Identification of Nonlinear Dynamic Systems Using Type-2 Fuzzy Neural Networks-A Novel Learning Algorithm and a Comparative Study

In order to achieve faster and more robust convergence (particularly under noisy working environments), a sliding-mode-theory-based learning algorithm has been proposed to tune both the premise and consequent parts of type-2 fuzzy neural networks (FNNs) in this paper. Different from recent studies,...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on industrial electronics (1982) Vol. 62; no. 3; pp. 1716 - 1724
Main Authors Kayacan, Erkan, Kayacan, Erdal, Khanesar, Mojtaba Ahmadieh
Format Journal Article
LanguageEnglish
Published IEEE 01.03.2015
Subjects
Online AccessGet full text
ISSN0278-0046
1557-9948
DOI10.1109/TIE.2014.2345353

Cover

Abstract In order to achieve faster and more robust convergence (particularly under noisy working environments), a sliding-mode-theory-based learning algorithm has been proposed to tune both the premise and consequent parts of type-2 fuzzy neural networks (FNNs) in this paper. Different from recent studies, where sliding-mode-control-theory-based rules are proposed for only the consequent part of the network, the developed algorithm applies fully-sliding-mode parameter update rules for both the premise and consequent parts of type-2 FNNs. In addition, the responsible parameter for sharing the contributions of the lower and upper parts of the type-2 fuzzy membership functions is also tuned. Moreover, the learning rate of the network is updated during the online training. The stability of the proposed learning algorithm has been proved by using an appropriate Lyapunov function. Several comparisons have been realized and shown that the proposed algorithm has faster convergence speed than the existing methods such as gradient-based and swarm-intelligence-based methods. Moreover, the proposed learning algorithm has a closed form, and it is easier to implement than the other existing methods.
AbstractList In order to achieve faster and more robust convergence (particularly under noisy working environments), a sliding-mode-theory-based learning algorithm has been proposed to tune both the premise and consequent parts of type-2 fuzzy neural networks (FNNs) in this paper. Different from recent studies, where sliding-mode-control-theory-based rules are proposed for only the consequent part of the network, the developed algorithm applies fully-sliding-mode parameter update rules for both the premise and consequent parts of type-2 FNNs. In addition, the responsible parameter for sharing the contributions of the lower and upper parts of the type-2 fuzzy membership functions is also tuned. Moreover, the learning rate of the network is updated during the online training. The stability of the proposed learning algorithm has been proved by using an appropriate Lyapunov function. Several comparisons have been realized and shown that the proposed algorithm has faster convergence speed than the existing methods such as gradient-based and swarm-intelligence-based methods. Moreover, the proposed learning algorithm has a closed form, and it is easier to implement than the other existing methods.
Author Kayacan, Erkan
Khanesar, Mojtaba Ahmadieh
Kayacan, Erdal
Author_xml – sequence: 1
  givenname: Erkan
  surname: Kayacan
  fullname: Kayacan, Erkan
  email: erkan.kayacan@biw.kuleuven.be
  organization: Dept. of Biosyst., Univ. of Leuven, Leuven, Belgium
– sequence: 2
  givenname: Erdal
  surname: Kayacan
  fullname: Kayacan, Erdal
  email: erdal@ntu.edu.sg
  organization: Sch. of Mech. & Aerosp. Eng., Nanyang Technol. Univ., Singapore, Singapore
– sequence: 3
  givenname: Mojtaba Ahmadieh
  surname: Khanesar
  fullname: Khanesar, Mojtaba Ahmadieh
  email: ahmadieh@semnan.ac.ir
  organization: Dept. of Electr. & Control Eng., Semnan Univ., Semnan, Iran
BookMark eNp9kMtOAjEUQBuDiYDuTdz0Bwb7nMeSICgJwQWwnnSmHazOdEhbMMPOP7cIceHC1d2cc2_uGYCeaY0C4B6jEcYoe1zPpyOCMBsRyjjl9Ar0MedJlGUs7YE-IkkaIcTiGzBw7h0FkmPeB19zqYzXlS6F162BbQWXram1UcLCp86IRpdw1TmvGgc3TpstXHc7FRE42x-PHVyqvRV1GP6ztR8uGgf9oGq4CL450eN621rt3xoojIQCTtpmJ2w4dlBw5feyuwXXlaidurvMIdjMpuvJS7R4fZ5PxouoJDH1EZWFikWKSIbjjBcSF1IKLtIi5pUUKcNIUsYIzphMMlLximJeFYIqFCBGOB2C-Ly3tK1zVlV5qf3P094KXecY5aeQeQiZn0Lml5BBRH_EndWNsN1_ysNZ0UqpXzxOE0xxTL8ByBmBxQ
CODEN ITIED6
CitedBy_id crossref_primary_10_1109_TSMC_2023_3310593
crossref_primary_10_1016_j_engappai_2021_104620
crossref_primary_10_1016_j_neucom_2017_11_009
crossref_primary_10_1016_j_ifacol_2016_07_977
crossref_primary_10_1109_TASE_2021_3072339
crossref_primary_10_1007_s42452_022_05254_y
crossref_primary_10_1109_TFUZZ_2019_2928509
crossref_primary_10_1016_j_neucom_2015_08_024
crossref_primary_10_1007_s00521_020_05077_1
crossref_primary_10_1155_2018_2301804
crossref_primary_10_1016_j_neucom_2019_01_073
crossref_primary_10_1007_s00542_017_3636_x
crossref_primary_10_1007_s10846_019_01031_z
crossref_primary_10_1016_j_neucom_2016_07_021
crossref_primary_10_1049_iet_cta_2017_0610
crossref_primary_10_3390_rs14051239
crossref_primary_10_3390_electronics12092026
crossref_primary_10_1109_TFUZZ_2018_2803751
crossref_primary_10_3233_JIFS_171348
crossref_primary_10_1016_j_patcog_2022_108861
crossref_primary_10_1109_TNNLS_2016_2547968
crossref_primary_10_1111_exsy_12457
crossref_primary_10_3390_app11062612
crossref_primary_10_1007_s40815_018_0505_4
crossref_primary_10_1109_ACCESS_2019_2911955
crossref_primary_10_1016_j_engappai_2015_07_014
crossref_primary_10_1177_0142331218788125
crossref_primary_10_1146_annurev_control_053018_023617
crossref_primary_10_3390_sym15030676
crossref_primary_10_1016_j_ijepes_2022_108002
crossref_primary_10_1016_j_asoc_2016_03_023
crossref_primary_10_1016_j_ymssp_2023_110771
crossref_primary_10_1016_j_swevo_2017_10_003
crossref_primary_10_1109_TFUZZ_2016_2646750
crossref_primary_10_1109_TSMC_2019_2911726
crossref_primary_10_1016_j_isatra_2017_10_012
crossref_primary_10_1109_TIE_2016_2530040
crossref_primary_10_1007_s00521_021_06227_9
crossref_primary_10_1007_s00500_019_04618_8
crossref_primary_10_1109_JESTIE_2024_3374205
crossref_primary_10_1016_j_isatra_2023_06_003
crossref_primary_10_1016_j_asoc_2016_11_015
crossref_primary_10_1109_TCYB_2021_3072851
crossref_primary_10_1007_s00500_018_3367_7
crossref_primary_10_1007_s40815_019_00766_z
crossref_primary_10_1016_j_neucom_2019_01_095
crossref_primary_10_1109_TPEL_2021_3127896
crossref_primary_10_1016_j_fss_2019_08_013
crossref_primary_10_1016_j_ins_2023_01_134
crossref_primary_10_1007_s00500_016_2447_9
crossref_primary_10_1142_S146902682150022X
crossref_primary_10_1016_j_jfranklin_2018_06_031
crossref_primary_10_1007_s44196_024_00405_y
crossref_primary_10_1088_1361_6501_ad6921
crossref_primary_10_1109_TIE_2016_2590379
crossref_primary_10_1016_j_engappai_2017_04_013
crossref_primary_10_1109_TFUZZ_2018_2878156
crossref_primary_10_1177_1687814019891659
crossref_primary_10_1109_TII_2015_2499122
crossref_primary_10_1109_TIE_2016_2643603
crossref_primary_10_1587_transcom_2016EBP3095
crossref_primary_10_1109_TSTE_2018_2881317
crossref_primary_10_1109_ACCESS_2024_3474574
crossref_primary_10_1142_S0129065719500151
crossref_primary_10_1016_j_knosys_2022_110095
crossref_primary_10_1002_asjc_1802
crossref_primary_10_1007_s00521_016_2503_5
Cites_doi 10.1109/ISIE.2005.1528899
10.1109/TEC.2007.895457
10.1109/CIMSA.2010.5611774
10.1109/3477.931542
10.1115/1.1318353
10.1049/el:19980062
10.1109/TIE.2009.2019753
10.1016/j.fss.2003.12.004
10.1109/NAFIPS.2008.4531279
10.1109/TFUZZ.2005.861604
10.1002/acs.1292
10.1109/TIE.2011.2182017
10.1109/TIE.2010.2043036
10.1109/T2FUZZ.2011.5949558
10.1109/ICMA.2007.4303966
10.1109/TSMCB.2011.2148173
10.1109/TSMCB.2009.2020569
10.1109/ICEC.1996.542677
10.1109/72.363441
10.1109/TIE.2009.2017557
10.1109/TIE.2013.2248332
10.1007/s12530-012-9053-6
10.1109/TIE.2010.2076415
10.1109/TFUZZ.2004.832531
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TIE.2014.2345353
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1557-9948
EndPage 1724
ExternalDocumentID 10_1109_TIE_2014_2345353
6871316
Genre orig-research
GroupedDBID -~X
.DC
0R~
29I
4.4
5GY
5VS
6IK
97E
9M8
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
TWZ
VH1
VJK
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-3dbe6a80291695bd1bdda5a8b65fda8410d3442194d792f5f315fba3e05a84253
IEDL.DBID RIE
ISSN 0278-0046
IngestDate Thu Apr 24 23:07:33 EDT 2025
Wed Oct 01 03:26:20 EDT 2025
Tue Aug 26 16:39:35 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords type-2 fuzzy neural networks (FNNs)
type-2 fuzzy logic systems (FLSs)
Sliding-mode learning algorithm
system identification
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-3dbe6a80291695bd1bdda5a8b65fda8410d3442194d792f5f315fba3e05a84253
PageCount 9
ParticipantIDs crossref_citationtrail_10_1109_TIE_2014_2345353
crossref_primary_10_1109_TIE_2014_2345353
ieee_primary_6871316
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-03-01
PublicationDateYYYYMMDD 2015-03-01
PublicationDate_xml – month: 03
  year: 2015
  text: 2015-03-01
  day: 01
PublicationDecade 2010
PublicationTitle IEEE transactions on industrial electronics (1982)
PublicationTitleAbbrev TIE
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref12
ref15
ref14
ref10
ref2
slotine (ref23) 1991
ref1
ref16
ref19
(ref6) 1996
ref18
ref24
ref26
shuanghe (ref17) 2004; 148
ref25
ref20
ref22
mendel (ref7) 2001
ref21
ref28
ref27
ref8
astrom (ref11) 1995
ref9
ref4
ref3
ref5
References_xml – year: 1996
  ident: ref6
  publication-title: Neural Fuzzy Systems A Neuro-Fuzzy Synergism to Intelligent Systems
– ident: ref18
  doi: 10.1109/ISIE.2005.1528899
– ident: ref5
  doi: 10.1109/TEC.2007.895457
– ident: ref15
  doi: 10.1109/CIMSA.2010.5611774
– year: 1991
  ident: ref23
  publication-title: Applied nonlinear control
– ident: ref12
  doi: 10.1109/3477.931542
– ident: ref19
  doi: 10.1115/1.1318353
– ident: ref16
  doi: 10.1049/el:19980062
– ident: ref3
  doi: 10.1109/TIE.2009.2019753
– volume: 148
  start-page: 469
  year: 2004
  ident: ref17
  article-title: A fuzzy neural network approximator with fast terminal sliding mode and its applications
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2003.12.004
– ident: ref22
  doi: 10.1109/NAFIPS.2008.4531279
– ident: ref4
  doi: 10.1109/TFUZZ.2005.861604
– ident: ref21
  doi: 10.1002/acs.1292
– ident: ref20
  doi: 10.1109/TIE.2011.2182017
– ident: ref26
  doi: 10.1109/TIE.2010.2043036
– ident: ref13
  doi: 10.1109/T2FUZZ.2011.5949558
– year: 2001
  ident: ref7
  publication-title: Uncertain Rule-Based Fuzzy Logic System Introduction and New Directions
– ident: ref28
  doi: 10.1109/ICMA.2007.4303966
– ident: ref27
  doi: 10.1109/TSMCB.2011.2148173
– ident: ref8
  doi: 10.1109/TSMCB.2009.2020569
– ident: ref14
  doi: 10.1109/ICEC.1996.542677
– ident: ref25
  doi: 10.1109/72.363441
– year: 1995
  ident: ref11
  publication-title: Adaptive Control
– ident: ref9
  doi: 10.1109/TIE.2009.2017557
– ident: ref10
  doi: 10.1109/TIE.2013.2248332
– ident: ref24
  doi: 10.1007/s12530-012-9053-6
– ident: ref2
  doi: 10.1109/TIE.2010.2076415
– ident: ref1
  doi: 10.1109/TFUZZ.2004.832531
SSID ssj0014515
Score 2.4632082
Snippet In order to achieve faster and more robust convergence (particularly under noisy working environments), a sliding-mode-theory-based learning algorithm has been...
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 1716
SubjectTerms Convergence
Fuzzy control
Fuzzy neural networks
Heuristic algorithms
Real-time systems
Robustness
Training
Title Identification of Nonlinear Dynamic Systems Using Type-2 Fuzzy Neural Networks-A Novel Learning Algorithm and a Comparative Study
URI https://ieeexplore.ieee.org/document/6871316
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9948
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014515
  issn: 0278-0046
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akx58oRFf6cGLiQu7fcEeCULQBE6QcNu02y4aEQwuJnDznzvdLojGGC-bZjOz22Sazkz7zTcIXSechsJYBgAJD0Zi5YWaJF4QcmL7EIBXs4liry-6Q_Yw4qMCut3UwhhjMvCZqdphdpevZ_HCHpXVBET3NBBFVKw3hKvV2twYMO66FRDLGAtJ3_pK0g9rg_u2xXCxKqGMU06_uaCtniqZS-nso956Mg5J8lxdpKoar37wNP53tgdoL48tcdMthkNUMNMjtLvFOFhGH64wN8lP6vAswX1HliHn-M51p8c5iznO4ATYZqoewZ3FarXElssDftF34PE3rwnq72aCc5rWMW5OxrP5U_r4guVUY4lbX-zi2GIWl8do2GkPWl0v78LgxUTQ1KNaGSEbPoFAMuRKB0pryWVDCZ5o2WCBryljsPExXQ9JwhMa8ERJanwQgh2BnqDSdDY1pwgrpn2qRSAlgTAthq8SyLbqECXF0mhfV1BtbZgozinKbaeMSZSlKn4YgSkja8ooN2UF3Ww0Xh09xx-yZWukjVxun7PfX5-jHVDmDm52gUrpfGEuIf5I1VW28D4BcP7WqA
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3og3OXBBolubR1mPEzCNx3YaErcqaVJAjA2NDmm78c9xmm4MhBCXqqqcNJKj2I4_fwY4TgWLQmMZACQ-OE2UF2maekEkqO1DgFbNBoqtdti849f34r4Ep9NaGGNMDj4zFfua5_J1Pxnaq7JqiN49C8I5mBecc-GqtaY5Ay5cvwJqOWMx7JskJf2o2rm6tCguXqGMCybYNyM001UlNyqNFWhNluOwJM-VYaYqyfgHU-N_17sKy4V3SepuO6xByfTWYWmGc3ADPlxpblrc1ZF-StqOLkMOyIXrT08KHnOSAwqIjVU9ShrD8XhELJsH_qLt4ONvXh2Hv5suKYhaH0i9-9AfPGWPL0T2NJHk_ItfnFjU4mgT7hqXnfOmV_Rh8BIassxjWplQ1nyKrmQklA6U1lLImgpFqmWNB75mnOPRx_VZRFORskCkSjLjoxCeCWwLyr1-z2wDUVz7TIeBlBQdtQRnpRhvnaGflEijfb0D1Yli4qQgKbe9MrpxHqz4UYyqjK0q40KVO3AyHfHqCDr-kN2wSprKFfrZ_f3zESw0O63b-PaqfbMHiziRcOCzfShng6E5QG8kU4f5JvwE1iXZ9Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Nonlinear+Dynamic+Systems+Using+Type-2+Fuzzy+Neural+Networks-A+Novel+Learning+Algorithm+and+a+Comparative+Study&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Kayacan%2C+Erkan&rft.au=Kayacan%2C+Erdal&rft.au=Khanesar%2C+Mojtaba+Ahmadieh&rft.date=2015-03-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=62&rft.issue=3&rft.spage=1716&rft.epage=1724&rft_id=info:doi/10.1109%2FTIE.2014.2345353&rft.externalDocID=6871316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon