SVD-Based Kalman Filter Derivative Computation
Recursive adaptive filtering methods are often used for solving the problem of simultaneous state and parameters estimation arising in many areas of research. The gradient-based schemes for adaptive Kalman filtering (KF) require the corresponding filter sensitivity computations. The standard approac...
Saved in:
| Published in | IEEE transactions on automatic control Vol. 62; no. 9; pp. 4869 - 4875 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
IEEE
01.09.2017
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0018-9286 1558-2523 |
| DOI | 10.1109/TAC.2017.2694350 |
Cover
| Abstract | Recursive adaptive filtering methods are often used for solving the problem of simultaneous state and parameters estimation arising in many areas of research. The gradient-based schemes for adaptive Kalman filtering (KF) require the corresponding filter sensitivity computations. The standard approach is based on the direct differentiation of the KF equations. The shortcoming of this strategy is a numerical instability of the conventional KF (and its derivatives) with respect to roundoff errors. For decades, special attention has been paid in the KF community for designing efficient filter implementations that improve robustness of the estimator against roundoff. The most popular and beneficial techniques are found in the class of square root (SR) or UDU T factorization-based (UD-based) methods. They imply the Cholesky decomposition of the corresponding error covariance matrix. Another important matrix factorization method is the singular value decomposition (SVD) and, hence, further encouraging KF algorithms might be found under this approach. Meanwhile, the filter sensitivity computation heavily relies on the use of matrix differential calculus. Previous works on the robust KF derivative computation have produced the SR- and UD-based methodologies. Alternatively, in this paper, we design the SVD-based approach. The solution is expressed in terms of the SVD-based KF covariance quantities and their derivatives (with respect to unknown system parameters). The results of numerical experiments illustrate that although the newly developed SVD-based method is algebraically equivalent to the conventional approach and the previously derived SR- and UD-based strategies, it outperforms the mentioned techniques for estimation accuracy in ill-conditioned situations. |
|---|---|
| AbstractList | Recursive adaptive filtering methods are often used for solving the problem of simultaneous state and parameters estimation arising in many areas of research. The gradient-based schemes for adaptive Kalman filtering (KF) require the corresponding filter sensitivity computations. The standard approach is based on the direct differentiation of the KF equations. The shortcoming of this strategy is a numerical instability of the conventional KF (and its derivatives) with respect to roundoff errors. For decades, special attention has been paid in the KF community for designing efficient filter implementations that improve robustness of the estimator against roundoff. The most popular and beneficial techniques are found in the class of square root (SR) or UDU T factorization-based (UD-based) methods. They imply the Cholesky decomposition of the corresponding error covariance matrix. Another important matrix factorization method is the singular value decomposition (SVD) and, hence, further encouraging KF algorithms might be found under this approach. Meanwhile, the filter sensitivity computation heavily relies on the use of matrix differential calculus. Previous works on the robust KF derivative computation have produced the SR- and UD-based methodologies. Alternatively, in this paper, we design the SVD-based approach. The solution is expressed in terms of the SVD-based KF covariance quantities and their derivatives (with respect to unknown system parameters). The results of numerical experiments illustrate that although the newly developed SVD-based method is algebraically equivalent to the conventional approach and the previously derived SR- and UD-based strategies, it outperforms the mentioned techniques for estimation accuracy in ill-conditioned situations. |
| Author | Kulikova, Maria V. Tsyganova, Julia V. |
| Author_xml | – sequence: 1 givenname: Julia V. surname: Tsyganova fullname: Tsyganova, Julia V. email: Tsyganovajv@gmail.com organization: Ulyanovsk State Univ., Ulyanovsk, Russia – sequence: 2 givenname: Maria V. surname: Kulikova fullname: Kulikova, Maria V. email: maria.kulikova@ist.utl.pt organization: Center for Comput. & Stochastic Math., Univ. de Lisboa, Lisbon, Portugal |
| BookMark | eNp9j01Lw0AQhhepYFu9C17yBxJnZ7Nfx5raKhY8WL2GaXYLK2lSNrHgvzelxYMHTzMD87y8z4SNmrbxjN1yyDgHe7-eFRkC1xkqmwsJF2zMpTQpShQjNgbgJrVo1BWbdN3ncKo852OWvX3M0wfqvEteqN5RkyxC3fuYzH0MB-rDwSdFu9t_9cPeNtfsckt152_Oc8reF4_r4ildvS6fi9kqrVCJPkWjNd9sSRstjLPklJcbsI6cRpG7qnIgiaOkXBhtSaJzCFoKudHgUSoxZeqUW8W266LfllU4NegjhbrkUB6ty8G6PFqXZ-sBhD_gPoYdxe__kLsTErz3v-_aAuQcxQ9G8GKU |
| CODEN | IETAA9 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2021_3116058 crossref_primary_10_3390_math12071006 crossref_primary_10_1049_iet_rsn_2019_0115 crossref_primary_10_2478_bhee_2020_0006 crossref_primary_10_1016_j_cam_2019_112487 crossref_primary_10_1016_j_anucene_2020_107493 crossref_primary_10_3390_math11204292 crossref_primary_10_1016_j_automatica_2020_109110 crossref_primary_10_1002_mma_8103 crossref_primary_10_1016_j_apnum_2021_08_013 crossref_primary_10_1088_1361_6501_aaef04 crossref_primary_10_3390_s20236757 crossref_primary_10_3390_electronics10010034 crossref_primary_10_3390_s21041149 crossref_primary_10_1016_j_cherd_2024_06_017 crossref_primary_10_1016_j_ymssp_2023_111087 crossref_primary_10_1109_TAC_2020_3004737 crossref_primary_10_14498_vsgtu1876 crossref_primary_10_1002_rnc_4440 crossref_primary_10_1109_TAC_2023_3297879 |
| Cites_doi | 10.1016/0898-1221(89)90106-5 10.1080/01621459.1969.10501027 10.1109/TIT.1965.1053737 10.1109/9.1273 10.1016/0005-1098(89)90013-7 10.1002/acs.2552 10.1017/S0373463314000812 10.1109/TAC.2013.2259093 10.1109/ACC.2013.6580303 10.1049/iet-cta.2016.1282 10.2514/3.3166 10.1109/TAC.1986.1104128 10.1016/S0024-3795(99)00177-9 10.1109/TAC.1972.1100100 10.1109/9.61004 10.1016/0898-1221(94)00132-4 10.1109/9.280773 10.1109/TAC.1971.1099816 10.1016/j.matcom.2015.07.007 10.1109/ICPR.2008.4761153 10.1109/9.384225 10.1109/TAC.2012.2231572 10.1109/TAC.1974.1100701 10.1016/0377-0427(95)00006-2 10.1109/TAC.2008.2010989 10.1109/TAC.1974.1100714 10.1016/S0024-3795(99)00045-2 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION |
| DOI | 10.1109/TAC.2017.2694350 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-2523 |
| EndPage | 4875 |
| ExternalDocumentID | 10_1109_TAC_2017_2694350 7900412 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Portuguese National Fund grantid: UID/Multi/04621/2013 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK ~02 AAYXX CITATION |
| ID | FETCH-LOGICAL-c263t-28771bfa78738d9ad6e5b09dad7234dccd05a125a43879a52dd207535b70e2563 |
| IEDL.DBID | RIE |
| ISSN | 0018-9286 |
| IngestDate | Thu Apr 24 22:57:02 EDT 2025 Wed Oct 01 04:15:37 EDT 2025 Wed Aug 27 02:48:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c263t-28771bfa78738d9ad6e5b09dad7234dccd05a125a43879a52dd207535b70e2563 |
| PageCount | 7 |
| ParticipantIDs | crossref_primary_10_1109_TAC_2017_2694350 ieee_primary_7900412 crossref_citationtrail_10_1109_TAC_2017_2694350 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2017-Sept. 2017-9-00 |
| PublicationDateYYYYMMDD | 2017-09-01 |
| PublicationDate_xml | – month: 09 year: 2017 text: 2017-Sept. |
| PublicationDecade | 2010 |
| PublicationTitle | IEEE transactions on automatic control |
| PublicationTitleAbbrev | TAC |
| PublicationYear | 2017 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref34 ref12 ref15 ref14 ref31 ref30 ref33 ref11 ref10 ref2 ref1 grewal (ref17) 2001 ref24 wang (ref23) 1992 tyrtyshnikov (ref32) 2012 ref26 ref25 higham (ref19) 1990 ref20 ref22 ref21 golub (ref18) 1983 ref28 ref27 ref29 ref8 ref7 bierman (ref13) 1977 ref9 ref4 ref3 ref6 ref5 kailath (ref16) 2000 |
| References_xml | – ident: ref8 doi: 10.1016/0898-1221(89)90106-5 – ident: ref31 doi: 10.1080/01621459.1969.10501027 – ident: ref33 doi: 10.1109/TIT.1965.1053737 – start-page: 1224 year: 1992 ident: ref23 article-title: Kalman filter algorithm based on singular value decomposition publication-title: Proc 31st Conf Decis Control – year: 2000 ident: ref16 publication-title: Linear Estimation – ident: ref2 doi: 10.1109/9.1273 – year: 2012 ident: ref32 publication-title: A Brief Introduction to Numerical Analysis – ident: ref11 doi: 10.1016/0005-1098(89)90013-7 – ident: ref29 doi: 10.1002/acs.2552 – ident: ref22 doi: 10.1017/S0373463314000812 – ident: ref27 doi: 10.1109/TAC.2013.2259093 – ident: ref21 doi: 10.1109/ACC.2013.6580303 – ident: ref24 doi: 10.1049/iet-cta.2016.1282 – ident: ref34 doi: 10.2514/3.3166 – ident: ref10 doi: 10.1109/TAC.1986.1104128 – ident: ref9 doi: 10.1016/S0024-3795(99)00177-9 – ident: ref1 doi: 10.1109/TAC.1972.1100100 – ident: ref25 doi: 10.1109/9.61004 – ident: ref5 doi: 10.1016/0898-1221(94)00132-4 – year: 1990 ident: ref19 article-title: Analysis of the Cholesky decomposition of a semi-definite matrix publication-title: Tech Rep – year: 2001 ident: ref17 publication-title: Kalman Filtering Theory and Practice – ident: ref14 doi: 10.1109/9.280773 – ident: ref12 doi: 10.1109/TAC.1971.1099816 – ident: ref30 doi: 10.1016/j.matcom.2015.07.007 – ident: ref20 doi: 10.1109/ICPR.2008.4761153 – ident: ref15 doi: 10.1109/9.384225 – ident: ref28 doi: 10.1109/TAC.2012.2231572 – ident: ref3 doi: 10.1109/TAC.1974.1100701 – ident: ref6 doi: 10.1016/0377-0427(95)00006-2 – ident: ref26 doi: 10.1109/TAC.2008.2010989 – ident: ref4 doi: 10.1109/TAC.1974.1100714 – ident: ref7 doi: 10.1016/S0024-3795(99)00045-2 – year: 1977 ident: ref13 publication-title: Factorization Methods for Discrete Sequential Estimation – year: 1983 ident: ref18 publication-title: Matrix Computations |
| SSID | ssj0016441 |
| Score | 2.4141047 |
| Snippet | Recursive adaptive filtering methods are often used for solving the problem of simultaneous state and parameters estimation arising in many areas of research.... |
| SourceID | crossref ieee |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 4869 |
| SubjectTerms | Array algorithms Covariance matrices filter sensitivity equations Kalman filter (KF) Kalman filters Mathematical model Matrix decomposition Robustness Sensitivity singular value decomposition (SVD) factorization Symmetric matrices |
| Title | SVD-Based Kalman Filter Derivative Computation |
| URI | https://ieeexplore.ieee.org/document/7900412 |
| Volume | 62 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-2523 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016441 issn: 0018-9286 databaseCode: RIE dateStart: 19630101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO-nBrynOL3rwItiua9ImOc7NMZR5cZPdSr4K4taJdB78603SrgwR8VZKAuHXJO_3-t77PYBrQ1FFxDjzBdbUxzZDTMQJNq4KJlQlmcDSFjhPnpLxDD_M43kDbutaGK21Sz7TgX10sXy1kmv7q6xLmJOHakKT0KSs1aojBtaul7euOcARrUOSIetO-wObw0UCW7WJbIX9lgna6qniTMpoHyabxZSZJG_BuhCB_Pqh0_jf1R7AXsUtvX65GQ6hofMj2N1SHGxD8Pwy9O-M5VLeI18see6NXm283BuaAZ9OBNwrGz24L3YMs9H9dDD2q5YJvowSVPjG_yE9kXFzDBFVjKtExyJkiisSIaykVGHMDafhGFHCeBwpFRnSgGJBQm3YDzqBVr7K9Sl4PZYhmgmOBFWGtQiRRSHiSGUik5JS1IHuBsVUVnritq3FInV-RchSg3tqcU8r3DtwU894L7U0_hjbtojW4yowz35_fQ47dnKZ-3UBreJjrS8NWSjEldsl3wk_uPk |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IozwwsSCRNYzuxx9JSFfpYaFG3yK9IiJIi1DLw67GTNKoQQmxR5ETWZzv3Xe7uO4BrQ1FFwDhzBdbUxTZDTJAQG1cFR1SFicDSFjgPR2Fvgh-nZFqB27IWRmudJZ9pz15msXw1l0v7q6wRsUweagM2CcaY5NVaZczAWvb8u2uOcEDLoKTPGuNW22ZxRZ6t20S2xn7NCK11VcmMSncPhqvp5Lkkr95yITz59UOp8b_z3Yfdgl06rXw7HEBFp4ews6Y5WAPv6bnj3hnbpZw-n73x1Om-2Ii50zEDPjMZcCdv9ZCt2RFMuvfjds8tmia4MgjRwjUeUNQUCTcHEVHFuAo1ET5TXEUBwkpK5RNuWA3HiEaMk0CpwNAGRETka8N_0DFU03mqT8BpsgTRRHAkqDK8RYgk8BFHKhGJlJSiOjRWKMayUBS3jS1mceZZ-Cw2uMcW97jAvQ435RPvuZrGH2NrFtFyXAHm6e-3r2CrNx4O4sHDqH8G2_ZFeSbYOVQXH0t9YajDQlxmO-Yb6ue8Rg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVD-Based+Kalman+Filter+Derivative+Computation&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Tsyganova%2C+Julia+V.&rft.au=Kulikova%2C+Maria+V.&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=62&rft.issue=9&rft.spage=4869&rft.epage=4875&rft_id=info:doi/10.1109%2FTAC.2017.2694350&rft.externalDocID=7900412 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon |