Vehicle re-identification using relative entropy representation and gated recurrent unit networks

Vehicle Re-Identification is a prevailing subject in the field of computer vision technologies. Major problem in vehicle re-id is re identifying the vehicle from different viewpoints with occlusion and low illumination. In this work, we have proposed a deep-learning framework which effectively proce...

Full description

Saved in:
Bibliographic Details
Published inProcedia computer science Vol. 171; pp. 508 - 513
Main Authors Gupta, Arpita, Chittrarasu, Abilash, Balakrishnan, Ramadoss
Format Journal Article
LanguageEnglish
Published Elsevier B.V 2020
Subjects
Online AccessGet full text
ISSN1877-0509
1877-0509
DOI10.1016/j.procs.2020.04.054

Cover

Abstract Vehicle Re-Identification is a prevailing subject in the field of computer vision technologies. Major problem in vehicle re-id is re identifying the vehicle from different viewpoints with occlusion and low illumination. In this work, we have proposed a deep-learning framework which effectively processes the latent representation of the vehicle image instances. The key to our framework is GRUs, which is used to determine the relationship between the vehicle image instances over a period of time, without compromising the computational cost, which is also used to encode the data.
AbstractList Vehicle Re-Identification is a prevailing subject in the field of computer vision technologies. Major problem in vehicle re-id is re identifying the vehicle from different viewpoints with occlusion and low illumination. In this work, we have proposed a deep-learning framework which effectively processes the latent representation of the vehicle image instances. The key to our framework is GRUs, which is used to determine the relationship between the vehicle image instances over a period of time, without compromising the computational cost, which is also used to encode the data.
Author Balakrishnan, Ramadoss
Gupta, Arpita
Chittrarasu, Abilash
Author_xml – sequence: 1
  givenname: Arpita
  surname: Gupta
  fullname: Gupta, Arpita
  organization: National Institute of Technology, Tiruchirappalli, 620015, India
– sequence: 2
  givenname: Abilash
  surname: Chittrarasu
  fullname: Chittrarasu, Abilash
  organization: National Institute of Technology, Tiruchirappalli, 620015, India
– sequence: 3
  givenname: Ramadoss
  surname: Balakrishnan
  fullname: Balakrishnan, Ramadoss
  email: brama@nitt.edu
  organization: National Institute of Technology, Tiruchirappalli, 620015, India
BookMark eNqFkL9OwzAQhy1UJErpE7DkBRLOcf7UAwOqgCJVYgFWy7lciktwIjst6tvjEgbEAF7su5-_k-47ZxPbWWLskkPCgRdX26R3HfokhRQSyBLIsxM25YuyjCEHOfnxPmNz77cQjlgsJC-nTL_Qq8GWIkexqckOpjGoB9PZaOeN3YR-G8o9RSFzXX8Ijd6RD9X4S9s62uiB6hDgzrkQRDtrhsjS8NG5N3_BThvdepp_3zP2fHf7tFzF68f7h-XNOsa0EFmMvKozLCpR8axKhS44EfE8LxFFISrdVBK5roEIhQRBaSoFNDpFWQFwLsSMiXEuus57R43qnXnX7qA4qKMotVVfotRRlIJMBVGBkr8oNONmg9Om_Ye9HlkKa-0NOeXRkEWqTXAxqLozf_Kf8FGKrg
CitedBy_id crossref_primary_10_1007_s00521_021_06658_4
Cites_doi 10.1016/j.sigpro.2008.09.013
10.1109/DT.2017.8012146
10.1109/TMM.2017.2751966
10.1109/ICCV.2017.210
10.1016/j.cviu.2019.03.001
10.3390/s16060825
10.1109/ICPR.2018.8545514
10.1109/CVPRW.2018.00024
10.1007/s11263-015-0816-y
10.1007/978-3-319-46475-6_53
10.1016/j.patcog.2019.01.008
10.1109/34.824819
10.1109/CVPR.2018.00679
10.1109/TCSVT.2017.2734740
10.1109/CVPR.2015.7299023
10.1109/ICCV.2017.49
10.1109/ICME.2016.7553002
10.1109/TITS.2015.2430892
ContentType Journal Article
Copyright 2020
Copyright_xml – notice: 2020
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.procs.2020.04.054
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1877-0509
EndPage 513
ExternalDocumentID 10_1016_j_procs_2020_04_054
S1877050920310218
GroupedDBID --K
0R~
0SF
1B1
457
5VS
6I.
71M
AACTN
AAEDT
AAEDW
AAFTH
AAIKJ
AALRI
AAQFI
AAXUO
ABMAC
ACGFS
ADBBV
ADEZE
AEXQZ
AFTJW
AGHFR
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
E3Z
EBS
EJD
EP3
FDB
FNPLU
HZ~
IXB
KQ8
M41
M~E
NCXOZ
O-L
O9-
OK1
P2P
RIG
ROL
SES
SSZ
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEUPX
AFPUW
AIGII
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c2634-c1bd4c6b3b14b23a61eee1557cc363bafb9c1ad0eec3903e22930fa2c9b001133
IEDL.DBID IXB
ISSN 1877-0509
IngestDate Tue Jul 01 02:53:35 EDT 2025
Thu Apr 24 22:53:46 EDT 2025
Tue May 16 22:33:23 EDT 2023
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Vehicle Re-Identification
GRU
VAE
Deep Learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2634-c1bd4c6b3b14b23a61eee1557cc363bafb9c1ad0eec3903e22930fa2c9b001133
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S1877050920310218
PageCount 6
ParticipantIDs crossref_primary_10_1016_j_procs_2020_04_054
crossref_citationtrail_10_1016_j_procs_2020_04_054
elsevier_sciencedirect_doi_10_1016_j_procs_2020_04_054
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020
2020-00-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – year: 2020
  text: 2020
PublicationDecade 2020
PublicationTitle Procedia computer science
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
Liu, Xinchen, Wu Liu, Tao Mei, and Huadong Ma. A deep learning-based approach to progressive vehicle re-identification for urban surveillance. In European Conference on Computer Vision, pp. 869-884. Springer, Cham, 2016.
Prinsloo, Malekian (bib0008) 2016; 16
Khan, Ullah (bib0007) 2019; 182
Liu, X., Liu, W., Ma, H., & Fu, H. (2016, July). Large-scale vehicle re-identification in urban surveillance videos. In 2016 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE.
Zhou, Shao (bib00020) 2017; 1
bib0006
Gazzah, Sami, N. Essoukri, and B. Amara. "Vehicle Re-identification in Camera Networks: A Review and New Perspectives." In Proceedings of the ACIT’2017 The International Arab Conference on Information Technology, Yassmine Hammamet, Tunisia, pp. 22-24. 2017.
Hu, Bai, Qi, Chen, Xue, Mei (bib00012) 2015; 16
Zhu, Zeng, Liao, Lei, Cai, Zheng (bib0004) 2017; 28
Zhou, Y., & Shao, L. (2018). Aware attentive multi-view inference for vehicle re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6489-6498).
Jain, Duin, Mao (bib0002) 2000; 22
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Berg (bib00015) 2015; 115
Y. Zhouy and L. Shao. (2018). Viewpoint-aware attentive multi-view inference for vehicle re-identification. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Yang, L., Luo, P., Change Loy, C., & Tang, X. (2015). A large-scale car dataset for fine-grained categorization and verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3973-3981).
Zhu, J., Zeng, H., Huang, J., Liao, S., Lei, Z., Cai, C., & Zheng, L. (2019). Vehicle re-identification using quadruple directional deep learning features. IEEE Transactions on Intelligent Transportation Systems.
Wang, Z., Tang, L., Liu, X., Yao, Z., Yi, S., Shao, J... & Wang, X. (2017). Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 379-387).
bib0001
Alfasly, S.A.S., Hu, Y., Liang, T., Jin, X., Zhao, Q., & Liu, B. (2019). Variational Representation Learning for Vehicle Re-Identification. arXiv preprint arXiv:1905.02343.
Shen, Y., Xiao, T., Li, H., Yi, S., & Wang, X. (2017). Learning deep neural networks for vehicle re-id with visual-spatio-temporal path proposals. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1900-1909).
Liu, Liu, Mei, Ma (bib0009) 2017; 20
Bashir, Shahzad, Fraz (bib00023) 2019; 90
Wu, C.W., Liu, C.T., Chiang, C.E., Tu, W.C., & Chien, S.Y. (2018). Vehicle re-identification with the space-time prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 121-128).
Gianfelici, Turchetti, Crippa (bib0003) 2009; 89
10.1016/j.procs.2020.04.054_bib00018
10.1016/j.procs.2020.04.054_bib00017
Prinsloo (10.1016/j.procs.2020.04.054_bib0008) 2016; 16
Liu (10.1016/j.procs.2020.04.054_bib0009) 2017; 20
10.1016/j.procs.2020.04.054_bib00019
10.1016/j.procs.2020.04.054_bib00014
10.1016/j.procs.2020.04.054_bib00013
10.1016/j.procs.2020.04.054_bib00024
10.1016/j.procs.2020.04.054_bib00016
Khan (10.1016/j.procs.2020.04.054_bib0007) 2019; 182
Hu (10.1016/j.procs.2020.04.054_bib00012) 2015; 16
Gianfelici (10.1016/j.procs.2020.04.054_bib0003) 2009; 89
Zhu (10.1016/j.procs.2020.04.054_bib0004) 2017; 28
Jain (10.1016/j.procs.2020.04.054_bib0002) 2000; 22
Russakovsky (10.1016/j.procs.2020.04.054_bib00015) 2015; 115
10.1016/j.procs.2020.04.054_bib0006
10.1016/j.procs.2020.04.054_bib00010
Zhou (10.1016/j.procs.2020.04.054_bib00020) 2017; 1
10.1016/j.procs.2020.04.054_bib00021
10.1016/j.procs.2020.04.054_bib0005
10.1016/j.procs.2020.04.054_bib00011
10.1016/j.procs.2020.04.054_bib00022
Bashir (10.1016/j.procs.2020.04.054_bib00023) 2019; 90
10.1016/j.procs.2020.04.054_bib0001
References_xml – reference: Zhu, J., Zeng, H., Huang, J., Liao, S., Lei, Z., Cai, C., & Zheng, L. (2019). Vehicle re-identification using quadruple directional deep learning features. IEEE Transactions on Intelligent Transportation Systems.
– reference: Gazzah, Sami, N. Essoukri, and B. Amara. "Vehicle Re-identification in Camera Networks: A Review and New Perspectives." In Proceedings of the ACIT’2017 The International Arab Conference on Information Technology, Yassmine Hammamet, Tunisia, pp. 22-24. 2017.
– reference: Shen, Y., Xiao, T., Li, H., Yi, S., & Wang, X. (2017). Learning deep neural networks for vehicle re-id with visual-spatio-temporal path proposals. In Proceedings of the IEEE International Conference on Computer Vision (pp. 1900-1909).
– reference: Wu, C.W., Liu, C.T., Chiang, C.E., Tu, W.C., & Chien, S.Y. (2018). Vehicle re-identification with the space-time prior. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (pp. 121-128).
– volume: 16
  start-page: 825
  year: 2016
  ident: bib0008
  article-title: Accurate vehicle location system using RFID, an internet of things approach
  publication-title: Sensors
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib00015
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International journal of computer vision
– volume: 90
  start-page: 52
  year: 2019
  end-page: 65
  ident: bib00023
  article-title: Vr-proud: Vehicle re-identification using progressive unsupervised deep architecture
  publication-title: Pattern Recognition
– reference: Y. Zhouy and L. Shao. (2018). Viewpoint-aware attentive multi-view inference for vehicle re-identification. In 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.
– ident: bib0006
– reference: Zhou, Y., & Shao, L. (2018). Aware attentive multi-view inference for vehicle re-identification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 6489-6498).
– volume: 16
  start-page: 2925
  year: 2015
  end-page: 2934
  ident: bib00012
  article-title: Vehicle color recognition with spatial pyramid deep learning
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– reference: Yang, L., Luo, P., Change Loy, C., & Tang, X. (2015). A large-scale car dataset for fine-grained categorization and verification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 3973-3981).
– reference: Liu, X., Liu, W., Ma, H., & Fu, H. (2016, July). Large-scale vehicle re-identification in urban surveillance videos. In 2016 IEEE International Conference on Multimedia and Expo (ICME) (pp. 1-6). IEEE.
– volume: 20
  start-page: 645
  year: 2017
  end-page: 658
  ident: bib0009
  article-title: Provid: Progressive and multimodal vehicle reidentification for large-scale urban surveillance
  publication-title: IEEE Transactions on Multimedia
– ident: bib0001
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: bib0002
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
– volume: 89
  start-page: 422
  year: 2009
  end-page: 437
  ident: bib0003
  article-title: A non-probabilistic recognizer of stochastic signals based on KLT
  publication-title: Signal Processing
– reference: Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T... & Adam, H. (2017). Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861.
– volume: 182
  start-page: 50
  year: 2019
  end-page: 63
  ident: bib0007
  article-title: A survey of advances in vision-based vehicle re-identification
  publication-title: Computer Vision and Image Understanding
– reference: Liu, Xinchen, Wu Liu, Tao Mei, and Huadong Ma. A deep learning-based approach to progressive vehicle re-identification for urban surveillance. In European Conference on Computer Vision, pp. 869-884. Springer, Cham, 2016.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib00020
  article-title: Cross-View GAN Based Vehicle Generation for Re-identification
  publication-title: BMVC
– reference: Wang, Z., Tang, L., Liu, X., Yao, Z., Yi, S., Shao, J... & Wang, X. (2017). Orientation invariant feature embedding and spatial temporal regularization for vehicle re-identification. In Proceedings of the IEEE International Conference on Computer Vision (pp. 379-387).
– volume: 28
  start-page: 3183
  year: 2017
  end-page: 3193
  ident: bib0004
  article-title: Deep hybrid similarity learning for person re-identification
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
– reference: Alfasly, S.A.S., Hu, Y., Liang, T., Jin, X., Zhao, Q., & Liu, B. (2019). Variational Representation Learning for Vehicle Re-Identification. arXiv preprint arXiv:1905.02343.
– volume: 89
  start-page: 422
  issue: 4
  year: 2009
  ident: 10.1016/j.procs.2020.04.054_bib0003
  article-title: A non-probabilistic recognizer of stochastic signals based on KLT
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2008.09.013
– ident: 10.1016/j.procs.2020.04.054_bib0005
  doi: 10.1109/DT.2017.8012146
– volume: 20
  start-page: 645
  issue: 3
  year: 2017
  ident: 10.1016/j.procs.2020.04.054_bib0009
  article-title: Provid: Progressive and multimodal vehicle reidentification for large-scale urban surveillance
  publication-title: IEEE Transactions on Multimedia
  doi: 10.1109/TMM.2017.2751966
– ident: 10.1016/j.procs.2020.04.054_bib00018
  doi: 10.1109/ICCV.2017.210
– volume: 182
  start-page: 50
  year: 2019
  ident: 10.1016/j.procs.2020.04.054_bib0007
  article-title: A survey of advances in vision-based vehicle re-identification
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2019.03.001
– volume: 16
  start-page: 825
  issue: 6
  year: 2016
  ident: 10.1016/j.procs.2020.04.054_bib0008
  article-title: Accurate vehicle location system using RFID, an internet of things approach
  publication-title: Sensors
  doi: 10.3390/s16060825
– ident: 10.1016/j.procs.2020.04.054_bib0001
  doi: 10.1109/ICPR.2018.8545514
– ident: 10.1016/j.procs.2020.04.054_bib00011
  doi: 10.1109/CVPRW.2018.00024
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.procs.2020.04.054_bib00015
  article-title: Imagenet large scale visual recognition challenge
  publication-title: International journal of computer vision
  doi: 10.1007/s11263-015-0816-y
– ident: 10.1016/j.procs.2020.04.054_bib00019
  doi: 10.1007/978-3-319-46475-6_53
– volume: 90
  start-page: 52
  year: 2019
  ident: 10.1016/j.procs.2020.04.054_bib00023
  article-title: Vr-proud: Vehicle re-identification using progressive unsupervised deep architecture
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2019.01.008
– ident: 10.1016/j.procs.2020.04.054_bib00024
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  ident: 10.1016/j.procs.2020.04.054_bib0002
  article-title: Statistical pattern recognition: A review
  publication-title: IEEE Transactions on pattern analysis and machine intelligence
  doi: 10.1109/34.824819
– ident: 10.1016/j.procs.2020.04.054_bib00022
  doi: 10.1109/CVPR.2018.00679
– ident: 10.1016/j.procs.2020.04.054_bib0006
– volume: 28
  start-page: 3183
  issue: 11
  year: 2017
  ident: 10.1016/j.procs.2020.04.054_bib0004
  article-title: Deep hybrid similarity learning for person re-identification
  publication-title: IEEE Transactions on Circuits and Systems for Video Technology
  doi: 10.1109/TCSVT.2017.2734740
– ident: 10.1016/j.procs.2020.04.054_bib00016
– volume: 1
  start-page: 1
  year: 2017
  ident: 10.1016/j.procs.2020.04.054_bib00020
  article-title: Cross-View GAN Based Vehicle Generation for Re-identification
  publication-title: BMVC
– ident: 10.1016/j.procs.2020.04.054_bib00010
  doi: 10.1109/CVPR.2018.00679
– ident: 10.1016/j.procs.2020.04.054_bib00013
  doi: 10.1109/CVPR.2015.7299023
– ident: 10.1016/j.procs.2020.04.054_bib00021
  doi: 10.1109/ICCV.2017.49
– ident: 10.1016/j.procs.2020.04.054_bib00014
– ident: 10.1016/j.procs.2020.04.054_bib00017
  doi: 10.1109/ICME.2016.7553002
– volume: 16
  start-page: 2925
  issue: 5
  year: 2015
  ident: 10.1016/j.procs.2020.04.054_bib00012
  article-title: Vehicle color recognition with spatial pyramid deep learning
  publication-title: IEEE Transactions on Intelligent Transportation Systems
  doi: 10.1109/TITS.2015.2430892
SSID ssj0000388917
Score 2.1742318
Snippet Vehicle Re-Identification is a prevailing subject in the field of computer vision technologies. Major problem in vehicle re-id is re identifying the vehicle...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 508
SubjectTerms Deep Learning
GRU
VAE
Vehicle Re-Identification
Title Vehicle re-identification using relative entropy representation and gated recurrent unit networks
URI https://dx.doi.org/10.1016/j.procs.2020.04.054
Volume 171
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI6mceHCGzEeUw4cidYmWdoex8Q0McEBGOxW5VUYQt00NiT-PXGaIpDQDvTW1paqL4ntWvZnhM6p8-lxIiURwhrCVSKIMoYTdyiZdRFdojzZ882tGI759aQ7aaB-3QsDZZXB9lc23Vvr8KQT0OzMp9POfZwmCbCXUGC3dJ7K2WHoKoUmvsnld54F2E4yP3gX5Ako1ORDvswL_ATQdtPIU552-d8O6ofTGeygrRAt4l71QbuoYcs9tF1PYsDhYO4j-WhfQAIvLJmaUADkMcdQ2P6Mq5aVD4shmTubf2JPZlk3HpVYlgZDQs24F7qibMIrd9pxWZWJvx-g8eDqoT8kYXgC0VQwTnSsDNdCMRVzRZkUsbXWBQ-J1kwwJQuV6ViayFrNsohZ6vx-VEiqgSQxdn-uh6hZzkp7hLBbyyTLNNC0pNxdWcpNWri4gBapEYy2EK0Ry3VgFocBF295XUL2mnuYc4A5j3juYG6hi2-leUWssV5c1EuR_9ofuTP96xSP_6t4gjbhrkq3nKLmcrGyZy4AWao22uiN7p5Gbb_TvgDlhNvH
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnZ1LTwIxEIAbxINefBvx2YNHG3bb0t09KpGAAhfBcGu2DxRjFoJg4r-3090lmhgO7nHbSTbTdmZ2Mv0GoWvqfHoYpSkRwhrCVSSIMoYTdyiZdRFdpDzsudcX7SF_GDVGFdQs78JAWWVh-3Ob7q118aZeaLM-m0zqT2EcRUAvoUC3dJ5qA226aCCArd0Z3a0SLYA7SXznXRAgIFHSh3ydFzgK4HbTwDNPG_xvD_XD67T20E4RLuLb_Iv2UcVmB2i3bMWAi5N5iNJn-woz8NySiSkqgLzSMVS2v-D8zsqnxZDNnc6-sKdZljePMpxmBkNGzbgBnTOb8NIdd5zldeIfR2jYuh8026TonkA0FYwTHSrDtVBMhVxRlorQWuuih0hrJphKxyrRYWoCazVLAmapc_zBOKUaKImh-3U9RtVsmtkThN1iRkmigdMSc_ckMTfx2AUGdBwbwWgN0VJjUhdocehw8S7LGrI36dUsQc0y4NKpuYZuVkKznKyxfrool0L-2iDS2f51gqf_FbxCW-1Bryu7nf7jGdqGkTz3co6qi_nSXrhoZKEu_W77Bhfl3Uc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vehicle+re-identification+using+relative+entropy+representation+and+gated+recurrent+unit+networks&rft.jtitle=Procedia+computer+science&rft.au=Gupta%2C+Arpita&rft.au=Chittrarasu%2C+Abilash&rft.au=Balakrishnan%2C+Ramadoss&rft.date=2020&rft.pub=Elsevier+B.V&rft.issn=1877-0509&rft.eissn=1877-0509&rft.volume=171&rft.spage=508&rft.epage=513&rft_id=info:doi/10.1016%2Fj.procs.2020.04.054&rft.externalDocID=S1877050920310218
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1877-0509&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1877-0509&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1877-0509&client=summon