Performance evaluation of Machine Learning algorithms on System on Chips in Wearables for Healthcare Monitoring

Compressed Machine (ML) and Deep Learning(DL) techniques are the emerging areas in research, the use of compressed ML and DL algorithms is recommended on System on Chip(SoC) platforms as the latencies of ML or DL algorithms will be extremely high. This paper explores the need to use compressed ML/DL...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 218; pp. 2755 - 2766
Main Authors Nandi, Purab, Anupama, K.R., Bajaj, Apoorva, Shukla, Saurav, Musale, Tejas, Kachadiya, Sparsh
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2023
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2023.01.247

Cover

Abstract Compressed Machine (ML) and Deep Learning(DL) techniques are the emerging areas in research, the use of compressed ML and DL algorithms is recommended on System on Chip(SoC) platforms as the latencies of ML or DL algorithms will be extremely high. This paper explores the need to use compressed ML/DL techniques by analyzing the various popular ML algorithms by implementing them on different platforms including SoCs, in particular Snapdragon 410c which will be used on the wearable biomedical device. This paper looks at fall prediction using wearables. The wearable device uses 410c as the platform and data is collected using IMU and heart rate sensors. A data set was created by collecting IMU and heart rate sensor values across different fall and non fall Activities of Daily Living(ADL) activities, over 70k data points was collected of which 70 percent was used to train the algorithm and 30 percent was used as test data. The same data set was used across varying algorithms and platforms and the performance as well as the latencies were analyzed.It was found that the latencies was found to be greater than 120 sec for even K Nearest Neighbours(KNN) when run on SoCs. This clearly indicates that we cannot use classical ML algorithms. When a public dataset SmartFall which had 92,780 data points was used, Support Vector Machine(SVM) algorithm did not converge even after several hours of computing. In case of Random Forest it took 2235 seconds for the algorithm to converge. As the size of the dataset increased obviously there was an increase in latency with complex ML algorithms are unable to converge, hence this research indicates the necessity of compressed ML algorithms.
AbstractList Compressed Machine (ML) and Deep Learning(DL) techniques are the emerging areas in research, the use of compressed ML and DL algorithms is recommended on System on Chip(SoC) platforms as the latencies of ML or DL algorithms will be extremely high. This paper explores the need to use compressed ML/DL techniques by analyzing the various popular ML algorithms by implementing them on different platforms including SoCs, in particular Snapdragon 410c which will be used on the wearable biomedical device. This paper looks at fall prediction using wearables. The wearable device uses 410c as the platform and data is collected using IMU and heart rate sensors. A data set was created by collecting IMU and heart rate sensor values across different fall and non fall Activities of Daily Living(ADL) activities, over 70k data points was collected of which 70 percent was used to train the algorithm and 30 percent was used as test data. The same data set was used across varying algorithms and platforms and the performance as well as the latencies were analyzed.It was found that the latencies was found to be greater than 120 sec for even K Nearest Neighbours(KNN) when run on SoCs. This clearly indicates that we cannot use classical ML algorithms. When a public dataset SmartFall which had 92,780 data points was used, Support Vector Machine(SVM) algorithm did not converge even after several hours of computing. In case of Random Forest it took 2235 seconds for the algorithm to converge. As the size of the dataset increased obviously there was an increase in latency with complex ML algorithms are unable to converge, hence this research indicates the necessity of compressed ML algorithms.
Author Bajaj, Apoorva
Nandi, Purab
Musale, Tejas
Shukla, Saurav
Kachadiya, Sparsh
Anupama, K.R.
Author_xml – sequence: 1
  givenname: Purab
  surname: Nandi
  fullname: Nandi, Purab
– sequence: 2
  givenname: K.R.
  surname: Anupama
  fullname: Anupama, K.R.
– sequence: 3
  givenname: Apoorva
  surname: Bajaj
  fullname: Bajaj, Apoorva
– sequence: 4
  givenname: Saurav
  surname: Shukla
  fullname: Shukla, Saurav
– sequence: 5
  givenname: Tejas
  surname: Musale
  fullname: Musale, Tejas
– sequence: 6
  givenname: Sparsh
  surname: Kachadiya
  fullname: Kachadiya, Sparsh
BookMark eNqNkc1OAyEURonRxFr7BG54gRlh_mfhwjRqTdpoosYlucNAh4aBBqY1fXtp68K4UFnATbjnu-FwgU6NNQKhK0piSmhxvYrXznIfJyRJY0LjJCtP0IhWZRmRnNSn3-pzNPF-RcJKq6qm5QjZZ-GkdT0YLrDYgt7AoKzBVuIF8E4ZgecCnFFmiUEvrVND13scOl52fhD9vpp2au2xMvg9dEKjhcchEs8E6KHj4AReWKOGwJrlJTqToL2YfJ1j9HZ_9zqdRfOnh8fp7TziSZGWkWyrpM4ryOsqrfICKiiStgEuc9qUTZ5BUZThnW0bbmjYJM04zbMslXVT06JIxyg75m7MGnYfoDVbO9WD2zFK2N4bW7GDN7b3xghlIS9g9RHjznrvhGRcDQcjgwOl_2DTH-z_Jt4cKRFsbJVwzHMlwm-0ygk-sNaqX_lPw6yfRw
CitedBy_id crossref_primary_10_3390_app15063200
Cites_doi 10.1023/A:1006563312922
10.1201/9781315139470
10.1016/S0895-4356(96)00236-3
10.1109/IEMBS.2006.260822
10.1056/NEJMcp020719
10.1186/1472-6947-8-56
10.12942/lrr-2003-1
10.1007/BF00994018
10.1109/TBME.2007.906516
10.7763/IJIET.2012.V2.114
10.1016/j.cmpb.2009.01.003
10.1111/j.1469-8986.2008.00770.x
10.1186/1472-6947-11-51
10.1111/j.1553-2712.2011.01185.x
10.1016/j.medengphy.2007.05.014
10.1053/apmr.2001.24893
10.1038/s41569-021-00522-7
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.procs.2023.01.247
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 2766
ExternalDocumentID 10.1016/j.procs.2023.01.247
10_1016_j_procs_2023_01_247
S1877050923002478
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
ADVLN
AEXQZ
AFTJW
AGHFR
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c2637-fd82958a5983856a8a62dbacf51b7b54a667247dda8a1da8f14c15443f9b91663
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Aug 19 15:55:59 EDT 2025
Wed Oct 01 02:36:09 EDT 2025
Thu Apr 24 22:57:48 EDT 2025
Tue Jul 16 04:31:24 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Wearables
Model Compression
SoCs
Machine Learning
Deep Learning
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2637-fd82958a5983856a8a62dbacf51b7b54a667247dda8a1da8f14c15443f9b91663
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050923002478
PageCount 12
ParticipantIDs unpaywall_primary_10_1016_j_procs_2023_01_247
crossref_citationtrail_10_1016_j_procs_2023_01_247
crossref_primary_10_1016_j_procs_2023_01_247
elsevier_sciencedirect_doi_10_1016_j_procs_2023_01_247
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – year: 2023
  text: 2023
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Tinetti (bib0002) 2003; 348
Ferdinando, Khoswanto, Purwanto (bib0005) 2012
Khalilia, Chakraborty, Popescu (bib0024) 2011; 11
Hausdorff, Rios, Edelberg (bib0003) 2001; 82
Pandian, Mohanavelu, Safeer, Kotresh, Shakunthala, Gopal, Padaki (bib0007) 2008; 30
Thurston, Matthews, Hernandez, De La Torre (bib0021) 2009; 46
World Health Organization (WHO). Ageing and Health. Fact Sheet. Available online
Maglogiannis, Loukis, Zafiropoulos, Stasis (bib0020) 2009; 95
Liu, N (bib0006) 2014
Liu (bib0004) 2020; 26
Stoltzfus (bib0014) 2011; 18
Ashby (bib0008) 2003; 6
Lemay, Bertschi, Sola, Renevey, Parak, Korhonen (bib0010) 2014
Verplancke, Van Looy, Benoit, Vansteelandt, Depuydt, De Turck, Decruyenaere (bib0019) 2008; 8
Hosmer, Lemeshow (bib0015) 2000
SmartFall dataset available online
Peduzzi, Concato, Kemper, Holford, Feinstein (bib0016) 1996; 49
Gonzalez-Landaeta, Casas, Pallàs-Areny (bib0011) 2008; 55
Bayoumy, Gaber, Elshafeey (bib0009) 2021; 18
González Landaeta, Casas, Pallàs-Areny (bib0012) 2006; 2006
Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification And Regression Trees (1st ed.). Routledge. https://doi.org/10.1201/9781315139470
Alpaydin (bib0023) 1997
.
Shouman, Turner, Stocker (bib0022) 2012; 2
Vembandasamy, Sasipriya, Deepa (bib0017) 2015; 2
Cortes, Vapnik (bib0018) 1995; 20
Gonzalez-Landaeta (10.1016/j.procs.2023.01.247_bib0011) 2008; 55
Bayoumy (10.1016/j.procs.2023.01.247_bib0009) 2021; 18
Tinetti (10.1016/j.procs.2023.01.247_bib0002) 2003; 348
Vembandasamy (10.1016/j.procs.2023.01.247_bib0017) 2015; 2
Khalilia (10.1016/j.procs.2023.01.247_bib0024) 2011; 11
Thurston (10.1016/j.procs.2023.01.247_bib0021) 2009; 46
Ashby (10.1016/j.procs.2023.01.247_bib0008) 2003; 6
Liu (10.1016/j.procs.2023.01.247_bib0004) 2020; 26
Hausdorff (10.1016/j.procs.2023.01.247_bib0003) 2001; 82
Peduzzi (10.1016/j.procs.2023.01.247_bib0016) 1996; 49
González Landaeta (10.1016/j.procs.2023.01.247_bib0012) 2006; 2006
Stoltzfus (10.1016/j.procs.2023.01.247_bib0014) 2011; 18
10.1016/j.procs.2023.01.247_bib0013
Liu (10.1016/j.procs.2023.01.247_bib0006) 2014
Verplancke (10.1016/j.procs.2023.01.247_bib0019) 2008; 8
Cortes (10.1016/j.procs.2023.01.247_bib0018) 1995; 20
Alpaydin (10.1016/j.procs.2023.01.247_bib0023) 1997
Hosmer (10.1016/j.procs.2023.01.247_bib0015) 2000
Lemay (10.1016/j.procs.2023.01.247_bib0010) 2014
Pandian (10.1016/j.procs.2023.01.247_bib0007) 2008; 30
Maglogiannis (10.1016/j.procs.2023.01.247_bib0020) 2009; 95
Ferdinando (10.1016/j.procs.2023.01.247_bib0005) 2012
Shouman (10.1016/j.procs.2023.01.247_bib0022) 2012; 2
10.1016/j.procs.2023.01.247_bib0001
10.1016/j.procs.2023.01.247_bib0025
References_xml – volume: 2
  start-page: 220
  year: 2012
  end-page: 223
  ident: bib0022
  article-title: Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients
  publication-title: International Journal of Information and Education Technology
– volume: 95
  start-page: 47
  year: 2009
  end-page: 61
  ident: bib0020
  article-title: Support vectors machine-based identification of heart valve diseases using heart sounds
  publication-title: Compute Methods Programs Biomed
– volume: 49
  start-page: 1373
  year: 1996
  end-page: 1379
  ident: bib0016
  article-title: A simulation study of the number of events per variable in logistic regression analysis
  publication-title: J Clin Epidemiol
– reference: Breiman, L., Friedman, J.H., Olshen, R.A., & Stone, C.J. (1984). Classification And Regression Trees (1st ed.). Routledge. https://doi.org/10.1201/9781315139470
– volume: 348
  start-page: 42
  year: 2003
  end-page: 49
  ident: bib0002
  article-title: Clinical practice: preventing falls in elderly persons
  publication-title: The New England Journal of Medicine
– volume: 2
  year: 2015
  ident: bib0017
  article-title: Heart Diseases Detection Using Naive Bayes Algorithm
  publication-title: IJISET - International Journal of Innovative Science, Engineering & Technology
– start-page: 115
  year: 1997
  end-page: 132
  ident: bib0023
  article-title: Voting over Multiple Condensed Nearest Neighbors
  publication-title: Artificial Intelligence Review
– reference: World Health Organization (WHO). Ageing and Health. Fact Sheet. Available online:
– volume: 55
  start-page: 1163
  year: 2008
  end-page: 1167
  ident: bib0011
  article-title: Heart rate detection from plantar bioimpedance measurements
  publication-title: IEEE Trans Biomed Eng
– volume: 26
  start-page: 407
  year: 2020
  end-page: 422
  ident: bib0004
  article-title: Portuguese households: a tool for energy policy
  publication-title: Management of Environmental Quality: An International Journal
– start-page: 4435
  year: 2014
  end-page: 4440
  ident: bib0006
  article-title: Development of a Low-cost IMU by Using Sensor Fusion for Attitude Angle Estimation
  publication-title: IFAC Proceedings Volumes
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0018
  article-title: Support-vector networks
  publication-title: Mach Learn
– volume: 82
  start-page: 1050
  year: 2001
  end-page: 1056
  ident: bib0003
  article-title: Gait variability and fall risk in community-living older adults: a 1-year prospective study
  publication-title: Archives of Physical Medicine and Rehabilitation
– start-page: 1
  year: 2012
  end-page: 5
  ident: bib0005
  article-title: Embedded Kalman Filter for Inertial Measurement Unit (IMU) on the ATMega8535
  publication-title: 2012 International Symposium on Innovations in Intelligent Systems and Applications
– reference: SmartFall dataset available online:
– volume: 8
  start-page: 56
  year: 2008
  ident: bib0019
  article-title: Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies
  publication-title: BMC Med Inform Decis Mak
– year: 2000
  ident: bib0015
  article-title: Applied Logistic Regression
– reference: .
– volume: 46
  start-page: 285
  year: 2009
  end-page: 292
  ident: bib0021
  article-title: Improving the performance of physiologic hot flash measures with support vector machines
  publication-title: Psychophysiology
– volume: 18
  start-page: 1099
  year: 2011
  end-page: 1104
  ident: bib0014
  article-title: Logistic Regression: A Brief Primer
  publication-title: Academic Emergency Medicine
– volume: 18
  start-page: 581
  year: 2021
  end-page: 599
  ident: bib0009
  article-title: Smart wearable devices in cardiovascular care: where we are and how to move forward
  publication-title: Nat Rev Cardiol
– volume: 6
  start-page: 1
  year: 2003
  ident: bib0008
  article-title: Relativity in the Global Positioning System
  publication-title: Living reviews in relativity
– volume: 30
  start-page: 466
  year: 2008
  end-page: 477
  ident: bib0007
  article-title: Smart Vest: Wearable multi- parameter remote physiological monitoring system
  publication-title: Medical Engineering & Physics
– volume: 11
  start-page: 51
  year: 2011
  ident: bib0024
  article-title: Predicting disease risks from highly imbalanced data using random forest
  publication-title: BMC Med Inform Decis Mak
– volume: 2006
  start-page: 5113
  year: 2006
  end-page: 5116
  ident: bib0012
  article-title: Heart rate detection from plantar bioimpedance measurements
  publication-title: Conf Proc IEEE Eng Med Biol Soc
– start-page: 105
  year: 2014
  end-page: 129
  ident: bib0010
  article-title: Chapter 2.3 - Application of Optical Heart Rate Monitoring
  publication-title: Wearable Sensors
– start-page: 115
  year: 1997
  ident: 10.1016/j.procs.2023.01.247_bib0023
  article-title: Voting over Multiple Condensed Nearest Neighbors
  publication-title: Artificial Intelligence Review
  doi: 10.1023/A:1006563312922
– ident: 10.1016/j.procs.2023.01.247_bib0025
  doi: 10.1201/9781315139470
– volume: 49
  start-page: 1373
  year: 1996
  ident: 10.1016/j.procs.2023.01.247_bib0016
  article-title: A simulation study of the number of events per variable in logistic regression analysis
  publication-title: J Clin Epidemiol
  doi: 10.1016/S0895-4356(96)00236-3
– volume: 2006
  start-page: 5113
  year: 2006
  ident: 10.1016/j.procs.2023.01.247_bib0012
  article-title: Heart rate detection from plantar bioimpedance measurements
  publication-title: Conf Proc IEEE Eng Med Biol Soc
  doi: 10.1109/IEMBS.2006.260822
– volume: 348
  start-page: 42
  issue: 1
  year: 2003
  ident: 10.1016/j.procs.2023.01.247_bib0002
  article-title: Clinical practice: preventing falls in elderly persons
  publication-title: The New England Journal of Medicine
  doi: 10.1056/NEJMcp020719
– volume: 8
  start-page: 56
  year: 2008
  ident: 10.1016/j.procs.2023.01.247_bib0019
  article-title: Support vector machine versus logistic regression modeling for prediction of hospital mortality in critically ill patients with haematological malignancies
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-8-56
– volume: 6
  start-page: 1
  issue: 1
  year: 2003
  ident: 10.1016/j.procs.2023.01.247_bib0008
  article-title: Relativity in the Global Positioning System
  publication-title: Living reviews in relativity
  doi: 10.12942/lrr-2003-1
– volume: 20
  start-page: 273
  year: 1995
  ident: 10.1016/j.procs.2023.01.247_bib0018
  article-title: Support-vector networks
  publication-title: Mach Learn
  doi: 10.1007/BF00994018
– volume: 55
  start-page: 1163
  issue: 3
  year: 2008
  ident: 10.1016/j.procs.2023.01.247_bib0011
  article-title: Heart rate detection from plantar bioimpedance measurements
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2007.906516
– start-page: 105
  year: 2014
  ident: 10.1016/j.procs.2023.01.247_bib0010
  article-title: Chapter 2.3 - Application of Optical Heart Rate Monitoring
– volume: 2
  start-page: 220
  year: 2012
  ident: 10.1016/j.procs.2023.01.247_bib0022
  article-title: Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients
  publication-title: International Journal of Information and Education Technology
  doi: 10.7763/IJIET.2012.V2.114
– volume: 95
  start-page: 47
  year: 2009
  ident: 10.1016/j.procs.2023.01.247_bib0020
  article-title: Support vectors machine-based identification of heart valve diseases using heart sounds
  publication-title: Compute Methods Programs Biomed
  doi: 10.1016/j.cmpb.2009.01.003
– year: 2000
  ident: 10.1016/j.procs.2023.01.247_bib0015
– volume: 46
  start-page: 285
  year: 2009
  ident: 10.1016/j.procs.2023.01.247_bib0021
  article-title: Improving the performance of physiologic hot flash measures with support vector machines
  publication-title: Psychophysiology
  doi: 10.1111/j.1469-8986.2008.00770.x
– ident: 10.1016/j.procs.2023.01.247_bib0013
– start-page: 1
  year: 2012
  ident: 10.1016/j.procs.2023.01.247_bib0005
  article-title: Embedded Kalman Filter for Inertial Measurement Unit (IMU) on the ATMega8535
– start-page: 4435
  year: 2014
  ident: 10.1016/j.procs.2023.01.247_bib0006
  article-title: Development of a Low-cost IMU by Using Sensor Fusion for Attitude Angle Estimation
– volume: 11
  start-page: 51
  year: 2011
  ident: 10.1016/j.procs.2023.01.247_bib0024
  article-title: Predicting disease risks from highly imbalanced data using random forest
  publication-title: BMC Med Inform Decis Mak
  doi: 10.1186/1472-6947-11-51
– volume: 26
  start-page: 407
  issue: 3
  year: 2020
  ident: 10.1016/j.procs.2023.01.247_bib0004
  article-title: Portuguese households: a tool for energy policy
  publication-title: Management of Environmental Quality: An International Journal
– volume: 18
  start-page: 1099
  year: 2011
  ident: 10.1016/j.procs.2023.01.247_bib0014
  article-title: Logistic Regression: A Brief Primer
  publication-title: Academic Emergency Medicine
  doi: 10.1111/j.1553-2712.2011.01185.x
– volume: 2
  issue: 9
  year: 2015
  ident: 10.1016/j.procs.2023.01.247_bib0017
  article-title: Heart Diseases Detection Using Naive Bayes Algorithm
  publication-title: IJISET - International Journal of Innovative Science, Engineering & Technology
– volume: 30
  start-page: 466
  issue: 4
  year: 2008
  ident: 10.1016/j.procs.2023.01.247_bib0007
  article-title: Smart Vest: Wearable multi- parameter remote physiological monitoring system
  publication-title: Medical Engineering & Physics
  doi: 10.1016/j.medengphy.2007.05.014
– ident: 10.1016/j.procs.2023.01.247_bib0001
– volume: 82
  start-page: 1050
  issue: 8
  year: 2001
  ident: 10.1016/j.procs.2023.01.247_bib0003
  article-title: Gait variability and fall risk in community-living older adults: a 1-year prospective study
  publication-title: Archives of Physical Medicine and Rehabilitation
  doi: 10.1053/apmr.2001.24893
– volume: 18
  start-page: 581
  year: 2021
  ident: 10.1016/j.procs.2023.01.247_bib0009
  article-title: Smart wearable devices in cardiovascular care: where we are and how to move forward
  publication-title: Nat Rev Cardiol
  doi: 10.1038/s41569-021-00522-7
SSID ssj0000388917
Score 2.2961154
Snippet Compressed Machine (ML) and Deep Learning(DL) techniques are the emerging areas in research, the use of compressed ML and DL algorithms is recommended on...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2755
SubjectTerms Deep Learning
Machine Learning
Model Compression
SoCs
Wearables
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDnoRPyN-pQePjrjRduVIiISYQDhIxFPTbiugcyMwYvSv93UfoEYJXpYte123vtf297r3fkXomrvaA7Pllh9oahFJXasBfpBF7ADgAnRNXxlHsdtjnQG5H9JhzrNtcmG-_b9P47DMQG54tZ264dd0iLuNyowC8C6h8qDXbz4Zl4q7rmWYTApeod9L_jX37CyiqXx_k2H4ZW5pV7Kk7XlKSWhCSl5qi0TVvI8fhI0bvvY-2ssxJm5mRnGAtoLoEFWK_Rtw3p2PUNxfZQ3gFe03jjXupjGWAc7pV0dYhqN4NknGr3MMEhnPuTlrjSfTOZ5E-BEkTRrWHMMjcWcZVoazUcMsHx6jQfvuodWx8g0YLM9hoDDtc6dBuaSgPk6Z5JI5vpKeprZyFSWSMRe-zPfhjg0HbRPPsPvUdUMB7GT1E1SK4ig4RZh5miimJVM6IFJS6dNAcZ8zzjwCoLGKnEI1wsvZyc0mGaEowtCeRdqkwjSpuLUFVFxFN8tC04ycY704K3QucnyR4QYB6ltf0FpayCYVnf1T_hztmqtsZecClZLZIrgErJOoq9zGPwHRmfv7
  priority: 102
  providerName: Unpaywall
Title Performance evaluation of Machine Learning algorithms on System on Chips in Wearables for Healthcare Monitoring
URI https://dx.doi.org/10.1016/j.procs.2023.01.247
https://doi.org/10.1016/j.procs.2023.01.247
UnpaywallVersion publishedVersion
Volume 218
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: KQ8
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect Open Access Journals
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: IXB
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dT8IwEG8IPuiL30b8IH3w0QU32q48IpGgBEJUAj4t7bbCDA7CR4z_vXf7QE0MMb4s63bdLb327trc_Y6QK-kaH6attILQcIsp7lo12AdZzA7BXYClGWjcKHa6otVnD0M-LJBGnguDYZWZ7k91eqKtsyeVbDQrsyiqPNnSdRG9BJxoMDQuJvxWmcTyDffD2_U5C6Kd1JLCu0hvYYccfCgJ80I7gbDdThXhOx0ss_K7gdpexTP18a4mk28GqLlPdjPPkdbTnzsghTA-JHt5VQaaLdIjMu195QLQLzBvOjW0k0ROhjQDVR1RNRlN59Fy_LagQJGil-NdYxzNFjSK6QAoMblqQeGTtLUOFqOpLsBDwWPSb949N1pWVlbB8h0BYjCBdGpcKg5CkVwoqYQTaOUbbmtXc6aEcGEcggDe2HAxNvMRs6dqahqcSVE9IcV4GoenhArfMC2MEtqETCmuAh5qGUghhc_AFSwRJx9Lz88wx7H0xcTLg8tevUQAHgrAu7E9YFwi1-tOsxRyYzO5yIXk_Zg5HhiFzR2ttUj_wujsv4zOyQ620oObC1JczlfhJbgyS10mW_X246BdTuYstPrdXv3lE2i09gA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI5gHODCG_EmB45Uo12SZkeYmMZjExIgdouSthlFo632EOLfY_exgYQQ4lJVTdxUcWp_iezPhJxK3wawbKUTRpY7THPfacI-yGFuBHABfs3Q4Eax2xOdJ3bT5_0F0qpyYTCssrT9hU3PrXX5pF7OZj2L4_qDK30f2UsARIOj8eUiWWIc0Alm8fUvZwctSHfSzCvvooCDEhX7UB7nhY4Cebu9BvJ3elhn5WcPtTxNMv3xrofDLx6ovU5WS-hIL4qv2yALUbJJ1qqyDLT8S7dIej9PBqBzNm-aWtrNQycjWrKqDqgeDtJRPHl5G1PoUdCX413rJc7GNE7oM_TE7KoxhVfSzixajBbGAE8Ft8lT--qx1XHKugpO4AnQgw2l1-RSc9CK5EJLLbzQ6MBy1_iGMy2ED_MQhtDiwsW6LEDSnoZtGkCTorFDakmaRLuEisAyI6wWxkZMa65DHhkZSiFFwAAL7hGvmksVlKTjWPtiqKrosleVK0ChAtS5q2DgPXI2E8oKzo3fu4tKSerb0lHgFX4XdGYq_ctA-_8d6IQsdx67d-ruund7QFawpTjFOSS1yWgaHQGumZjjfN1-Am0K9dM
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT8IwFG8UDnoRPyN-pQePjrjRduVIiISYQDhIxFPTbiugcyMwYvSv93UfoEYJXpYte123vtf297r3fkXomrvaA7Pllh9oahFJXasBfpBF7ADgAnRNXxlHsdtjnQG5H9JhzrNtcmG-_b9P47DMQG54tZ264dd0iLuNyowC8C6h8qDXbz4Zl4q7rmWYTApeod9L_jX37CyiqXx_k2H4ZW5pV7Kk7XlKSWhCSl5qi0TVvI8fhI0bvvY-2ssxJm5mRnGAtoLoEFWK_Rtw3p2PUNxfZQ3gFe03jjXupjGWAc7pV0dYhqN4NknGr3MMEhnPuTlrjSfTOZ5E-BEkTRrWHMMjcWcZVoazUcMsHx6jQfvuodWx8g0YLM9hoDDtc6dBuaSgPk6Z5JI5vpKeprZyFSWSMRe-zPfhjg0HbRPPsPvUdUMB7GT1E1SK4ig4RZh5miimJVM6IFJS6dNAcZ8zzjwCoLGKnEI1wsvZyc0mGaEowtCeRdqkwjSpuLUFVFxFN8tC04ycY704K3QucnyR4QYB6ltf0FpayCYVnf1T_hztmqtsZecClZLZIrgErJOoq9zGPwHRmfv7
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Performance+evaluation+of+Machine+Learning+algorithms+on+System+on+Chips+in+Wearables+for+Healthcare+Monitoring&rft.jtitle=Procedia+computer+science&rft.au=Nandi%2C+Purab&rft.au=Anupama%2C+K.R.&rft.au=Bajaj%2C+Apoorva&rft.au=Shukla%2C+Saurav&rft.date=2023&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=218&rft.spage=2755&rft.epage=2766&rft_id=info:doi/10.1016%2Fj.procs.2023.01.247&rft.externalDocID=S1877050923002478
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon