 2020
  ident: 10.1016/j.fusengdes.2025.115475_bib0013
  article-title: Estimation of the fracture toughness of tungsten fibre-reinforced tungsten composites
  publication-title: Eng. Fract. Mech.
– start-page: 13
  year: 2023
  ident: 10.1016/j.fusengdes.2025.115475_bib0011
  article-title: The microstructural and hardness changes of tungsten fiber after Au2+ irradiation
  publication-title: Crystals. (Basel)
– volume: 30
  start-page: 699
  year: 1996
  ident: 10.1016/j.fusengdes.2025.115475_bib0004
  article-title: Advanced divertor concepts
  publication-title: Fusion Technol.
  doi: 10.13182/FST96-A11963018
– volume: 6
  start-page: 759
  year: 2024
  ident: 10.1016/j.fusengdes.2025.115475_bib0017
  article-title: Comparison of thermal shock resistance capabilities of the rotary swaged pure tungsten, potassium-doped tungsten, and W-La2O3 alloys
  publication-title: Tungsten
  doi: 10.1007/s42864-024-00270-4
– start-page: 65
  year: 2025
  ident: 10.1016/j.fusengdes.2025.115475_bib0001
  article-title: ITER-relevant 600 s steady-state extraction of negative hydrogen ions at the test facility elise
  publication-title: Nuclear Fusion
– volume: 455
  start-page: 382
  year: 2014
  ident: 10.1016/j.fusengdes.2025.115475_bib0015
  article-title: Tungsten joining with copper alloy and its high heat load performance
  publication-title: J. Nuclear Mater.
  doi: 10.1016/j.jnucmat.2014.07.041
– start-page: 115
  year: 2023
  ident: 10.1016/j.fusengdes.2025.115475_bib0012
  article-title: Microstructure and mechanical properties of wf/W composites influenced by Y2O3 coating
  publication-title: Int. J. Refract. Metals Hard Mater.
– volume: 51
  year: 2006
  ident: 10.1016/j.fusengdes.2025.115475_bib0002
  article-title: International ITER fusion energy organization - paving the way to power generation from nuclear fusion
  publication-title: Atw-Int. J. Nuclear Power
– volume: 3
  start-page: 446
  year: 2022
  ident: 10.1016/j.fusengdes.2025.115475_bib0007
  article-title: Powder metallurgy produced aligned long tungsten fiber reinforced tungsten composites
  publication-title: J. Nuclear Eng.
  doi: 10.3390/jne3040030
– volume: 61
  start-page: 7060
  year: 2013
  ident: 10.1016/j.fusengdes.2025.115475_bib0010
  article-title: In situ synchrotron tomography estimation of toughening effect by semi-ductile fibre reinforcement in a tungsten-fibre-reinforced tungsten composite system
  publication-title: Acta Mater.
  doi: 10.1016/j.actamat.2013.07.035
– volume: 34
  year: 2023
  ident: 10.1016/j.fusengdes.2025.115475_bib0006
  article-title: High-temperature tensile and thermal shock characterization of low-temperature rolled tungsten
  publication-title: Nuclear Mater. Energy
SSID ssj0017017
Score 2.4280348
Snippet •The stability of tungsten fibers and interfaces in Wf/Wm was evaluated for the first time using an electron beam device.•In the experiment, the deflection of...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 115475
SubjectTerms Nuclear fusion
Plasma facing materials
Transient heat flux
Tungsten fiber-reinforced tungsten materials
Title The impact of transient heat flux on tungsten fiber-reinforced tungsten materials
URI https://dx.doi.org/10.1016/j.fusengdes.2025.115475
Volume 222
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0920-3796
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017017
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0920-3796
  databaseCode: ACRLP
  dateStart: 19950102
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017017
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0920-3796
  databaseCode: AIKHN
  dateStart: 19950102
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017017
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  issn: 0920-3796
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0017017
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0920-3796
  databaseCode: AKRWK
  dateStart: 19870101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017017
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5KvehBfOKz7MFr2jz2kfVWiqUqFkQLvYXNZlcqkpaSgid_uzN51BYEDx6T7ELyzeabmWXmW0JuMq2FLzPpqSwKPZZK5qXOaY8HMlVpFjNtsRv5aSxGE_Yw5dMWGTS9MFhWWXN_xeklW9d3ejWavcVs1nvxVehHUkEAj5RbHmbNmMRTDLpf6zIPlBsvW6YVdgrD6K0aL4fbHG-ZRd3ukHdRmgYLDn_zUBteZ3hA9utwkfarNzokLZsfkb0NEcFj8gyWplWzI507WqDzwSZHijRL3cfqk85zWsBPDQbNqcMSEW9pS8VU-PyfJxC7VsvxhEyGd6-DkVcflOCZUEQFJJNBYBUP01gERviWBVLagDsurMisMLEwKg0Vl8ZGoeEqQ7_PjIPcQkURxBynpJ3Pc3tGaAxEDNhoY4zPWCo0d1owjbL6BjIzcU78BpxkUelhJE2h2HuyxjNBPJMKz3Ny24CYbJk2Adb-a_LFfyZfkl24qndMrki7WK7sNcQQRdopF0mH7PTvH0fjb5-bx_0
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5FD-pBfGJ95uB1291sHhtvUixV24LYQm_LJptIRbalbMGTv93MPmoLggevmw3sfpN8MxNmviB0myYJ90UqPJmGxKNKUE9Zm3gsEEqqNKKJgW7kwZD3xvRpwiYN1Kl7YaCssuL-ktMLtq6etCs02_PptP3qS-KHQroAHigXLrPepowIyMBaX6s6D9AbL3qmJbQKu9c3irwsnHO8pQaEuwlrgTYNVBz-5qLW3E73AO1X8SK-Lz_pEDVMdoT21lQEj9GLMzUuux3xzOIcvA90OWLgWWw_lp94luHc7Wpn0QxbqBHxFqaQTHX__zPigtdyPZ6gcfdh1Ol51U0JniY8zF02GQRGMqIiHmjuGxoIYQJmGTc8NVxHXEtFJBPahEQzmYLjp9q65EKGoQs6TtFWNsvMGcKRY2KHTaK19ilVPGE24TQBXX3tUjPeRH4NTjwvBTHiulLsPV7hGQOecYlnE93VIMYbto0dbf81-fw_k2_QTm806Mf9x-HzBdp1I9XxySXayhdLc-UCilxdFwvmG3iOyZI
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+impact+of+transient+heat+flux+on+tungsten+fiber-reinforced+tungsten+materials&rft.jtitle=Fusion+engineering+and+design&rft.au=Tianyu%2C+Zhao&rft.au=Shaoqiang%2C+Xu&rft.au=Juan%2C+Du&rft.au=Pan%2C+Wen&rft.date=2026-01-01&rft.issn=0920-3796&rft.volume=222&rft.spage=115475&rft_id=info:doi/10.1016%2Fj.fusengdes.2025.115475&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_fusengdes_2025_115475
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-3796&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-3796&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-3796&client=summon