Making Artificial Intelligence Lemonade Out of Data Lemons Adaptation of a Public Apical Echo Database for Creation of a Subxiphoid Visual Estimation Automatic Ejection Fraction Machine Learning Algorithm
A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.OBJECTIVESA paucity of point-of-care...
Saved in:
| Published in | Journal of ultrasound in medicine Vol. 41; no. 8; pp. 2059 - 2069 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.08.2022
|
| Online Access | Get full text |
| ISSN | 0278-4297 1550-9613 1550-9613 |
| DOI | 10.1002/jum.15889 |
Cover
| Summary: | A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.OBJECTIVESA paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.Researchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.METHODSResearchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.The ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.RESULTSThe ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.Researchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases.CONCLUSIONSResearchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ISSN: | 0278-4297 1550-9613 1550-9613 |
| DOI: | 10.1002/jum.15889 |