Classification Performance Evaluation from Multilevel Logistic and Support Vector Machine Algorithms through Simulated Data in Python
This paper analyzes the performance of multilevel logistic and support vector machine algorithms when the objective is the stratification of the sample into two groups for binary classification. Under the data simulation in Python, we show that multilevel logistic models cannot correctly classify ob...
Saved in:
| Published in | Procedia computer science Vol. 214; pp. 511 - 519 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
2022
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1877-0509 1877-0509 |
| DOI | 10.1016/j.procs.2022.11.206 |
Cover
| Abstract | This paper analyzes the performance of multilevel logistic and support vector machine algorithms when the objective is the stratification of the sample into two groups for binary classification. Under the data simulation in Python, we show that multilevel logistic models cannot correctly classify observations under certain non-linear conditions, even when defined contextual hierarchical groups and support vector classifiers generate better predictions. Python codes are provided for replication purposes. |
|---|---|
| AbstractList | This paper analyzes the performance of multilevel logistic and support vector machine algorithms when the objective is the stratification of the sample into two groups for binary classification. Under the data simulation in Python, we show that multilevel logistic models cannot correctly classify observations under certain non-linear conditions, even when defined contextual hierarchical groups and support vector classifiers generate better predictions. Python codes are provided for replication purposes. |
| Author | dos Santos, Marcos Santos, Helder Prado Fávero, Luiz Paulo Junior, Wilson Tarantin de Araújo Costa, Igor Pinheiro Belfiore, Patrícia |
| Author_xml | – sequence: 1 givenname: Luiz Paulo surname: Fávero fullname: Fávero, Luiz Paulo organization: University of São Paulo (USP), São Paulo, Brazil – sequence: 2 givenname: Patrícia surname: Belfiore fullname: Belfiore, Patrícia organization: Federal University of ABC, São Bernardo, São Paulo, Brazil – sequence: 3 givenname: Helder Prado surname: Santos fullname: Santos, Helder Prado organization: University of São Paulo (USP), São Paulo, Brazil – sequence: 4 givenname: Marcos surname: dos Santos fullname: dos Santos, Marcos organization: Military Institute of Engineering (IME), Rio de Janeiro, Brazil – sequence: 5 givenname: Igor Pinheiro surname: de Araújo Costa fullname: de Araújo Costa, Igor Pinheiro email: costa_igor@id.uff.br organization: Naval Systems Analysis Center (CASNAV), Rio de Janeiro, Brazil – sequence: 6 givenname: Wilson Tarantin surname: Junior fullname: Junior, Wilson Tarantin organization: University of São Paulo (USP), São Paulo, Brazil |
| BookMark | eNqNkcFu1DAQhq2qSJTSJ-DiF9jFk2Tj-MChWgpU2opKBa6Wa082s3LiyHa22gfgvUm7HKoeoHP5RyN9M9I379jpEAZk7AOIJQioP-6WYww2LQtRFEuAOesTdgaNlAuxEur0Wf-WXaS0E3OVTaNAnrHfa29SopasyRQGfouxDbE3g0V-tTd-Oo7bGHp-M_lMHvfo-SZsKWWy3AyO303jGGLmv9DmEPmNsR0NyC_9NkTKXZ947mKYth2_o37yJqPjn002nOZ7h9yF4T170xqf8OJvnrOfX65-rL8tNt-_Xq8vNwtb1GW9QGju5Uq50iiUpi1WJTqwUElEW7VQ3SvpCpDSVbapnXVQqFKhULZoRA2iLM9Zddw7DaM5PBjv9RipN_GgQehHm3qnn2zqR5saYM56xtQRszGkFLHVlvKTmBwN-f-w5Qv2dRc_HSmcbewJo06WcH6Kozhb1i7QP_k_59Kn8w |
| CitedBy_id | crossref_primary_10_3390_axioms12030251 crossref_primary_10_1016_j_procs_2023_07_048 |
| Cites_doi | 10.1080/19475705.2017.1407368 10.7763/IJMLC.2015.V5.544 10.1108/RAUSP-04-2019-0059 10.1198/004017005000000661 10.1007/BF00994018 10.1016/j.jclinepi.2009.11.020 10.1109/ACCESS.2020.3001149 10.1007/s13042-012-0068-x 10.1080/00273171.2018.1465809 10.1016/j.aca.2010.03.030 |
| ContentType | Journal Article |
| Copyright | 2022 |
| Copyright_xml | – notice: 2022 |
| DBID | 6I. AAFTH AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1016/j.procs.2022.11.206 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1877-0509 |
| EndPage | 519 |
| ExternalDocumentID | 10.1016/j.procs.2022.11.206 10_1016_j_procs_2022_11_206 S1877050922019160 |
| GroupedDBID | --K 0R~ 0SF 1B1 457 5VS 6I. 71M AACTN AAEDT AAEDW AAFTH AAIKJ AALRI AAQFI AAXUO ABMAC ACGFS ADBBV ADEZE AEXQZ AFTJW AGHFR AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ E3Z EBS EJD EP3 FDB FNPLU HZ~ IXB KQ8 M41 M~E NCXOZ O-L O9- OK1 P2P RIG ROL SES SSZ AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO ADVLN AEUPX AFPUW AIGII AKBMS AKRWK AKYEP CITATION ~HD ADTOC UNPAY |
| ID | FETCH-LOGICAL-c2636-e18b759d3a9e7af253ed1c147eec4f14b97d2177d4c86dcd12939e09c28061033 |
| IEDL.DBID | UNPAY |
| ISSN | 1877-0509 |
| IngestDate | Tue Aug 19 17:57:16 EDT 2025 Wed Oct 01 02:36:05 EDT 2025 Thu Apr 24 23:02:57 EDT 2025 Wed May 17 00:05:00 EDT 2023 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Logistic Models Multilevel Models Support Vector Machine Simulation Python |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2636-e18b759d3a9e7af253ed1c147eec4f14b97d2177d4c86dcd12939e09c28061033 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1016/j.procs.2022.11.206 |
| PageCount | 9 |
| ParticipantIDs | unpaywall_primary_10_1016_j_procs_2022_11_206 crossref_citationtrail_10_1016_j_procs_2022_11_206 crossref_primary_10_1016_j_procs_2022_11_206 elsevier_sciencedirect_doi_10_1016_j_procs_2022_11_206 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Procedia computer science |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Raudenbush, Bryk (bib0002) 2002; 1 De Leeuw, Meijer, Goldstein (bib0003) 2008 Gelman (bib0022) 2006; 48 Luts, Ojeda, Van de Plas, De Moor, Van Huffel, Suykens (bib0007) 2010; 665 D. Westreicha, J. Lesslerc, and M. J. Funka, “Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression,” Journal of Clinical Epidemiology, vol. 63, pp. 826-833. Li, Haq, Din, Khan, Khan, Saboor (bib0011) 2020; 8 Durrant, Vassallo, Smith (bib0016) 2018; 53 Westreich, Lessler, Funk (bib0012) 2010; 63 Fávero, Belfiore (bib0001) 2019 Khanna, Sahu, Baths, Deshpande (bib0009) 2015; 5 Hair Jr, Fávero (bib0015) 2019; 54 Fávero, Belfiore (bib0017) 2017 G. Khekare, L. K. Bramhane, C. Dhule, R. Agrawal, and A. V. Turukmane, “Testing and analysis of predictive capabilities of machine learning algorithms,” in E. H. Houssein, M. A. Elaziz, D. Oliva, and L. Abualigah (eds) Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Studies in Computational Intelligence, vol. 1038. Springer. Chand, P, Krishna, Pilliy, Govil (bib0013) 2016 Goldstein (bib0004) 2011 Chao, Yu, Cheng, Kuo (bib0010) 2014; 38 Boser, Guyon, Vapnik (bib0019) 1992 Musa (bib0006) 2013; 4 Kalantar, Pradhan, Naghibi, Motevalli, Mansor (bib0005) 2018; 9 Cortes, Vapnik (bib0018) 1995; 20 James, Witten, Hastie, Tibshirani (bib0021) 2021 Fávero, Almeida (bib0014) 2011; 72 Fávero (10.1016/j.procs.2022.11.206_bib0017) 2017 Hair Jr (10.1016/j.procs.2022.11.206_bib0015) 2019; 54 Gelman (10.1016/j.procs.2022.11.206_bib0022) 2006; 48 Luts (10.1016/j.procs.2022.11.206_bib0007) 2010; 665 James (10.1016/j.procs.2022.11.206_bib0021) 2021 De Leeuw (10.1016/j.procs.2022.11.206_bib0003) 2008 Khanna (10.1016/j.procs.2022.11.206_bib0009) 2015; 5 Kalantar (10.1016/j.procs.2022.11.206_bib0005) 2018; 9 Fávero (10.1016/j.procs.2022.11.206_bib0014) 2011; 72 Raudenbush (10.1016/j.procs.2022.11.206_bib0002) 2002; 1 Musa (10.1016/j.procs.2022.11.206_bib0006) 2013; 4 Li (10.1016/j.procs.2022.11.206_bib0011) 2020; 8 Goldstein (10.1016/j.procs.2022.11.206_bib0004) 2011 10.1016/j.procs.2022.11.206_bib0008 Chand (10.1016/j.procs.2022.11.206_bib0013) 2016 Westreich (10.1016/j.procs.2022.11.206_bib0012) 2010; 63 Durrant (10.1016/j.procs.2022.11.206_bib0016) 2018; 53 10.1016/j.procs.2022.11.206_bib0020 Boser (10.1016/j.procs.2022.11.206_bib0019) 1992 Chao (10.1016/j.procs.2022.11.206_bib0010) 2014; 38 Fávero (10.1016/j.procs.2022.11.206_bib0001) 2019 Cortes (10.1016/j.procs.2022.11.206_bib0018) 1995; 20 |
| References_xml | – volume: 54 start-page: 459 year: 2019 end-page: 489 ident: bib0015 article-title: Multilevel modeling for longitudinal data: concepts and applications publication-title: RAUSP Management Journal – start-page: 15 year: 2021 end-page: 57 ident: bib0021 article-title: Statistical learning publication-title: An introduction to statistical learning – volume: 4 start-page: 13 year: 2013 end-page: 24 ident: bib0006 article-title: Comparative study on classification performance between support vector machine and logistic regression publication-title: International Journal of Machine Learning and Cybernetics – volume: 38 start-page: 1 year: 2014 end-page: 7 ident: bib0010 article-title: Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree publication-title: Journal of Medical Systems – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: bib0018 article-title: Support-vector networks publication-title: Machine Learning – year: 2008 ident: bib0003 article-title: Handbook of multilevel analysis – volume: 9 start-page: 49 year: 2018 end-page: 69 ident: bib0005 article-title: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN) publication-title: Geomatics, Natural Hazards and Risk – reference: D. Westreicha, J. Lesslerc, and M. J. Funka, “Propensity score estimation: neural networks, support vector machines, decision trees (CART), and meta-classifiers as alternatives to logistic regression,” Journal of Clinical Epidemiology, vol. 63, pp. 826-833. – volume: 53 start-page: 595 year: 2018 end-page: 611 ident: bib0016 article-title: Assessment of multiple membership multilevel models: an application to interviewer effects on nonresponse publication-title: Multivariate Behavioral Research – start-page: 144 year: 1992 end-page: 152 ident: bib0019 article-title: A training algorithm for optimal margin classifiers publication-title: Proceedings of the Annual Workshop on Computational Learning Theory – volume: 665 start-page: 129 year: 2010 end-page: 145 ident: bib0007 article-title: A tutorial on support vector machine-base methods for classification problems in chemometrics publication-title: Analytica Chimica Acta – volume: 5 start-page: 414 year: 2015 end-page: 419 ident: bib0009 article-title: Comparative study of classification techniques (SVM, logistic regression and neural networks) to predict the prevalence of heart disease publication-title: International Journal of Machine Learning and Computing – volume: 63 start-page: 826 year: 2010 end-page: 833 ident: bib0012 article-title: Propensity score estimation: machine learning and classification methods as alternatives to logistic regression publication-title: Journal of Clinical Epidemiology – volume: 72 start-page: 97 year: 2011 end-page: 141 ident: bib0014 article-title: O comportamento dos índices de ações em países emergentes: uma análise com dados em painel e modelos hierárquicos publication-title: Brazilian Review of Statistics – volume: 48 start-page: 432 year: 2006 end-page: 435 ident: bib0022 article-title: Multilevel (hierarchical) modeling: what it can and cannot do publication-title: Technometrics – year: 2019 ident: bib0001 article-title: Data science for business and decision making – year: 2017 ident: bib0017 article-title: multivariada com Excel®, SPSS® e Stata® – reference: G. Khekare, L. K. Bramhane, C. Dhule, R. Agrawal, and A. V. Turukmane, “Testing and analysis of predictive capabilities of machine learning algorithms,” in E. H. Houssein, M. A. Elaziz, D. Oliva, and L. Abualigah (eds) Integrating Meta-Heuristics and Machine Learning for Real-World Optimization Problems. Studies in Computational Intelligence, vol. 1038. Springer. – volume: 8 start-page: 107562 year: 2020 end-page: 107582 ident: bib0011 article-title: Heart disease identification method using machine learning classification in e-healthcare publication-title: IEEE Access – year: 2011 ident: bib0004 article-title: Multilevel statistical models – volume: 1 year: 2002 ident: bib0002 publication-title: Hierarchical linear models: Applications and data analysis methods – year: 2016 ident: bib0013 article-title: A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection publication-title: International Conference on Advances in Computing, Communication, & Automation – volume: 9 start-page: 49 issue: 1 year: 2018 ident: 10.1016/j.procs.2022.11.206_bib0005 article-title: Assessment of the effects of training data selection on the landslide susceptibility mapping: a comparison between support vector machine (SVM), logistic regression (LR) and artificial neural networks (ANN) publication-title: Geomatics, Natural Hazards and Risk doi: 10.1080/19475705.2017.1407368 – volume: 5 start-page: 414 issue: 5 year: 2015 ident: 10.1016/j.procs.2022.11.206_bib0009 article-title: Comparative study of classification techniques (SVM, logistic regression and neural networks) to predict the prevalence of heart disease publication-title: International Journal of Machine Learning and Computing doi: 10.7763/IJMLC.2015.V5.544 – volume: 54 start-page: 459 issue: 4 year: 2019 ident: 10.1016/j.procs.2022.11.206_bib0015 article-title: Multilevel modeling for longitudinal data: concepts and applications publication-title: RAUSP Management Journal doi: 10.1108/RAUSP-04-2019-0059 – volume: 48 start-page: 432 issue: 3 year: 2006 ident: 10.1016/j.procs.2022.11.206_bib0022 article-title: Multilevel (hierarchical) modeling: what it can and cannot do publication-title: Technometrics doi: 10.1198/004017005000000661 – year: 2008 ident: 10.1016/j.procs.2022.11.206_bib0003 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.procs.2022.11.206_bib0018 article-title: Support-vector networks publication-title: Machine Learning doi: 10.1007/BF00994018 – year: 2019 ident: 10.1016/j.procs.2022.11.206_bib0001 – ident: 10.1016/j.procs.2022.11.206_bib0008 doi: 10.1016/j.jclinepi.2009.11.020 – volume: 63 start-page: 826 issue: 8 year: 2010 ident: 10.1016/j.procs.2022.11.206_bib0012 article-title: Propensity score estimation: machine learning and classification methods as alternatives to logistic regression publication-title: Journal of Clinical Epidemiology doi: 10.1016/j.jclinepi.2009.11.020 – start-page: 15 year: 2021 ident: 10.1016/j.procs.2022.11.206_bib0021 article-title: Statistical learning – volume: 1 year: 2002 ident: 10.1016/j.procs.2022.11.206_bib0002 – year: 2017 ident: 10.1016/j.procs.2022.11.206_bib0017 – ident: 10.1016/j.procs.2022.11.206_bib0020 – volume: 38 start-page: 1 issue: 106 year: 2014 ident: 10.1016/j.procs.2022.11.206_bib0010 article-title: Construction the model on the breast cancer survival analysis use support vector machine, logistic regression and decision tree publication-title: Journal of Medical Systems – volume: 8 start-page: 107562 year: 2020 ident: 10.1016/j.procs.2022.11.206_bib0011 article-title: Heart disease identification method using machine learning classification in e-healthcare publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001149 – year: 2016 ident: 10.1016/j.procs.2022.11.206_bib0013 article-title: A comparative analysis of SVM and its stacking with other classification algorithm for intrusion detection – volume: 72 start-page: 97 issue: 1 year: 2011 ident: 10.1016/j.procs.2022.11.206_bib0014 article-title: O comportamento dos índices de ações em países emergentes: uma análise com dados em painel e modelos hierárquicos publication-title: Brazilian Review of Statistics – start-page: 144 year: 1992 ident: 10.1016/j.procs.2022.11.206_bib0019 article-title: A training algorithm for optimal margin classifiers – volume: 4 start-page: 13 year: 2013 ident: 10.1016/j.procs.2022.11.206_bib0006 article-title: Comparative study on classification performance between support vector machine and logistic regression publication-title: International Journal of Machine Learning and Cybernetics doi: 10.1007/s13042-012-0068-x – year: 2011 ident: 10.1016/j.procs.2022.11.206_bib0004 – volume: 53 start-page: 595 year: 2018 ident: 10.1016/j.procs.2022.11.206_bib0016 article-title: Assessment of multiple membership multilevel models: an application to interviewer effects on nonresponse publication-title: Multivariate Behavioral Research doi: 10.1080/00273171.2018.1465809 – volume: 665 start-page: 129 year: 2010 ident: 10.1016/j.procs.2022.11.206_bib0007 article-title: A tutorial on support vector machine-base methods for classification problems in chemometrics publication-title: Analytica Chimica Acta doi: 10.1016/j.aca.2010.03.030 |
| SSID | ssj0000388917 |
| Score | 2.261307 |
| Snippet | This paper analyzes the performance of multilevel logistic and support vector machine algorithms when the objective is the stratification of the sample into... |
| SourceID | unpaywall crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 511 |
| SubjectTerms | Logistic Models Multilevel Models Python Simulation Support Vector Machine |
| SummonAdditionalLinks | – databaseName: Elsevier Free Content dbid: IXB link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEA7iRS--xTdz8GjYNs0m7dEnKiqCD_ZW8qpWunXRFfEH-L_NZNtVD4p4Ki0ZUjLpPNKZ7yNkO2K26Aqe0oJHjvJYKpoVSlKTqDRTVhutsMH5_EIc3_DTXrc3QfbbXhgsq2xs_8imB2vdPOk0q9kZlGXnKk6lRPQS5n2YD3Iwb094ivQNJ7298TkLop1kgXgXx1MUaMGHQpkX-gmE7WbMWw9_FT85qKmXeqDeXlVVfXFAR3NkpokcYXf0cvNkwtULZLZlZYDmI10k74HnEiuAwqLD5WdrAByOsb0B-0ogtN9WWDcEZ6EVqDSgagvI9enjcrgNZ_pwHiouHexWd49P5fC-_wwNvw9clX0kAHMWDtRQQenne0M4giVyc3R4vX9MG7IFaphIBHVxqmU3s4nKnFQF6ybOxibm0jnDi5jrTFqfvkjLTSqssRgnZC7KDP6ajaMkWSaT9WPtVghwy7yA0D6ZK7jTNtWRkT6O5MxKpXSxSli7wrlpkMiREKPK25KzhzyoJUe1-BzFX8Uq2RkLDUZAHL8PF63q8m_7Kfeu4ndBOlb0XyZa--9E62Qa70bHORtkcvj04jZ9gDPUW2EHfwBfS_wW priority: 102 providerName: Elsevier |
| Title | Classification Performance Evaluation from Multilevel Logistic and Support Vector Machine Algorithms through Simulated Data in Python |
| URI | https://dx.doi.org/10.1016/j.procs.2022.11.206 https://doi.org/10.1016/j.procs.2022.11.206 |
| UnpaywallVersion | publishedVersion |
| Volume | 214 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: KQ8 dateStart: 20100501 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVESC databaseName: Elsevier Free Content customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: IXB dateStart: 20100501 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1877-0509 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000388917 issn: 1877-0509 databaseCode: AKRWK dateStart: 20100501 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwELbK7qEnaEsrtmpXc-BYozwcOzluWxCUhxCwsD1FfgW2DVkEWVXbe_83Hm-yFNQiOPnikSN7bH8Tz3wfIetBZIqEs5QWLLCUhULSrJCC6limmTRKK4kFzvsHfHvIvo2SUcOzjbUw997vfR4WHuTIqx1Fbnu7li-RLk8c8O6Q7vDgcPAdQ6pUCIpMJi2v0L8t_3f3vJxWV3L2S5blX3fL1sq8aPvGUxJiSsnPjWmtNvTvB4SNT_zsV2S5wZgwmDvFa_LCVm_ISqvfAM12XiV_vCIm5gr55YHDuyIC2FywgANWoIAv1C0xwwj2fNHQWIOsDKAqqEPwcOr__sO-z820MCjPJ9fj-uLyBholIDgeX6JUmDXwVdYSxm68GRIXvCXDrc2TL9u0kWWgOuIxpzZMlUgyE8vMCllESWxNqEMmrNWsCJnKhHGBjjBMp9xog4gis0Gm8RE3DOL4HelUk8quEWAmcgZcubCvYFaZVAVaOMTJIiOkVEWPRO2C5brhLEfpjDJvk9N-5H6ic5xoF824lvfIp4XR1Zyy4_HuvPWEvEEdczSRu0V93JAu_OYpA71_Zv8PpFNfT-1HB3pq1Sfdwe7R2W6fLO2MPvcb178FF2AGDg |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwELYQHOBCoS2C8ppDj7U2cRw7OfLUAruoElDtLfIrEBTCChZV_ID-bzzeZEsPRYiTpSQjRx5nHs7M9xHyPWK2TAXPaMkjR3ksFc1LJalJVJYrq41W2OA8PBf9K346Skdz5KDrhcGyytb2T216sNbtlV67mr1xVfUu4kxKRC9h3of5IMfn7Qs89dEJdvGN9mcHLQh3kgfmXRSgKNGhD4U6L3QUiNvNmDcffhT_81CLT81YPf9Wdf3KAx2vkOU2dIS96dutkjnXfCafOloGaL_SL-RPILrEEqCw6vDzb28AHM3AvQEbSyD039ZYOASD0AtUGVCNBST79IE5_AqH-jAMJZcO9urr-4dqcnP3CC3BD1xUd8gA5iwcqomCys_3jHgEX8nV8dHlQZ-2bAvUMJEI6uJMyzS3icqdVCVLE2djE3PpnOFlzHUurc9fpOUmE9ZYDBRyF-UG_83GUZKskfnmvnHrBLhlXkBon82V3Gmb6chIH0hyZqVSutwgrFvhwrRQ5MiIURddzdltEdRSoFp8kuJHsUF-zITGUySOtx8XneqKfzZU4X3F24J0puj3TPTtoxPtksX-5XBQDE7OzzbJEt6Znu1skfnJw5Pb9tHORO-E3fwCIKb_PA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELagHDhRYEF0BWgOHDHKw7GTY8VDCAFCgq7YU-RXdsuGgGgqBHf-Nx43KSwCBCdfPHJkj-1v4pnvI2QriEyRcJbSggWWslBImhVSUB3LNJNGaSWxwPnklB8O2NFlctnwbGMtzH_v9z4PCw9y5NWOIre9XctnyRxPHPDukLnB6Vn_N4ZUqRAUmUxaXqH3LT-6e-bH1a18uJdl-epuOehOirZHnpIQU0r-7YxrtaMf3xA2fvGzF8lCgzGhP3GKJTJjq2XSbfUboNnOP8iTV8TEXCG_PHD2UkQA-1MWcMAKFPCFuiVmGMGxLxoaapCVAVQFdQgefvm__3DiczMt9Ms_N3fD-u_1CBolIDgfXqNUmDWwJ2sJQzfeAxIXrJDBwf7F7iFtZBmojnjMqQ1TJZLMxDKzQhZRElsT6pAJazUrQqYyYVygIwzTKTfaIKLIbJBpfMQNgzheJZ3qprJrBJiJnAFXLuwrmFUmVYEWDnGyyAgpVdEjUbtguW44y1E6o8zb5LSr3E90jhPtohnX8h7ZnhrdTig7Pu_OW0_IG9QxQRO5W9TPDenUb74y0M9v9l8nnfpubDcc6KnVZuPsz9hKA2c |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Classification+Performance+Evaluation+from+Multilevel+Logistic+and+Support+Vector+Machine+Algorithms+through+Simulated+Data+in+Python&rft.jtitle=Procedia+computer+science&rft.au=F%C3%A1vero%2C+Luiz+Paulo&rft.au=Belfiore%2C+Patr%C3%ADcia&rft.au=Santos%2C+Helder+Prado&rft.au=dos+Santos%2C+Marcos&rft.date=2022&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=214&rft.spage=511&rft.epage=519&rft_id=info:doi/10.1016%2Fj.procs.2022.11.206&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_procs_2022_11_206 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon |