Performance evaluation of Machine Learning algorithms on System on Chips in Wearables for Healthcare Monitoring
Compressed Machine (ML) and Deep Learning(DL) techniques are the emerging areas in research, the use of compressed ML and DL algorithms is recommended on System on Chip(SoC) platforms as the latencies of ML or DL algorithms will be extremely high. This paper explores the need to use compressed ML/DL...
Saved in:
| Published in | Procedia computer science Vol. 218; pp. 2755 - 2766 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-0509 1877-0509 |
| DOI | 10.1016/j.procs.2023.01.247 |
Cover
| Abstract | Compressed Machine (ML) and Deep Learning(DL) techniques are the emerging areas in research, the use of compressed ML and DL algorithms is recommended on System on Chip(SoC) platforms as the latencies of ML or DL algorithms will be extremely high. This paper explores the need to use compressed ML/DL techniques by analyzing the various popular ML algorithms by implementing them on different platforms including SoCs, in particular Snapdragon 410c which will be used on the wearable biomedical device.
This paper looks at fall prediction using wearables. The wearable device uses 410c as the platform and data is collected using IMU and heart rate sensors. A data set was created by collecting IMU and heart rate sensor values across different fall and non fall Activities of Daily Living(ADL) activities, over 70k data points was collected of which 70 percent was used to train the algorithm and 30 percent was used as test data. The same data set was used across varying algorithms and platforms and the performance as well as the latencies were analyzed.It was found that the latencies was found to be greater than 120 sec for even K Nearest Neighbours(KNN) when run on SoCs. This clearly indicates that we cannot use classical ML algorithms. When a public dataset SmartFall which had 92,780 data points was used, Support Vector Machine(SVM) algorithm did not converge even after several hours of computing. In case of Random Forest it took 2235 seconds for the algorithm to converge. As the size of the dataset increased obviously there was an increase in latency with complex ML algorithms are unable to converge, hence this research indicates the necessity of compressed ML algorithms. |
|---|---|
| AbstractList | Compressed Machine (ML) and Deep Learning(DL) techniques are the emerging areas in research, the use of compressed ML and DL algorithms is recommended on System on Chip(SoC) platforms as the latencies of ML or DL algorithms will be extremely high. This paper explores the need to use compressed ML/DL techniques by analyzing the various popular ML algorithms by implementing them on different platforms including SoCs, in particular Snapdragon 410c which will be used on the wearable biomedical device.
This paper looks at fall prediction using wearables. The wearable device uses 410c as the platform and data is collected using IMU and heart rate sensors. A data set was created by collecting IMU and heart rate sensor values across different fall and non fall Activities of Daily Living(ADL) activities, over 70k data points was collected of which 70 percent was used to train the algorithm and 30 percent was used as test data. The same data set was used across varying algorithms and platforms and the performance as well as the latencies were analyzed.It was found that the latencies was found to be greater than 120 sec for even K Nearest Neighbours(KNN) when run on SoCs. This clearly indicates that we cannot use classical ML algorithms. When a public dataset SmartFall which had 92,780 data points was used, Support Vector Machine(SVM) algorithm did not converge even after several hours of computing. In case of Random Forest it took 2235 seconds for the algorithm to converge. As the size of the dataset increased obviously there was an increase in latency with complex ML algorithms are unable to converge, hence this research indicates the necessity of compressed ML algorithms. |
| Author | Bajaj, Apoorva Nandi, Purab Musale, Tejas Shukla, Saurav Kachadiya, Sparsh Anupama, K.R. |
| Author_xml | – sequence: 1 givenname: Purab surname: Nandi fullname: Nandi, Purab – sequence: 2 givenname: K.R. surname: Anupama fullname: Anupama, K.R. – sequence: 3 givenname: Apoorva surname: Bajaj fullname: Bajaj, Apoorva – sequence: 4 givenname: Saurav surname: Shukla fullname: Shukla, Saurav – sequence: 5 givenname: Tejas surname: Musale fullname: Musale, Tejas – sequence: 6 givenname: Sparsh surname: Kachadiya fullname: Kachadiya, Sparsh |
| BookMark | eNqNkc1OAyEURonRxFr7BG54gRlh_mfhwjRqTdpoosYlucNAh4aBBqY1fXtp68K4UFnATbjnu-FwgU6NNQKhK0piSmhxvYrXznIfJyRJY0LjJCtP0IhWZRmRnNSn3-pzNPF-RcJKq6qm5QjZZ-GkdT0YLrDYgt7AoKzBVuIF8E4ZgecCnFFmiUEvrVND13scOl52fhD9vpp2au2xMvg9dEKjhcchEs8E6KHj4AReWKOGwJrlJTqToL2YfJ1j9HZ_9zqdRfOnh8fp7TziSZGWkWyrpM4ryOsqrfICKiiStgEuc9qUTZ5BUZThnW0bbmjYJM04zbMslXVT06JIxyg75m7MGnYfoDVbO9WD2zFK2N4bW7GDN7b3xghlIS9g9RHjznrvhGRcDQcjgwOl_2DTH-z_Jt4cKRFsbJVwzHMlwm-0ygk-sNaqX_lPw6yfRw |
| CitedBy_id | crossref_primary_10_3390_app15063200 |
| Cites_doi | 10.1023/A:1006563312922 10.1201/9781315139470 10.1016/S0895-4356(96)00236-3 10.1109/IEMBS.2006.260822 10.1056/NEJMcp020719 10.1186/1472-6947-8-56 10.12942/lrr-2003-1 10.1007/BF00994018 10.1109/TBME.2007.906516 10.7763/IJIET.2012.V2.114 10.1016/j.cmpb.2009.01.003 10.1111/j.1469-8986.2008.00770.x 10.1186/1472-6947-11-51 10.1111/j.1553-2712.2011.01185.x 10.1016/j.medengphy.2007.05.014 10.1053/apmr.2001.24893 10.1038/s41569-021-00522-7 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.procs.2023.01.247 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 2766 |
| ExternalDocumentID | 10.1016/j.procs.2023.01.247 10_1016_j_procs_2023_01_247 S1877050923002478 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE ADVLN AEXQZ AFTJW AGHFR AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEUPX AFPUW AIGII AKBMS AKYEP CITATION ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2637-fd82958a5983856a8a62dbacf51b7b54a667247dda8a1da8f14c15443f9b91663 |
| IEDL.DBID | IXB |
| ISSN | 1877-0509 |
| IngestDate | Tue Aug 19 15:55:59 EDT 2025 Wed Oct 01 02:36:09 EDT 2025 Thu Apr 24 22:57:48 EDT 2025 Tue Jul 16 04:31:24 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Wearables Model Compression SoCs Machine Learning Deep Learning |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2637-fd82958a5983856a8a62dbacf51b7b54a667247dda8a1da8f14c15443f9b91663 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S1877050923002478 |
| PageCount | 12 |
| ParticipantIDs | unpaywall_primary_10_1016_j_procs_2023_01_247 crossref_citationtrail_10_1016_j_procs_2023_01_247 crossref_primary_10_1016_j_procs_2023_01_247 elsevier_sciencedirect_doi_10_1016_j_procs_2023_01_247 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – year: 2023 text: 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tinetti (bib0002) 2003; 348 Ferdinando, Khoswanto, Purwanto (bib0005) 2012 Khalilia, Chakraborty, Popescu (bib0024) 2011; 11 Hausdorff, Rios, Edelberg (bib0003) 2001; 82 Pandian, Mohanavelu, Safeer, Kotresh, Shakunthala, Gopal, Padaki (bib0007) 2008; 30 Thurston, Matthews, Hernandez, De La Torre (bib0021) 2009; 46 World Health Organization (WHO). Ageing and Health. Fact Sheet. Available online Maglogiannis, Loukis, Zafiropoulos, Stasis (bib0020) 2009; 95 Liu, N (bib0006) 2014 Liu (bib0004) 2020; 26 Stoltzfus (bib0014) 2011; 18 Ashby (bib0008) 2003; 6 Lemay, Bertschi, Sola, Renevey, Parak, Korhonen (bib0010) 2014 Verplancke, Van Looy, Benoit, Vansteelandt, Depuydt, De Turck, Decruyenaere (bib0019) 2008; 8 Hosmer, Lemeshow (bib0015) 2000 SmartFall dataset available online Peduzzi, Concato, Kemper, Holford, Feinstein (bib0016) 1996; 49 Gonzalez-Landaeta, Casas, Pallàs-Areny (bib0011) 2008; 55 Bayoumy, Gaber, Elshafeey (bib0009) 2021; 18 González Landaeta, Casas, Pallàs-Areny (bib0012) 2006; 2006 Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification And Regression Trees (1st ed.). Routledge. https://doi.org/10.1201/9781315139470 Alpaydin (bib0023) 1997 . Shouman, Turner, Stocker (bib0022) 2012; 2 Vembandasamy, Sasipriya, Deepa (bib0017) 2015; 2 Cortes, Vapnik (bib0018) 1995; 20 Gonzalez-Landaeta (10.1016/j.procs.2023.01.247_bib0011) 2008; 55 Bayoumy (10.1016/j.procs.2023.01.247_bib0009) 2021; 18 Tinetti (10.1016/j.procs.2023.01.247_bib0002) 2003; 348 Vembandasamy (10.1016/j.procs.2023.01.247_bib0017) 2015; 2 Khalilia (10.1016/j.procs.2023.01.247_bib0024) 2011; 11 Thurston (10.1016/j.procs.2023.01.247_bib0021) 2009; 46 Ashby (10.1016/j.procs.2023.01.247_bib0008) 2003; 6 Liu (10.1016/j.procs.2023.01.247_bib0004) 2020; 26 Hausdorff (10.1016/j.procs.2023.01.247_bib0003) 2001; 82 Peduzzi (10.1016/j.procs.2023.01.247_bib0016) 1996; 49 González Landaeta (10.1016/j.procs.2023.01.247_bib0012) 2006; 2006 Stoltzfus (10.1016/j.procs.2023.01.247_bib0014) 2011; 18 10.1016/j.procs.2023.01.247_bib0013 Liu (10.1016/j.procs.2023.01.247_bib0006) 2014 Verplancke (10.1016/j.procs.2023.01.247_bib0019) 2008; 8 Cortes (10.1016/j.procs.2023.01.247_bib0018) 1995; 20 Alpaydin (10.1016/j.procs.2023.01.247_bib0023) 1997 Hosmer (10.1016/j.procs.2023.01.247_bib0015) 2000 Lemay (10.1016/j.procs.2023.01.247_bib0010) 2014 Pandian (10.1016/j.procs.2023.01.247_bib0007) 2008; 30 Maglogiannis (10.1016/j.procs.2023.01.247_bib0020) 2009; 95 Ferdinando (10.1016/j.procs.2023.01.247_bib0005) 2012 Shouman (10.1016/j.procs.2023.01.247_bib0022) 2012; 2 10.1016/j.procs.2023.01.247_bib0001 10.1016/j.procs.2023.01.247_bib0025 |
| References_xml | – volume: 2 start-page: 220 year: 2012 end-page: 223 ident: bib0022 article-title: Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients publication-title: International Journal of Information and Education Technology – volume: 95 start-page: 47 year: 2009 end-page: 61 ident: bib0020 article-title: Support vectors machine-based identification of heart valve diseases using heart sounds publication-title: Compute Methods Programs Biomed – volume: 49 start-page: 1373 year: 1996 end-page: 1379 ident: bib0016 article-title: A simulation study of the number of events per variable in logistic regression analysis publication-title: J Clin Epidemiol – reference: Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification And Regression Trees (1st ed.). Routledge. https://doi.org/10.1201/9781315139470 – volume: 348 start-page: 42 year: 2003 end-page: 49 ident: bib0002 article-title: Clinical practice: preventing falls in elderly persons publication-title: The New England Journal of Medicine – volume: 2 year: 2015 ident: bib0017 article-title: Heart Diseases Detection Using Naive Bayes Algorithm publication-title: IJISET - International Journal of Innovative Science, Engineering & Technology – start-page: 115 year: 1997 end-page: 132 ident: bib0023 article-title: Voting over Multiple Condensed Nearest Neighbors publication-title: Artificial Intelligence Review – reference: World Health Organization (WHO). Ageing and Health. Fact Sheet. Available online: – volume: 55 start-page: 1163 year: 2008 end-page: 1167 ident: bib0011 article-title: Heart rate detection from plantar bioimpedance measurements publication-title: IEEE Trans Biomed Eng – volume: 26 start-page: 407 year: 2020 end-page: 422 ident: bib0004 article-title: Portuguese households: a tool for energy policy publication-title: Management of Environmental Quality: An International Journal – start-page: 4435 year: 2014 end-page: 4440 ident: bib0006 article-title: Development of a Low-cost IMU by Using Sensor Fusion for Attitude Angle Estimation publication-title: IFAC Proceedings Volumes – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0018 article-title: Support-vector networks publication-title: Mach Learn – volume: 82 start-page: 1050 year: 2001 end-page: 1056 ident: bib0003 article-title: Gait variability and fall risk in community-living older adults: a 1-year prospective study publication-title: Archives of Physical Medicine and Rehabilitation – start-page: 1 year: 2012 end-page: 5 ident: bib0005 article-title: Embedded Kalman Filter for Inertial Measurement Unit (IMU) on the ATMega8535 publication-title: 2012 International Symposium on Innovations in Intelligent Systems and Applications – reference: SmartFall dataset available online: – volume: 8 start-page: 56 year: 2008 ident: bib0019 article-title: Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies publication-title: BMC Med Inform Decis Mak – year: 2000 ident: bib0015 article-title: Applied Logistic Regression – reference: . – volume: 46 start-page: 285 year: 2009 end-page: 292 ident: bib0021 article-title: Improving the performance of physiologic hot flash measures with support vector machines publication-title: Psychophysiology – volume: 18 start-page: 1099 year: 2011 end-page: 1104 ident: bib0014 article-title: Logistic Regression: A Brief Primer publication-title: Academic Emergency Medicine – volume: 18 start-page: 581 year: 2021 end-page: 599 ident: bib0009 article-title: Smart wearable devices in cardiovascular care: where we are and how to move forward publication-title: Nat Rev Cardiol – volume: 6 start-page: 1 year: 2003 ident: bib0008 article-title: Relativity in the Global Positioning System publication-title: Living reviews in relativity – volume: 30 start-page: 466 year: 2008 end-page: 477 ident: bib0007 article-title: Smart Vest: Wearable multi- parameter remote physiological monitoring system publication-title: Medical Engineering & Physics – volume: 11 start-page: 51 year: 2011 ident: bib0024 article-title: Predicting disease risks from highly imbalanced data using random forest publication-title: BMC Med Inform Decis Mak – volume: 2006 start-page: 5113 year: 2006 end-page: 5116 ident: bib0012 article-title: Heart rate detection from plantar bioimpedance measurements publication-title: Conf Proc IEEE Eng Med Biol Soc – start-page: 105 year: 2014 end-page: 129 ident: bib0010 article-title: Chapter 2.3 - Application of Optical Heart Rate Monitoring publication-title: Wearable Sensors – start-page: 115 year: 1997 ident: 10.1016/j.procs.2023.01.247_bib0023 article-title: Voting over Multiple Condensed Nearest Neighbors publication-title: Artificial Intelligence Review doi: 10.1023/A:1006563312922 – ident: 10.1016/j.procs.2023.01.247_bib0025 doi: 10.1201/9781315139470 – volume: 49 start-page: 1373 year: 1996 ident: 10.1016/j.procs.2023.01.247_bib0016 article-title: A simulation study of the number of events per variable in logistic regression analysis publication-title: J Clin Epidemiol doi: 10.1016/S0895-4356(96)00236-3 – volume: 2006 start-page: 5113 year: 2006 ident: 10.1016/j.procs.2023.01.247_bib0012 article-title: Heart rate detection from plantar bioimpedance measurements publication-title: Conf Proc IEEE Eng Med Biol Soc doi: 10.1109/IEMBS.2006.260822 – volume: 348 start-page: 42 issue: 1 year: 2003 ident: 10.1016/j.procs.2023.01.247_bib0002 article-title: Clinical practice: preventing falls in elderly persons publication-title: The New England Journal of Medicine doi: 10.1056/NEJMcp020719 – volume: 8 start-page: 56 year: 2008 ident: 10.1016/j.procs.2023.01.247_bib0019 article-title: Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-8-56 – volume: 6 start-page: 1 issue: 1 year: 2003 ident: 10.1016/j.procs.2023.01.247_bib0008 article-title: Relativity in the Global Positioning System publication-title: Living reviews in relativity doi: 10.12942/lrr-2003-1 – volume: 20 start-page: 273 year: 1995 ident: 10.1016/j.procs.2023.01.247_bib0018 article-title: Support-vector networks publication-title: Mach Learn doi: 10.1007/BF00994018 – volume: 55 start-page: 1163 issue: 3 year: 2008 ident: 10.1016/j.procs.2023.01.247_bib0011 article-title: Heart rate detection from plantar bioimpedance measurements publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2007.906516 – start-page: 105 year: 2014 ident: 10.1016/j.procs.2023.01.247_bib0010 article-title: Chapter 2.3 - Application of Optical Heart Rate Monitoring – volume: 2 start-page: 220 year: 2012 ident: 10.1016/j.procs.2023.01.247_bib0022 article-title: Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients publication-title: International Journal of Information and Education Technology doi: 10.7763/IJIET.2012.V2.114 – volume: 95 start-page: 47 year: 2009 ident: 10.1016/j.procs.2023.01.247_bib0020 article-title: Support vectors machine-based identification of heart valve diseases using heart sounds publication-title: Compute Methods Programs Biomed doi: 10.1016/j.cmpb.2009.01.003 – year: 2000 ident: 10.1016/j.procs.2023.01.247_bib0015 – volume: 46 start-page: 285 year: 2009 ident: 10.1016/j.procs.2023.01.247_bib0021 article-title: Improving the performance of physiologic hot flash measures with support vector machines publication-title: Psychophysiology doi: 10.1111/j.1469-8986.2008.00770.x – ident: 10.1016/j.procs.2023.01.247_bib0013 – start-page: 1 year: 2012 ident: 10.1016/j.procs.2023.01.247_bib0005 article-title: Embedded Kalman Filter for Inertial Measurement Unit (IMU) on the ATMega8535 – start-page: 4435 year: 2014 ident: 10.1016/j.procs.2023.01.247_bib0006 article-title: Development of a Low-cost IMU by Using Sensor Fusion for Attitude Angle Estimation – volume: 11 start-page: 51 year: 2011 ident: 10.1016/j.procs.2023.01.247_bib0024 article-title: Predicting disease risks from highly imbalanced data using random forest publication-title: BMC Med Inform Decis Mak doi: 10.1186/1472-6947-11-51 – volume: 26 start-page: 407 issue: 3 year: 2020 ident: 10.1016/j.procs.2023.01.247_bib0004 article-title: Portuguese households: a tool for energy policy publication-title: Management of Environmental Quality: An International Journal – volume: 18 start-page: 1099 year: 2011 ident: 10.1016/j.procs.2023.01.247_bib0014 article-title: Logistic Regression: A Brief Primer publication-title: Academic Emergency Medicine doi: 10.1111/j.1553-2712.2011.01185.x – volume: 2 issue: 9 year: 2015 ident: 10.1016/j.procs.2023.01.247_bib0017 article-title: Heart Diseases Detection Using Naive Bayes Algorithm publication-title: IJISET - International Journal of Innovative Science, Engineering & Technology – volume: 30 start-page: 466 issue: 4 year: 2008 ident: 10.1016/j.procs.2023.01.247_bib0007 article-title: Smart Vest: Wearable multi- parameter remote physiological monitoring system publication-title: Medical Engineering & Physics doi: 10.1016/j.medengphy.2007.05.014 – ident: 10.1016/j.procs.2023.01.247_bib0001 – volume: 82 start-page: 1050 issue: 8 year: 2001 ident: 10.1016/j.procs.2023.01.247_bib0003 article-title: Gait variability and fall risk in community-living older adults: a 1-year prospective study publication-title: Archives of Physical Medicine and Rehabilitation doi: 10.1053/apmr.2001.24893 – volume: 18 start-page: 581 year: 2021 ident: 10.1016/j.procs.2023.01.247_bib0009 article-title: Smart wearable devices in cardiovascular care: where we are and how to move forward publication-title: Nat Rev Cardiol doi: 10.1038/s41569-021-00522-7 |
| SSID | ssj0000388917 |
| Score | 2.2961154 |
| Snippet | Compressed Machine (ML) and Deep Learning(DL) techniques are the emerging areas in research, the use of compressed ML and DL algorithms is recommended on... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 2755 |
| SubjectTerms | Deep Learning Machine Learning Model Compression SoCs Wearables |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDnoRPyN-pQePjrjRduVIiISYQDhIxFPTbiugcyMwYvSv93UfoEYJXpYte123vtf297r3fkXomrvaA7Pllh9oahFJXasBfpBF7ADgAnRNXxlHsdtjnQG5H9JhzrNtcmG-_b9P47DMQG54tZ264dd0iLuNyowC8C6h8qDXbz4Zl4q7rmWYTApeod9L_jX37CyiqXx_k2H4ZW5pV7Kk7XlKSWhCSl5qi0TVvI8fhI0bvvY-2ssxJm5mRnGAtoLoEFWK_Rtw3p2PUNxfZQ3gFe03jjXupjGWAc7pV0dYhqN4NknGr3MMEhnPuTlrjSfTOZ5E-BEkTRrWHMMjcWcZVoazUcMsHx6jQfvuodWx8g0YLM9hoDDtc6dBuaSgPk6Z5JI5vpKeprZyFSWSMRe-zPfhjg0HbRPPsPvUdUMB7GT1E1SK4ig4RZh5miimJVM6IFJS6dNAcZ8zzjwCoLGKnEI1wsvZyc0mGaEowtCeRdqkwjSpuLUFVFxFN8tC04ycY704K3QucnyR4QYB6ltf0FpayCYVnf1T_hztmqtsZecClZLZIrgErJOoq9zGPwHRmfv7 priority: 102 providerName: Unpaywall |
| Title | Performance evaluation of Machine Learning algorithms on System on Chips in Wearables for Healthcare Monitoring |
| URI | https://dx.doi.org/10.1016/j.procs.2023.01.247 https://doi.org/10.1016/j.procs.2023.01.247 |
| UnpaywallVersion | publishedVersion |
| Volume | 218 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: KQ8 dateStart: 20100501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Elsevier ScienceDirect Open Access Journals customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: IXB dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8IPuiL30b8IH3w0QU32q48IpGgBEJUAj4t7bbCDA7CR4z_vXf7QE0MMb4s63bdLb327trc_Y6QK-kaH6attILQcIsp7lo12AdZzA7BXYClGWjcKHa6otVnD0M-LJBGnguDYZWZ7k91eqKtsyeVbDQrsyiqPNnSdRG9BJxoMDQuJvxWmcTyDffD2_U5C6Kd1JLCu0hvYYccfCgJ80I7gbDdThXhOx0ss_K7gdpexTP18a4mk28GqLlPdjPPkdbTnzsghTA-JHt5VQaaLdIjMu195QLQLzBvOjW0k0ROhjQDVR1RNRlN59Fy_LagQJGil-NdYxzNFjSK6QAoMblqQeGTtLUOFqOpLsBDwWPSb949N1pWVlbB8h0BYjCBdGpcKg5CkVwoqYQTaOUbbmtXc6aEcGEcggDe2HAxNvMRs6dqahqcSVE9IcV4GoenhArfMC2MEtqETCmuAh5qGUghhc_AFSwRJx9Lz88wx7H0xcTLg8tevUQAHgrAu7E9YFwi1-tOsxRyYzO5yIXk_Zg5HhiFzR2ttUj_wujsv4zOyQ620oObC1JczlfhJbgyS10mW_X246BdTuYstPrdXv3lE2i09gA |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHODCG_EmB45Uo12SZkeYmMZjExIgdouSthlFo632EOLfY_exgYQQ4lJVTdxUcWp_iezPhJxK3wawbKUTRpY7THPfacI-yGFuBHABfs3Q4Eax2xOdJ3bT5_0F0qpyYTCssrT9hU3PrXX5pF7OZj2L4_qDK30f2UsARIOj8eUiWWIc0Alm8fUvZwctSHfSzCvvooCDEhX7UB7nhY4Cebu9BvJ3elhn5WcPtTxNMv3xrofDLx6ovU5WS-hIL4qv2yALUbJJ1qqyDLT8S7dIej9PBqBzNm-aWtrNQycjWrKqDqgeDtJRPHl5G1PoUdCX413rJc7GNE7oM_TE7KoxhVfSzixajBbGAE8Ft8lT--qx1XHKugpO4AnQgw2l1-RSc9CK5EJLLbzQ6MBy1_iGMy2ED_MQhtDiwsW6LEDSnoZtGkCTorFDakmaRLuEisAyI6wWxkZMa65DHhkZSiFFwAAL7hGvmksVlKTjWPtiqKrosleVK0ChAtS5q2DgPXI2E8oKzo3fu4tKSerb0lHgFX4XdGYq_ctA-_8d6IQsdx67d-ruund7QFawpTjFOSS1yWgaHQGumZjjfN1-Am0K9dM |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDnoRPyN-pQePjrjRduVIiISYQDhIxFPTbiugcyMwYvSv93UfoEYJXpYte123vtf297r3fkXomrvaA7Pllh9oahFJXasBfpBF7ADgAnRNXxlHsdtjnQG5H9JhzrNtcmG-_b9P47DMQG54tZ264dd0iLuNyowC8C6h8qDXbz4Zl4q7rmWYTApeod9L_jX37CyiqXx_k2H4ZW5pV7Kk7XlKSWhCSl5qi0TVvI8fhI0bvvY-2ssxJm5mRnGAtoLoEFWK_Rtw3p2PUNxfZQ3gFe03jjXupjGWAc7pV0dYhqN4NknGr3MMEhnPuTlrjSfTOZ5E-BEkTRrWHMMjcWcZVoazUcMsHx6jQfvuodWx8g0YLM9hoDDtc6dBuaSgPk6Z5JI5vpKeprZyFSWSMRe-zPfhjg0HbRPPsPvUdUMB7GT1E1SK4ig4RZh5miimJVM6IFJS6dNAcZ8zzjwCoLGKnEI1wsvZyc0mGaEowtCeRdqkwjSpuLUFVFxFN8tC04ycY704K3QucnyR4QYB6ltf0FpayCYVnf1T_hztmqtsZecClZLZIrgErJOoq9zGPwHRmfv7 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+Machine+Learning+algorithms+on+System+on+Chips+in+Wearables+for+Healthcare+Monitoring&rft.jtitle=Procedia+computer+science&rft.au=Nandi%2C+Purab&rft.au=Anupama%2C+K.R.&rft.au=Bajaj%2C+Apoorva&rft.au=Shukla%2C+Saurav&rft.date=2023&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=218&rft.spage=2755&rft.epage=2766&rft_id=info:doi/10.1016%2Fj.procs.2023.01.247&rft.externalDocID=S1877050923002478 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |