SVD-Based Kalman Filter Derivative Computation

Recursive adaptive filtering methods are often used for solving the problem of simultaneous state and parameters estimation arising in many areas of research. The gradient-based schemes for adaptive Kalman filtering (KF) require the corresponding filter sensitivity computations. The standard approac...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on automatic control Vol. 62; no. 9; pp. 4869 - 4875
Main Authors Tsyganova, Julia V., Kulikova, Maria V.
Format Journal Article
LanguageEnglish
Published IEEE 01.09.2017
Subjects
Online AccessGet full text
ISSN0018-9286
1558-2523
DOI10.1109/TAC.2017.2694350

Cover

Abstract Recursive adaptive filtering methods are often used for solving the problem of simultaneous state and parameters estimation arising in many areas of research. The gradient-based schemes for adaptive Kalman filtering (KF) require the corresponding filter sensitivity computations. The standard approach is based on the direct differentiation of the KF equations. The shortcoming of this strategy is a numerical instability of the conventional KF (and its derivatives) with respect to roundoff errors. For decades, special attention has been paid in the KF community for designing efficient filter implementations that improve robustness of the estimator against roundoff. The most popular and beneficial techniques are found in the class of square root (SR) or UDU T factorization-based (UD-based) methods. They imply the Cholesky decomposition of the corresponding error covariance matrix. Another important matrix factorization method is the singular value decomposition (SVD) and, hence, further encouraging KF algorithms might be found under this approach. Meanwhile, the filter sensitivity computation heavily relies on the use of matrix differential calculus. Previous works on the robust KF derivative computation have produced the SR- and UD-based methodologies. Alternatively, in this paper, we design the SVD-based approach. The solution is expressed in terms of the SVD-based KF covariance quantities and their derivatives (with respect to unknown system parameters). The results of numerical experiments illustrate that although the newly developed SVD-based method is algebraically equivalent to the conventional approach and the previously derived SR- and UD-based strategies, it outperforms the mentioned techniques for estimation accuracy in ill-conditioned situations.
AbstractList Recursive adaptive filtering methods are often used for solving the problem of simultaneous state and parameters estimation arising in many areas of research. The gradient-based schemes for adaptive Kalman filtering (KF) require the corresponding filter sensitivity computations. The standard approach is based on the direct differentiation of the KF equations. The shortcoming of this strategy is a numerical instability of the conventional KF (and its derivatives) with respect to roundoff errors. For decades, special attention has been paid in the KF community for designing efficient filter implementations that improve robustness of the estimator against roundoff. The most popular and beneficial techniques are found in the class of square root (SR) or UDU T factorization-based (UD-based) methods. They imply the Cholesky decomposition of the corresponding error covariance matrix. Another important matrix factorization method is the singular value decomposition (SVD) and, hence, further encouraging KF algorithms might be found under this approach. Meanwhile, the filter sensitivity computation heavily relies on the use of matrix differential calculus. Previous works on the robust KF derivative computation have produced the SR- and UD-based methodologies. Alternatively, in this paper, we design the SVD-based approach. The solution is expressed in terms of the SVD-based KF covariance quantities and their derivatives (with respect to unknown system parameters). The results of numerical experiments illustrate that although the newly developed SVD-based method is algebraically equivalent to the conventional approach and the previously derived SR- and UD-based strategies, it outperforms the mentioned techniques for estimation accuracy in ill-conditioned situations.
Author Kulikova, Maria V.
Tsyganova, Julia V.
Author_xml – sequence: 1
  givenname: Julia V.
  surname: Tsyganova
  fullname: Tsyganova, Julia V.
  email: Tsyganovajv@gmail.com
  organization: Ulyanovsk State Univ., Ulyanovsk, Russia
– sequence: 2
  givenname: Maria V.
  surname: Kulikova
  fullname: Kulikova, Maria V.
  email: maria.kulikova@ist.utl.pt
  organization: Center for Comput. & Stochastic Math., Univ. de Lisboa, Lisbon, Portugal
BookMark eNp9j01Lw0AQhhepYFu9C17yBxJnZ7Nfx5raKhY8WL2GaXYLK2lSNrHgvzelxYMHTzMD87y8z4SNmrbxjN1yyDgHe7-eFRkC1xkqmwsJF2zMpTQpShQjNgbgJrVo1BWbdN3ncKo852OWvX3M0wfqvEteqN5RkyxC3fuYzH0MB-rDwSdFu9t_9cPeNtfsckt152_Oc8reF4_r4ildvS6fi9kqrVCJPkWjNd9sSRstjLPklJcbsI6cRpG7qnIgiaOkXBhtSaJzCFoKudHgUSoxZeqUW8W266LfllU4NegjhbrkUB6ty8G6PFqXZ-sBhD_gPoYdxe__kLsTErz3v-_aAuQcxQ9G8GKU
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_ACCESS_2021_3116058
crossref_primary_10_3390_math12071006
crossref_primary_10_1049_iet_rsn_2019_0115
crossref_primary_10_2478_bhee_2020_0006
crossref_primary_10_1016_j_cam_2019_112487
crossref_primary_10_1016_j_anucene_2020_107493
crossref_primary_10_3390_math11204292
crossref_primary_10_1016_j_automatica_2020_109110
crossref_primary_10_1002_mma_8103
crossref_primary_10_1016_j_apnum_2021_08_013
crossref_primary_10_1088_1361_6501_aaef04
crossref_primary_10_3390_s20236757
crossref_primary_10_3390_electronics10010034
crossref_primary_10_3390_s21041149
crossref_primary_10_1016_j_cherd_2024_06_017
crossref_primary_10_1016_j_ymssp_2023_111087
crossref_primary_10_1109_TAC_2020_3004737
crossref_primary_10_14498_vsgtu1876
crossref_primary_10_1002_rnc_4440
crossref_primary_10_1109_TAC_2023_3297879
Cites_doi 10.1016/0898-1221(89)90106-5
10.1080/01621459.1969.10501027
10.1109/TIT.1965.1053737
10.1109/9.1273
10.1016/0005-1098(89)90013-7
10.1002/acs.2552
10.1017/S0373463314000812
10.1109/TAC.2013.2259093
10.1109/ACC.2013.6580303
10.1049/iet-cta.2016.1282
10.2514/3.3166
10.1109/TAC.1986.1104128
10.1016/S0024-3795(99)00177-9
10.1109/TAC.1972.1100100
10.1109/9.61004
10.1016/0898-1221(94)00132-4
10.1109/9.280773
10.1109/TAC.1971.1099816
10.1016/j.matcom.2015.07.007
10.1109/ICPR.2008.4761153
10.1109/9.384225
10.1109/TAC.2012.2231572
10.1109/TAC.1974.1100701
10.1016/0377-0427(95)00006-2
10.1109/TAC.2008.2010989
10.1109/TAC.1974.1100714
10.1016/S0024-3795(99)00045-2
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
DOI 10.1109/TAC.2017.2694350
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-2523
EndPage 4875
ExternalDocumentID 10_1109_TAC_2017_2694350
7900412
Genre orig-research
GrantInformation_xml – fundername: Portuguese National Fund
  grantid: UID/Multi/04621/2013
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
ID FETCH-LOGICAL-c263t-28771bfa78738d9ad6e5b09dad7234dccd05a125a43879a52dd207535b70e2563
IEDL.DBID RIE
ISSN 0018-9286
IngestDate Thu Apr 24 22:57:02 EDT 2025
Wed Oct 01 04:15:37 EDT 2025
Wed Aug 27 02:48:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c263t-28771bfa78738d9ad6e5b09dad7234dccd05a125a43879a52dd207535b70e2563
PageCount 7
ParticipantIDs crossref_primary_10_1109_TAC_2017_2694350
ieee_primary_7900412
crossref_citationtrail_10_1109_TAC_2017_2694350
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-Sept.
2017-9-00
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-Sept.
PublicationDecade 2010
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2017
Publisher IEEE
Publisher_xml – name: IEEE
References ref34
ref12
ref15
ref14
ref31
ref30
ref33
ref11
ref10
ref2
ref1
grewal (ref17) 2001
ref24
wang (ref23) 1992
tyrtyshnikov (ref32) 2012
ref26
ref25
higham (ref19) 1990
ref20
ref22
ref21
golub (ref18) 1983
ref28
ref27
ref29
ref8
ref7
bierman (ref13) 1977
ref9
ref4
ref3
ref6
ref5
kailath (ref16) 2000
References_xml – ident: ref8
  doi: 10.1016/0898-1221(89)90106-5
– ident: ref31
  doi: 10.1080/01621459.1969.10501027
– ident: ref33
  doi: 10.1109/TIT.1965.1053737
– start-page: 1224
  year: 1992
  ident: ref23
  article-title: Kalman filter algorithm based on singular value decomposition
  publication-title: Proc 31st Conf Decis Control
– year: 2000
  ident: ref16
  publication-title: Linear Estimation
– ident: ref2
  doi: 10.1109/9.1273
– year: 2012
  ident: ref32
  publication-title: A Brief Introduction to Numerical Analysis
– ident: ref11
  doi: 10.1016/0005-1098(89)90013-7
– ident: ref29
  doi: 10.1002/acs.2552
– ident: ref22
  doi: 10.1017/S0373463314000812
– ident: ref27
  doi: 10.1109/TAC.2013.2259093
– ident: ref21
  doi: 10.1109/ACC.2013.6580303
– ident: ref24
  doi: 10.1049/iet-cta.2016.1282
– ident: ref34
  doi: 10.2514/3.3166
– ident: ref10
  doi: 10.1109/TAC.1986.1104128
– ident: ref9
  doi: 10.1016/S0024-3795(99)00177-9
– ident: ref1
  doi: 10.1109/TAC.1972.1100100
– ident: ref25
  doi: 10.1109/9.61004
– ident: ref5
  doi: 10.1016/0898-1221(94)00132-4
– year: 1990
  ident: ref19
  article-title: Analysis of the Cholesky decomposition of a semi-definite matrix
  publication-title: Tech Rep
– year: 2001
  ident: ref17
  publication-title: Kalman Filtering Theory and Practice
– ident: ref14
  doi: 10.1109/9.280773
– ident: ref12
  doi: 10.1109/TAC.1971.1099816
– ident: ref30
  doi: 10.1016/j.matcom.2015.07.007
– ident: ref20
  doi: 10.1109/ICPR.2008.4761153
– ident: ref15
  doi: 10.1109/9.384225
– ident: ref28
  doi: 10.1109/TAC.2012.2231572
– ident: ref3
  doi: 10.1109/TAC.1974.1100701
– ident: ref6
  doi: 10.1016/0377-0427(95)00006-2
– ident: ref26
  doi: 10.1109/TAC.2008.2010989
– ident: ref4
  doi: 10.1109/TAC.1974.1100714
– ident: ref7
  doi: 10.1016/S0024-3795(99)00045-2
– year: 1977
  ident: ref13
  publication-title: Factorization Methods for Discrete Sequential Estimation
– year: 1983
  ident: ref18
  publication-title: Matrix Computations
SSID ssj0016441
Score 2.4141047
Snippet Recursive adaptive filtering methods are often used for solving the problem of simultaneous state and parameters estimation arising in many areas of research....
SourceID crossref
ieee
SourceType Enrichment Source
Index Database
Publisher
StartPage 4869
SubjectTerms Array algorithms
Covariance matrices
filter sensitivity equations
Kalman filter (KF)
Kalman filters
Mathematical model
Matrix decomposition
Robustness
Sensitivity
singular value decomposition (SVD) factorization
Symmetric matrices
Title SVD-Based Kalman Filter Derivative Computation
URI https://ieeexplore.ieee.org/document/7900412
Volume 62
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS8MwFH9sO-nBrynOL3rwItiua9ImOc7NMZR5cZPdSr4K4taJdB78603SrgwR8VZKAuHXJO_3-t77PYBrQ1FFxDjzBdbUxzZDTMQJNq4KJlQlmcDSFjhPnpLxDD_M43kDbutaGK21Sz7TgX10sXy1kmv7q6xLmJOHakKT0KSs1aojBtaul7euOcARrUOSIetO-wObw0UCW7WJbIX9lgna6qniTMpoHyabxZSZJG_BuhCB_Pqh0_jf1R7AXsUtvX65GQ6hofMj2N1SHGxD8Pwy9O-M5VLeI18see6NXm283BuaAZ9OBNwrGz24L3YMs9H9dDD2q5YJvowSVPjG_yE9kXFzDBFVjKtExyJkiisSIaykVGHMDafhGFHCeBwpFRnSgGJBQm3YDzqBVr7K9Sl4PZYhmgmOBFWGtQiRRSHiSGUik5JS1IHuBsVUVnritq3FInV-RchSg3tqcU8r3DtwU894L7U0_hjbtojW4yowz35_fQ47dnKZ-3UBreJjrS8NWSjEldsl3wk_uPk
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV07T8MwED6VMgADr4IozwwsSCRNYzuxx9JSFfpYaFG3yK9IiJIi1DLw67GTNKoQQmxR5ETWZzv3Xe7uO4BrQ1FFwDhzBdbUxTZDTJAQG1cFR1SFicDSFjgPR2Fvgh-nZFqB27IWRmudJZ9pz15msXw1l0v7q6wRsUweagM2CcaY5NVaZczAWvb8u2uOcEDLoKTPGuNW22ZxRZ6t20S2xn7NCK11VcmMSncPhqvp5Lkkr95yITz59UOp8b_z3Yfdgl06rXw7HEBFp4ews6Y5WAPv6bnj3hnbpZw-n73x1Om-2Ii50zEDPjMZcCdv9ZCt2RFMuvfjds8tmia4MgjRwjUeUNQUCTcHEVHFuAo1ET5TXEUBwkpK5RNuWA3HiEaMk0CpwNAGRETka8N_0DFU03mqT8BpsgTRRHAkqDK8RYgk8BFHKhGJlJSiOjRWKMayUBS3jS1mceZZ-Cw2uMcW97jAvQ435RPvuZrGH2NrFtFyXAHm6e-3r2CrNx4O4sHDqH8G2_ZFeSbYOVQXH0t9YajDQlxmO-Yb6ue8Rg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SVD-Based+Kalman+Filter+Derivative+Computation&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Tsyganova%2C+Julia+V.&rft.au=Kulikova%2C+Maria+V.&rft.date=2017-09-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=62&rft.issue=9&rft.spage=4869&rft.epage=4875&rft_id=info:doi/10.1109%2FTAC.2017.2694350&rft.externalDocID=7900412
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon