Identification of Nonlinear Dynamic Systems Using Type-2 Fuzzy Neural Networks-A Novel Learning Algorithm and a Comparative Study
In order to achieve faster and more robust convergence (particularly under noisy working environments), a sliding-mode-theory-based learning algorithm has been proposed to tune both the premise and consequent parts of type-2 fuzzy neural networks (FNNs) in this paper. Different from recent studies,...
        Saved in:
      
    
          | Published in | IEEE transactions on industrial electronics (1982) Vol. 62; no. 3; pp. 1716 - 1724 | 
|---|---|
| Main Authors | , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            IEEE
    
        01.03.2015
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0278-0046 1557-9948  | 
| DOI | 10.1109/TIE.2014.2345353 | 
Cover
| Abstract | In order to achieve faster and more robust convergence (particularly under noisy working environments), a sliding-mode-theory-based learning algorithm has been proposed to tune both the premise and consequent parts of type-2 fuzzy neural networks (FNNs) in this paper. Different from recent studies, where sliding-mode-control-theory-based rules are proposed for only the consequent part of the network, the developed algorithm applies fully-sliding-mode parameter update rules for both the premise and consequent parts of type-2 FNNs. In addition, the responsible parameter for sharing the contributions of the lower and upper parts of the type-2 fuzzy membership functions is also tuned. Moreover, the learning rate of the network is updated during the online training. The stability of the proposed learning algorithm has been proved by using an appropriate Lyapunov function. Several comparisons have been realized and shown that the proposed algorithm has faster convergence speed than the existing methods such as gradient-based and swarm-intelligence-based methods. Moreover, the proposed learning algorithm has a closed form, and it is easier to implement than the other existing methods. | 
    
|---|---|
| AbstractList | In order to achieve faster and more robust convergence (particularly under noisy working environments), a sliding-mode-theory-based learning algorithm has been proposed to tune both the premise and consequent parts of type-2 fuzzy neural networks (FNNs) in this paper. Different from recent studies, where sliding-mode-control-theory-based rules are proposed for only the consequent part of the network, the developed algorithm applies fully-sliding-mode parameter update rules for both the premise and consequent parts of type-2 FNNs. In addition, the responsible parameter for sharing the contributions of the lower and upper parts of the type-2 fuzzy membership functions is also tuned. Moreover, the learning rate of the network is updated during the online training. The stability of the proposed learning algorithm has been proved by using an appropriate Lyapunov function. Several comparisons have been realized and shown that the proposed algorithm has faster convergence speed than the existing methods such as gradient-based and swarm-intelligence-based methods. Moreover, the proposed learning algorithm has a closed form, and it is easier to implement than the other existing methods. | 
    
| Author | Kayacan, Erkan Khanesar, Mojtaba Ahmadieh Kayacan, Erdal  | 
    
| Author_xml | – sequence: 1 givenname: Erkan surname: Kayacan fullname: Kayacan, Erkan email: erkan.kayacan@biw.kuleuven.be organization: Dept. of Biosyst., Univ. of Leuven, Leuven, Belgium – sequence: 2 givenname: Erdal surname: Kayacan fullname: Kayacan, Erdal email: erdal@ntu.edu.sg organization: Sch. of Mech. & Aerosp. Eng., Nanyang Technol. Univ., Singapore, Singapore – sequence: 3 givenname: Mojtaba Ahmadieh surname: Khanesar fullname: Khanesar, Mojtaba Ahmadieh email: ahmadieh@semnan.ac.ir organization: Dept. of Electr. & Control Eng., Semnan Univ., Semnan, Iran  | 
    
| BookMark | eNp9kMtOAjEUQBuDiYDuTdz0Bwb7nMeSICgJwQWwnnSmHazOdEhbMMPOP7cIceHC1d2cc2_uGYCeaY0C4B6jEcYoe1zPpyOCMBsRyjjl9Ar0MedJlGUs7YE-IkkaIcTiGzBw7h0FkmPeB19zqYzXlS6F162BbQWXram1UcLCp86IRpdw1TmvGgc3TpstXHc7FRE42x-PHVyqvRV1GP6ztR8uGgf9oGq4CL450eN621rt3xoojIQCTtpmJ2w4dlBw5feyuwXXlaidurvMIdjMpuvJS7R4fZ5PxouoJDH1EZWFikWKSIbjjBcSF1IKLtIi5pUUKcNIUsYIzphMMlLximJeFYIqFCBGOB2C-Ly3tK1zVlV5qf3P094KXecY5aeQeQiZn0Lml5BBRH_EndWNsN1_ysNZ0UqpXzxOE0xxTL8ByBmBxQ | 
    
| CODEN | ITIED6 | 
    
| CitedBy_id | crossref_primary_10_1109_TSMC_2023_3310593 crossref_primary_10_1016_j_engappai_2021_104620 crossref_primary_10_1016_j_neucom_2017_11_009 crossref_primary_10_1016_j_ifacol_2016_07_977 crossref_primary_10_1109_TASE_2021_3072339 crossref_primary_10_1007_s42452_022_05254_y crossref_primary_10_1109_TFUZZ_2019_2928509 crossref_primary_10_1016_j_neucom_2015_08_024 crossref_primary_10_1007_s00521_020_05077_1 crossref_primary_10_1155_2018_2301804 crossref_primary_10_1016_j_neucom_2019_01_073 crossref_primary_10_1007_s00542_017_3636_x crossref_primary_10_1007_s10846_019_01031_z crossref_primary_10_1016_j_neucom_2016_07_021 crossref_primary_10_1049_iet_cta_2017_0610 crossref_primary_10_3390_rs14051239 crossref_primary_10_3390_electronics12092026 crossref_primary_10_1109_TFUZZ_2018_2803751 crossref_primary_10_3233_JIFS_171348 crossref_primary_10_1016_j_patcog_2022_108861 crossref_primary_10_1109_TNNLS_2016_2547968 crossref_primary_10_1111_exsy_12457 crossref_primary_10_3390_app11062612 crossref_primary_10_1007_s40815_018_0505_4 crossref_primary_10_1109_ACCESS_2019_2911955 crossref_primary_10_1016_j_engappai_2015_07_014 crossref_primary_10_1177_0142331218788125 crossref_primary_10_1146_annurev_control_053018_023617 crossref_primary_10_3390_sym15030676 crossref_primary_10_1016_j_ijepes_2022_108002 crossref_primary_10_1016_j_asoc_2016_03_023 crossref_primary_10_1016_j_ymssp_2023_110771 crossref_primary_10_1016_j_swevo_2017_10_003 crossref_primary_10_1109_TFUZZ_2016_2646750 crossref_primary_10_1109_TSMC_2019_2911726 crossref_primary_10_1016_j_isatra_2017_10_012 crossref_primary_10_1109_TIE_2016_2530040 crossref_primary_10_1007_s00521_021_06227_9 crossref_primary_10_1007_s00500_019_04618_8 crossref_primary_10_1109_JESTIE_2024_3374205 crossref_primary_10_1016_j_isatra_2023_06_003 crossref_primary_10_1016_j_asoc_2016_11_015 crossref_primary_10_1109_TCYB_2021_3072851 crossref_primary_10_1007_s00500_018_3367_7 crossref_primary_10_1007_s40815_019_00766_z crossref_primary_10_1016_j_neucom_2019_01_095 crossref_primary_10_1109_TPEL_2021_3127896 crossref_primary_10_1016_j_fss_2019_08_013 crossref_primary_10_1016_j_ins_2023_01_134 crossref_primary_10_1007_s00500_016_2447_9 crossref_primary_10_1142_S146902682150022X crossref_primary_10_1016_j_jfranklin_2018_06_031 crossref_primary_10_1007_s44196_024_00405_y crossref_primary_10_1088_1361_6501_ad6921 crossref_primary_10_1109_TIE_2016_2590379 crossref_primary_10_1016_j_engappai_2017_04_013 crossref_primary_10_1109_TFUZZ_2018_2878156 crossref_primary_10_1177_1687814019891659 crossref_primary_10_1109_TII_2015_2499122 crossref_primary_10_1109_TIE_2016_2643603 crossref_primary_10_1587_transcom_2016EBP3095 crossref_primary_10_1109_TSTE_2018_2881317 crossref_primary_10_1109_ACCESS_2024_3474574 crossref_primary_10_1142_S0129065719500151 crossref_primary_10_1016_j_knosys_2022_110095 crossref_primary_10_1002_asjc_1802 crossref_primary_10_1007_s00521_016_2503_5  | 
    
| Cites_doi | 10.1109/ISIE.2005.1528899 10.1109/TEC.2007.895457 10.1109/CIMSA.2010.5611774 10.1109/3477.931542 10.1115/1.1318353 10.1049/el:19980062 10.1109/TIE.2009.2019753 10.1016/j.fss.2003.12.004 10.1109/NAFIPS.2008.4531279 10.1109/TFUZZ.2005.861604 10.1002/acs.1292 10.1109/TIE.2011.2182017 10.1109/TIE.2010.2043036 10.1109/T2FUZZ.2011.5949558 10.1109/ICMA.2007.4303966 10.1109/TSMCB.2011.2148173 10.1109/TSMCB.2009.2020569 10.1109/ICEC.1996.542677 10.1109/72.363441 10.1109/TIE.2009.2017557 10.1109/TIE.2013.2248332 10.1007/s12530-012-9053-6 10.1109/TIE.2010.2076415 10.1109/TFUZZ.2004.832531  | 
    
| ContentType | Journal Article | 
    
| DBID | 97E RIA RIE AAYXX CITATION  | 
    
| DOI | 10.1109/TIE.2014.2345353 | 
    
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef  | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1557-9948 | 
    
| EndPage | 1724 | 
    
| ExternalDocumentID | 10_1109_TIE_2014_2345353 6871316  | 
    
| Genre | orig-research | 
    
| GroupedDBID | -~X .DC 0R~ 29I 4.4 5GY 5VS 6IK 97E 9M8 AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 TWZ VH1 VJK AAYXX CITATION  | 
    
| ID | FETCH-LOGICAL-c263t-3dbe6a80291695bd1bdda5a8b65fda8410d3442194d792f5f315fba3e05a84253 | 
    
| IEDL.DBID | RIE | 
    
| ISSN | 0278-0046 | 
    
| IngestDate | Thu Apr 24 23:07:33 EDT 2025 Wed Oct 01 03:26:20 EDT 2025 Tue Aug 26 16:39:35 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 3 | 
    
| Keywords | type-2 fuzzy neural networks (FNNs) type-2 fuzzy logic systems (FLSs) Sliding-mode learning algorithm system identification  | 
    
| Language | English | 
    
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c263t-3dbe6a80291695bd1bdda5a8b65fda8410d3442194d792f5f315fba3e05a84253 | 
    
| PageCount | 9 | 
    
| ParticipantIDs | crossref_citationtrail_10_1109_TIE_2014_2345353 crossref_primary_10_1109_TIE_2014_2345353 ieee_primary_6871316  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2015-03-01 | 
    
| PublicationDateYYYYMMDD | 2015-03-01 | 
    
| PublicationDate_xml | – month: 03 year: 2015 text: 2015-03-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationTitle | IEEE transactions on industrial electronics (1982) | 
    
| PublicationTitleAbbrev | TIE | 
    
| PublicationYear | 2015 | 
    
| Publisher | IEEE | 
    
| Publisher_xml | – name: IEEE | 
    
| References | ref13 ref12 ref15 ref14 ref10 ref2 slotine (ref23) 1991 ref1 ref16 ref19 (ref6) 1996 ref18 ref24 ref26 shuanghe (ref17) 2004; 148 ref25 ref20 ref22 mendel (ref7) 2001 ref21 ref28 ref27 ref8 astrom (ref11) 1995 ref9 ref4 ref3 ref5  | 
    
| References_xml | – year: 1996 ident: ref6 publication-title: Neural Fuzzy Systems A Neuro-Fuzzy Synergism to Intelligent Systems – ident: ref18 doi: 10.1109/ISIE.2005.1528899 – ident: ref5 doi: 10.1109/TEC.2007.895457 – ident: ref15 doi: 10.1109/CIMSA.2010.5611774 – year: 1991 ident: ref23 publication-title: Applied nonlinear control – ident: ref12 doi: 10.1109/3477.931542 – ident: ref19 doi: 10.1115/1.1318353 – ident: ref16 doi: 10.1049/el:19980062 – ident: ref3 doi: 10.1109/TIE.2009.2019753 – volume: 148 start-page: 469 year: 2004 ident: ref17 article-title: A fuzzy neural network approximator with fast terminal sliding mode and its applications publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2003.12.004 – ident: ref22 doi: 10.1109/NAFIPS.2008.4531279 – ident: ref4 doi: 10.1109/TFUZZ.2005.861604 – ident: ref21 doi: 10.1002/acs.1292 – ident: ref20 doi: 10.1109/TIE.2011.2182017 – ident: ref26 doi: 10.1109/TIE.2010.2043036 – ident: ref13 doi: 10.1109/T2FUZZ.2011.5949558 – year: 2001 ident: ref7 publication-title: Uncertain Rule-Based Fuzzy Logic System Introduction and New Directions – ident: ref28 doi: 10.1109/ICMA.2007.4303966 – ident: ref27 doi: 10.1109/TSMCB.2011.2148173 – ident: ref8 doi: 10.1109/TSMCB.2009.2020569 – ident: ref14 doi: 10.1109/ICEC.1996.542677 – ident: ref25 doi: 10.1109/72.363441 – year: 1995 ident: ref11 publication-title: Adaptive Control – ident: ref9 doi: 10.1109/TIE.2009.2017557 – ident: ref10 doi: 10.1109/TIE.2013.2248332 – ident: ref24 doi: 10.1007/s12530-012-9053-6 – ident: ref2 doi: 10.1109/TIE.2010.2076415 – ident: ref1 doi: 10.1109/TFUZZ.2004.832531  | 
    
| SSID | ssj0014515 | 
    
| Score | 2.4632082 | 
    
| Snippet | In order to achieve faster and more robust convergence (particularly under noisy working environments), a sliding-mode-theory-based learning algorithm has been... | 
    
| SourceID | crossref ieee  | 
    
| SourceType | Enrichment Source Index Database Publisher  | 
    
| StartPage | 1716 | 
    
| SubjectTerms | Convergence Fuzzy control Fuzzy neural networks Heuristic algorithms Real-time systems Robustness Training  | 
    
| Title | Identification of Nonlinear Dynamic Systems Using Type-2 Fuzzy Neural Networks-A Novel Learning Algorithm and a Comparative Study | 
    
| URI | https://ieeexplore.ieee.org/document/6871316 | 
    
| Volume | 62 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9948 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014515 issn: 0278-0046 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LTwIxEG6Akx58oRFf6cGLiQu7fcEeCULQBE6QcNu02y4aEQwuJnDznzvdLojGGC-bZjOz22Sazkz7zTcIXSechsJYBgAJD0Zi5YWaJF4QcmL7EIBXs4liry-6Q_Yw4qMCut3UwhhjMvCZqdphdpevZ_HCHpXVBET3NBBFVKw3hKvV2twYMO66FRDLGAtJ3_pK0g9rg_u2xXCxKqGMU06_uaCtniqZS-nso956Mg5J8lxdpKoar37wNP53tgdoL48tcdMthkNUMNMjtLvFOFhGH64wN8lP6vAswX1HliHn-M51p8c5iznO4ATYZqoewZ3FarXElssDftF34PE3rwnq72aCc5rWMW5OxrP5U_r4guVUY4lbX-zi2GIWl8do2GkPWl0v78LgxUTQ1KNaGSEbPoFAMuRKB0pryWVDCZ5o2WCBryljsPExXQ9JwhMa8ERJanwQgh2BnqDSdDY1pwgrpn2qRSAlgTAthq8SyLbqECXF0mhfV1BtbZgozinKbaeMSZSlKn4YgSkja8ooN2UF3Ww0Xh09xx-yZWukjVxun7PfX5-jHVDmDm52gUrpfGEuIf5I1VW28D4BcP7WqA | 
    
| linkProvider | IEEE | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLbGOAAH3og3OXBBolubR1mPEzCNx3YaErcqaVJAjA2NDmm78c9xmm4MhBCXqqqcNJKj2I4_fwY4TgWLQmMZACQ-OE2UF2maekEkqO1DgFbNBoqtdti849f34r4Ep9NaGGNMDj4zFfua5_J1Pxnaq7JqiN49C8I5mBecc-GqtaY5Ay5cvwJqOWMx7JskJf2o2rm6tCguXqGMCybYNyM001UlNyqNFWhNluOwJM-VYaYqyfgHU-N_17sKy4V3SepuO6xByfTWYWmGc3ADPlxpblrc1ZF-StqOLkMOyIXrT08KHnOSAwqIjVU9ShrD8XhELJsH_qLt4ONvXh2Hv5suKYhaH0i9-9AfPGWPL0T2NJHk_ItfnFjU4mgT7hqXnfOmV_Rh8BIassxjWplQ1nyKrmQklA6U1lLImgpFqmWNB75mnOPRx_VZRFORskCkSjLjoxCeCWwLyr1-z2wDUVz7TIeBlBQdtQRnpRhvnaGflEijfb0D1Yli4qQgKbe9MrpxHqz4UYyqjK0q40KVO3AyHfHqCDr-kN2wSprKFfrZ_f3zESw0O63b-PaqfbMHiziRcOCzfShng6E5QG8kU4f5JvwE1iXZ9Q | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Identification+of+Nonlinear+Dynamic+Systems+Using+Type-2+Fuzzy+Neural+Networks-A+Novel+Learning+Algorithm+and+a+Comparative+Study&rft.jtitle=IEEE+transactions+on+industrial+electronics+%281982%29&rft.au=Kayacan%2C+Erkan&rft.au=Kayacan%2C+Erdal&rft.au=Khanesar%2C+Mojtaba+Ahmadieh&rft.date=2015-03-01&rft.pub=IEEE&rft.issn=0278-0046&rft.volume=62&rft.issue=3&rft.spage=1716&rft.epage=1724&rft_id=info:doi/10.1109%2FTIE.2014.2345353&rft.externalDocID=6871316 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0046&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0046&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0046&client=summon |