Classification Performance Evaluation from Multilevel Logistic and Support Vector Machine Algorithms through Simulated Data in Python

This paper analyzes the performance of multilevel logistic and support vector machine algorithms when the objective is the stratification of the sample into two groups for binary classification. Under the data simulation in Python, we show that multilevel logistic models cannot correctly classify ob...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 214; pp. 511 - 519
Main Authors Fávero, Luiz Paulo, Belfiore, Patrícia, Santos, Helder Prado, dos Santos, Marcos, de Araújo Costa, Igor Pinheiro, Junior, Wilson Tarantin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2022
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2022.11.206

Cover

Abstract This paper analyzes the performance of multilevel logistic and support vector machine algorithms when the objective is the stratification of the sample into two groups for binary classification. Under the data simulation in Python, we show that multilevel logistic models cannot correctly classify observations under certain non-linear conditions, even when defined contextual hierarchical groups and support vector classifiers generate better predictions. Python codes are provided for replication purposes.
AbstractList This paper analyzes the performance of multilevel logistic and support vector machine algorithms when the objective is the stratification of the sample into two groups for binary classification. Under the data simulation in Python, we show that multilevel logistic models cannot correctly classify observations under certain non-linear conditions, even when defined contextual hierarchical groups and support vector classifiers generate better predictions. Python codes are provided for replication purposes.
Author dos Santos, Marcos
Santos, Helder Prado
Fávero, Luiz Paulo
Junior, Wilson Tarantin
de Araújo Costa, Igor Pinheiro
Belfiore, Patrícia
Author_xml – sequence: 1
  givenname: Luiz Paulo
  surname: Fávero
  fullname: Fávero, Luiz Paulo
  organization: University of São Paulo (USP), São Paulo, Brazil
– sequence: 2
  givenname: Patrícia
  surname: Belfiore
  fullname: Belfiore, Patrícia
  organization: Federal University of ABC, São Bernardo, São Paulo, Brazil
– sequence: 3
  givenname: Helder Prado
  surname: Santos
  fullname: Santos, Helder Prado
  organization: University of São Paulo (USP), São Paulo, Brazil
– sequence: 4
  givenname: Marcos
  surname: dos Santos
  fullname: dos Santos, Marcos
  organization: Military Institute of Engineering (IME), Rio de Janeiro, Brazil
– sequence: 5
  givenname: Igor Pinheiro
  surname: de Araújo Costa
  fullname: de Araújo Costa, Igor Pinheiro
  email: costa_igor@id.uff.br
  organization: Naval Systems Analysis Center (CASNAV), Rio de Janeiro, Brazil
– sequence: 6
  givenname: Wilson Tarantin
  surname: Junior
  fullname: Junior, Wilson Tarantin
  organization: University of São Paulo (USP), São Paulo, Brazil
BookMark eNqNkcFu1DAQhq2qSJTSJ-DiF9jFk2Tj-MChWgpU2opKBa6Wa082s3LiyHa22gfgvUm7HKoeoHP5RyN9M9I379jpEAZk7AOIJQioP-6WYww2LQtRFEuAOesTdgaNlAuxEur0Wf-WXaS0E3OVTaNAnrHfa29SopasyRQGfouxDbE3g0V-tTd-Oo7bGHp-M_lMHvfo-SZsKWWy3AyO303jGGLmv9DmEPmNsR0NyC_9NkTKXZ947mKYth2_o37yJqPjn002nOZ7h9yF4T170xqf8OJvnrOfX65-rL8tNt-_Xq8vNwtb1GW9QGju5Uq50iiUpi1WJTqwUElEW7VQ3SvpCpDSVbapnXVQqFKhULZoRA2iLM9Zddw7DaM5PBjv9RipN_GgQehHm3qnn2zqR5saYM56xtQRszGkFLHVlvKTmBwN-f-w5Qv2dRc_HSmcbewJo06WcH6Kozhb1i7QP_k_59Kn8w
CitedBy_id crossref_primary_10_3390_axioms12030251
crossref_primary_10_1016_j_procs_2023_07_048
Cites_doi 10.1080/19475705.2017.1407368
10.7763/IJMLC.2015.V5.544
10.1108/RAUSP-04-2019-0059
10.1198/004017005000000661
10.1007/BF00994018
10.1016/j.jclinepi.2009.11.020
10.1109/ACCESS.2020.3001149
10.1007/s13042-012-0068-x
10.1080/00273171.2018.1465809
10.1016/j.aca.2010.03.030
ContentType Journal Article
Copyright 2022
Copyright_xml – notice: 2022
DBID 6I.
AAFTH
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1016/j.procs.2022.11.206
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 519
ExternalDocumentID 10.1016/j.procs.2022.11.206
10_1016_j_procs_2022_11_206
S1877050922019160
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
~HD
ADTOC
UNPAY
ID FETCH-LOGICAL-c2636-e18b759d3a9e7af253ed1c147eec4f14b97d2177d4c86dcd12939e09c28061033
IEDL.DBID UNPAY
ISSN 1877-0509
IngestDate Tue Aug 19 17:57:16 EDT 2025
Wed Oct 01 02:36:05 EDT 2025
Thu Apr 24 23:02:57 EDT 2025
Wed May 17 00:05:00 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Logistic Models
Multilevel Models
Support Vector Machine
Simulation
Python
Language English
License This is an open access article under the CC BY-NC-ND license.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2636-e18b759d3a9e7af253ed1c147eec4f14b97d2177d4c86dcd12939e09c28061033
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.procs.2022.11.206
PageCount 9
ParticipantIDs unpaywall_primary_10_1016_j_procs_2022_11_206
crossref_citationtrail_10_1016_j_procs_2022_11_206
crossref_primary_10_1016_j_procs_2022_11_206
elsevier_sciencedirect_doi_10_1016_j_procs_2022_11_206
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022
2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Raudenbush, Bryk (bib0002) 2002; 1
De Leeuw, Meijer, Goldstein (bib0003) 2008
Gelman (bib0022) 2006; 48
Luts, Ojeda, Van de Plas, De Moor, Van Huffel, Suykens (bib0007) 2010; 665
D. Westreicha, J. Lesslerc, and M. J. Funka, “Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression,” Journal of Clinical Epidemiology, vol. 63, pp. 826-833.
Li, Haq, Din, Khan, Khan, Saboor (bib0011) 2020; 8
Durrant, Vassallo, Smith (bib0016) 2018; 53
Westreich, Lessler, Funk (bib0012) 2010; 63
Fávero, Belfiore (bib0001) 2019
Khanna, Sahu, Baths, Deshpande (bib0009) 2015; 5
Hair Jr, Fávero (bib0015) 2019; 54
Fávero, Belfiore (bib0017) 2017
G. Khekare, L. K. Bramhane, C. Dhule, R. Agrawal, and A. V. Turukmane, “Testing and analysis of predictive capabilities of machine learning algorithms,” in E. H. Houssein, M. A. Elaziz, D. Oliva, and L. Abualigah (eds) Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Studies in Computational Intelligence, vol. 1038. Springer.
Chand, P, Krishna, Pilliy, Govil (bib0013) 2016
Goldstein (bib0004) 2011
Chao, Yu, Cheng, Kuo (bib0010) 2014; 38
Boser, Guyon, Vapnik (bib0019) 1992
Musa (bib0006) 2013; 4
Kalantar, Pradhan, Naghibi, Motevalli, Mansor (bib0005) 2018; 9
Cortes, Vapnik (bib0018) 1995; 20
James, Witten, Hastie, Tibshirani (bib0021) 2021
Fávero, Almeida (bib0014) 2011; 72
Fávero (10.1016/j.procs.2022.11.206_bib0017) 2017
Hair Jr (10.1016/j.procs.2022.11.206_bib0015) 2019; 54
Gelman (10.1016/j.procs.2022.11.206_bib0022) 2006; 48
Luts (10.1016/j.procs.2022.11.206_bib0007) 2010; 665
James (10.1016/j.procs.2022.11.206_bib0021) 2021
De Leeuw (10.1016/j.procs.2022.11.206_bib0003) 2008
Khanna (10.1016/j.procs.2022.11.206_bib0009) 2015; 5
Kalantar (10.1016/j.procs.2022.11.206_bib0005) 2018; 9
Fávero (10.1016/j.procs.2022.11.206_bib0014) 2011; 72
Raudenbush (10.1016/j.procs.2022.11.206_bib0002) 2002; 1
Musa (10.1016/j.procs.2022.11.206_bib0006) 2013; 4
Li (10.1016/j.procs.2022.11.206_bib0011) 2020; 8
Goldstein (10.1016/j.procs.2022.11.206_bib0004) 2011
10.1016/j.procs.2022.11.206_bib0008
Chand (10.1016/j.procs.2022.11.206_bib0013) 2016
Westreich (10.1016/j.procs.2022.11.206_bib0012) 2010; 63
Durrant (10.1016/j.procs.2022.11.206_bib0016) 2018; 53
10.1016/j.procs.2022.11.206_bib0020
Boser (10.1016/j.procs.2022.11.206_bib0019) 1992
Chao (10.1016/j.procs.2022.11.206_bib0010) 2014; 38
Fávero (10.1016/j.procs.2022.11.206_bib0001) 2019
Cortes (10.1016/j.procs.2022.11.206_bib0018) 1995; 20
References_xml – volume: 54
  start-page: 459
  year: 2019
  end-page: 489
  ident: bib0015
  article-title: Multilevel modeling for longitudinal data: concepts and applications
  publication-title: RAUSP Management Journal
– start-page: 15
  year: 2021
  end-page: 57
  ident: bib0021
  article-title: Statistical learning
  publication-title: An introduction to statistical learning
– volume: 4
  start-page: 13
  year: 2013
  end-page: 24
  ident: bib0006
  article-title: Comparative study on classification performance between support vector machine and logistic regression
  publication-title: International Journal of Machine Learning and Cybernetics
– volume: 38
  start-page: 1
  year: 2014
  end-page: 7
  ident: bib0010
  article-title: Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree
  publication-title: Journal of Medical Systems
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: bib0018
  article-title: Support-vector networks
  publication-title: Machine Learning
– year: 2008
  ident: bib0003
  article-title: Handbook of multilevel analysis
– volume: 9
  start-page: 49
  year: 2018
  end-page: 69
  ident: bib0005
  article-title: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN)
  publication-title: Geomatics, Natural Hazards and Risk
– reference: D. Westreicha, J. Lesslerc, and M. J. Funka, “Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression,” Journal of Clinical Epidemiology, vol. 63, pp. 826-833.
– volume: 53
  start-page: 595
  year: 2018
  end-page: 611
  ident: bib0016
  article-title: Assessment of multiple membership multilevel models: an application to interviewer effects on nonresponse
  publication-title: Multivariate Behavioral Research
– start-page: 144
  year: 1992
  end-page: 152
  ident: bib0019
  article-title: A training algorithm for optimal margin classifiers
  publication-title: Proceedings of the Annual Workshop on Computational Learning Theory
– volume: 665
  start-page: 129
  year: 2010
  end-page: 145
  ident: bib0007
  article-title: A tutorial on support vector machine-base methods for classification problems in chemometrics
  publication-title: Analytica Chimica Acta
– volume: 5
  start-page: 414
  year: 2015
  end-page: 419
  ident: bib0009
  article-title: Comparative study of classification techniques (SVM, logistic regression and neural networks) to predict the prevalence of heart disease
  publication-title: International Journal of Machine Learning and Computing
– volume: 63
  start-page: 826
  year: 2010
  end-page: 833
  ident: bib0012
  article-title: Propensity score estimation: machine learning and classification methods as alternatives to logistic regression
  publication-title: Journal of Clinical Epidemiology
– volume: 72
  start-page: 97
  year: 2011
  end-page: 141
  ident: bib0014
  article-title: O comportamento dos índices de ações em países emergentes: uma análise com dados em painel e modelos hierárquicos
  publication-title: Brazilian Review of Statistics
– volume: 48
  start-page: 432
  year: 2006
  end-page: 435
  ident: bib0022
  article-title: Multilevel (hierarchical) modeling: what it can and cannot do
  publication-title: Technometrics
– year: 2019
  ident: bib0001
  article-title: Data science for business and decision making
– year: 2017
  ident: bib0017
  article-title: multivariada com Excel®, SPSS® e Stata®
– reference: G. Khekare, L. K. Bramhane, C. Dhule, R. Agrawal, and A. V. Turukmane, “Testing and analysis of predictive capabilities of machine learning algorithms,” in E. H. Houssein, M. A. Elaziz, D. Oliva, and L. Abualigah (eds) Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Studies in Computational Intelligence, vol. 1038. Springer.
– volume: 8
  start-page: 107562
  year: 2020
  end-page: 107582
  ident: bib0011
  article-title: Heart disease identification method using machine learning classification in e-healthcare
  publication-title: IEEE Access
– year: 2011
  ident: bib0004
  article-title: Multilevel statistical models
– volume: 1
  year: 2002
  ident: bib0002
  publication-title: Hierarchical linear models: Applications and data analysis methods
– year: 2016
  ident: bib0013
  article-title: A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection
  publication-title: International Conference on Advances in Computing, Communication, & Automation
– volume: 9
  start-page: 49
  issue: 1
  year: 2018
  ident: 10.1016/j.procs.2022.11.206_bib0005
  article-title: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN)
  publication-title: Geomatics, Natural Hazards and Risk
  doi: 10.1080/19475705.2017.1407368
– volume: 5
  start-page: 414
  issue: 5
  year: 2015
  ident: 10.1016/j.procs.2022.11.206_bib0009
  article-title: Comparative study of classification techniques (SVM, logistic regression and neural networks) to predict the prevalence of heart disease
  publication-title: International Journal of Machine Learning and Computing
  doi: 10.7763/IJMLC.2015.V5.544
– volume: 54
  start-page: 459
  issue: 4
  year: 2019
  ident: 10.1016/j.procs.2022.11.206_bib0015
  article-title: Multilevel modeling for longitudinal data: concepts and applications
  publication-title: RAUSP Management Journal
  doi: 10.1108/RAUSP-04-2019-0059
– volume: 48
  start-page: 432
  issue: 3
  year: 2006
  ident: 10.1016/j.procs.2022.11.206_bib0022
  article-title: Multilevel (hierarchical) modeling: what it can and cannot do
  publication-title: Technometrics
  doi: 10.1198/004017005000000661
– year: 2008
  ident: 10.1016/j.procs.2022.11.206_bib0003
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.procs.2022.11.206_bib0018
  article-title: Support-vector networks
  publication-title: Machine Learning
  doi: 10.1007/BF00994018
– year: 2019
  ident: 10.1016/j.procs.2022.11.206_bib0001
– ident: 10.1016/j.procs.2022.11.206_bib0008
  doi: 10.1016/j.jclinepi.2009.11.020
– volume: 63
  start-page: 826
  issue: 8
  year: 2010
  ident: 10.1016/j.procs.2022.11.206_bib0012
  article-title: Propensity score estimation: machine learning and classification methods as alternatives to logistic regression
  publication-title: Journal of Clinical Epidemiology
  doi: 10.1016/j.jclinepi.2009.11.020
– start-page: 15
  year: 2021
  ident: 10.1016/j.procs.2022.11.206_bib0021
  article-title: Statistical learning
– volume: 1
  year: 2002
  ident: 10.1016/j.procs.2022.11.206_bib0002
– year: 2017
  ident: 10.1016/j.procs.2022.11.206_bib0017
– ident: 10.1016/j.procs.2022.11.206_bib0020
– volume: 38
  start-page: 1
  issue: 106
  year: 2014
  ident: 10.1016/j.procs.2022.11.206_bib0010
  article-title: Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree
  publication-title: Journal of Medical Systems
– volume: 8
  start-page: 107562
  year: 2020
  ident: 10.1016/j.procs.2022.11.206_bib0011
  article-title: Heart disease identification method using machine learning classification in e-healthcare
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001149
– year: 2016
  ident: 10.1016/j.procs.2022.11.206_bib0013
  article-title: A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection
– volume: 72
  start-page: 97
  issue: 1
  year: 2011
  ident: 10.1016/j.procs.2022.11.206_bib0014
  article-title: O comportamento dos índices de ações em países emergentes: uma análise com dados em painel e modelos hierárquicos
  publication-title: Brazilian Review of Statistics
– start-page: 144
  year: 1992
  ident: 10.1016/j.procs.2022.11.206_bib0019
  article-title: A training algorithm for optimal margin classifiers
– volume: 4
  start-page: 13
  year: 2013
  ident: 10.1016/j.procs.2022.11.206_bib0006
  article-title: Comparative study on classification performance between support vector machine and logistic regression
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-012-0068-x
– year: 2011
  ident: 10.1016/j.procs.2022.11.206_bib0004
– volume: 53
  start-page: 595
  year: 2018
  ident: 10.1016/j.procs.2022.11.206_bib0016
  article-title: Assessment of multiple membership multilevel models: an application to interviewer effects on nonresponse
  publication-title: Multivariate Behavioral Research
  doi: 10.1080/00273171.2018.1465809
– volume: 665
  start-page: 129
  year: 2010
  ident: 10.1016/j.procs.2022.11.206_bib0007
  article-title: A tutorial on support vector machine-base methods for classification problems in chemometrics
  publication-title: Analytica Chimica Acta
  doi: 10.1016/j.aca.2010.03.030
SSID ssj0000388917
Score 2.261307
Snippet This paper analyzes the performance of multilevel logistic and support vector machine algorithms when the objective is the stratification of the sample into...
SourceID unpaywall
crossref
elsevier
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 511
SubjectTerms Logistic Models
Multilevel Models
Python
Simulation
Support Vector Machine
SummonAdditionalLinks – databaseName: Elsevier Free Content
  dbid: IXB
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS--xTdz8GjYNs0m7dEnKiqCD_ZW8qpWunXRFfEH-L_NZNtVD4p4Ki0ZUjLpPNKZ7yNkO2K26Aqe0oJHjvJYKpoVSlKTqDRTVhutsMH5_EIc3_DTXrc3QfbbXhgsq2xs_8imB2vdPOk0q9kZlGXnKk6lRPQS5n2YD3Iwb094ivQNJ7298TkLop1kgXgXx1MUaMGHQpkX-gmE7WbMWw9_FT85qKmXeqDeXlVVfXFAR3NkpokcYXf0cvNkwtULZLZlZYDmI10k74HnEiuAwqLD5WdrAByOsb0B-0ogtN9WWDcEZ6EVqDSgagvI9enjcrgNZ_pwHiouHexWd49P5fC-_wwNvw9clX0kAHMWDtRQQenne0M4giVyc3R4vX9MG7IFaphIBHVxqmU3s4nKnFQF6ybOxibm0jnDi5jrTFqfvkjLTSqssRgnZC7KDP6ajaMkWSaT9WPtVghwy7yA0D6ZK7jTNtWRkT6O5MxKpXSxSli7wrlpkMiREKPK25KzhzyoJUe1-BzFX8Uq2RkLDUZAHL8PF63q8m_7Kfeu4ndBOlb0XyZa--9E62Qa70bHORtkcvj04jZ9gDPUW2EHfwBfS_wW
  priority: 102
  providerName: Elsevier
Title Classification Performance Evaluation from Multilevel Logistic and Support Vector Machine Algorithms through Simulated Data in Python
URI https://dx.doi.org/10.1016/j.procs.2022.11.206
https://doi.org/10.1016/j.procs.2022.11.206
UnpaywallVersion publishedVersion
Volume 214
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: KQ8
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVESC
  databaseName: Elsevier Free Content
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: IXB
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1877-0509
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000388917
  issn: 1877-0509
  databaseCode: AKRWK
  dateStart: 20100501
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbK7qEnaEsrtmpXc-BYozwcOzluWxCUhxCwsD1FfgW2DVkEWVXbe_83Hm-yFNQiOPnikSN7bH8Tz3wfIetBZIqEs5QWLLCUhULSrJCC6limmTRKK4kFzvsHfHvIvo2SUcOzjbUw997vfR4WHuTIqx1Fbnu7li-RLk8c8O6Q7vDgcPAdQ6pUCIpMJi2v0L8t_3f3vJxWV3L2S5blX3fL1sq8aPvGUxJiSsnPjWmtNvTvB4SNT_zsV2S5wZgwmDvFa_LCVm_ISqvfAM12XiV_vCIm5gr55YHDuyIC2FywgANWoIAv1C0xwwj2fNHQWIOsDKAqqEPwcOr__sO-z820MCjPJ9fj-uLyBholIDgeX6JUmDXwVdYSxm68GRIXvCXDrc2TL9u0kWWgOuIxpzZMlUgyE8vMCllESWxNqEMmrNWsCJnKhHGBjjBMp9xog4gis0Gm8RE3DOL4HelUk8quEWAmcgZcubCvYFaZVAVaOMTJIiOkVEWPRO2C5brhLEfpjDJvk9N-5H6ic5xoF824lvfIp4XR1Zyy4_HuvPWEvEEdczSRu0V93JAu_OYpA71_Zv8PpFNfT-1HB3pq1Sfdwe7R2W6fLO2MPvcb178FF2AGDg
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOBCoS2C8ppDj7U2cRw7OfLUAruoElDtLfIrEBTCChZV_ID-bzzeZEsPRYiTpSQjRx5nHs7M9xHyPWK2TAXPaMkjR3ksFc1LJalJVJYrq41W2OA8PBf9K346Skdz5KDrhcGyytb2T216sNbtlV67mr1xVfUu4kxKRC9h3of5IMfn7Qs89dEJdvGN9mcHLQh3kgfmXRSgKNGhD4U6L3QUiNvNmDcffhT_81CLT81YPf9Wdf3KAx2vkOU2dIS96dutkjnXfCafOloGaL_SL-RPILrEEqCw6vDzb28AHM3AvQEbSyD039ZYOASD0AtUGVCNBST79IE5_AqH-jAMJZcO9urr-4dqcnP3CC3BD1xUd8gA5iwcqomCys_3jHgEX8nV8dHlQZ-2bAvUMJEI6uJMyzS3icqdVCVLE2djE3PpnOFlzHUurc9fpOUmE9ZYDBRyF-UG_83GUZKskfnmvnHrBLhlXkBon82V3Gmb6chIH0hyZqVSutwgrFvhwrRQ5MiIURddzdltEdRSoFp8kuJHsUF-zITGUySOtx8XneqKfzZU4X3F24J0puj3TPTtoxPtksX-5XBQDE7OzzbJEt6Znu1skfnJw5Pb9tHORO-E3fwCIKb_PA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELagHDhRYEF0BWgOHDHKw7GTY8VDCAFCgq7YU-RXdsuGgGgqBHf-Nx43KSwCBCdfPHJkj-1v4pnvI2QriEyRcJbSggWWslBImhVSUB3LNJNGaSWxwPnklB8O2NFlctnwbGMtzH_v9z4PCw9y5NWOIre9XctnyRxPHPDukLnB6Vn_N4ZUqRAUmUxaXqH3LT-6e-bH1a18uJdl-epuOehOirZHnpIQU0r-7YxrtaMf3xA2fvGzF8lCgzGhP3GKJTJjq2XSbfUboNnOP8iTV8TEXCG_PHD2UkQA-1MWcMAKFPCFuiVmGMGxLxoaapCVAVQFdQgefvm__3DiczMt9Ms_N3fD-u_1CBolIDgfXqNUmDWwJ2sJQzfeAxIXrJDBwf7F7iFtZBmojnjMqQ1TJZLMxDKzQhZRElsT6pAJazUrQqYyYVygIwzTKTfaIKLIbJBpfMQNgzheJZ3qprJrBJiJnAFXLuwrmFUmVYEWDnGyyAgpVdEjUbtguW44y1E6o8zb5LSr3E90jhPtohnX8h7ZnhrdTig7Pu_OW0_IG9QxQRO5W9TPDenUb74y0M9v9l8nnfpubDcc6KnVZuPsz9hKA2c
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+Performance+Evaluation+from+Multilevel+Logistic+and+Support+Vector+Machine+Algorithms+through+Simulated+Data+in+Python&rft.jtitle=Procedia+computer+science&rft.au=F%C3%A1vero%2C+Luiz+Paulo&rft.au=Belfiore%2C+Patr%C3%ADcia&rft.au=Santos%2C+Helder+Prado&rft.au=dos+Santos%2C+Marcos&rft.date=2022&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=214&rft.spage=511&rft.epage=519&rft_id=info:doi/10.1016%2Fj.procs.2022.11.206&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2022_11_206
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon