Making Artificial Intelligence Lemonade Out of Data Lemons Adaptation of a Public Apical Echo Database for Creation of a Subxiphoid Visual Estimation Automatic Ejection Fraction Machine Learning Algorithm

A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.OBJECTIVESA paucity of point-of-care...

Full description

Saved in:
Bibliographic Details
Published inJournal of ultrasound in medicine Vol. 41; no. 8; pp. 2059 - 2069
Main Authors Blaivas, Michael, Blaivas, Laura N., Campbell, Kendra, Thomas, Joseph, Shah, Sonia, Yadav, Kabir, Liu, Yiju Teresa
Format Journal Article
LanguageEnglish
Published 01.08.2022
Online AccessGet full text
ISSN0278-4297
1550-9613
1550-9613
DOI10.1002/jum.15889

Cover

Abstract A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.OBJECTIVESA paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.Researchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.METHODSResearchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.The ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.RESULTSThe ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.Researchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases.CONCLUSIONSResearchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases.
AbstractList A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.OBJECTIVESA paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.Researchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.METHODSResearchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.The ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.RESULTSThe ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.Researchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases.CONCLUSIONSResearchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases.
Author Blaivas, Laura N.
Campbell, Kendra
Blaivas, Michael
Thomas, Joseph
Liu, Yiju Teresa
Shah, Sonia
Yadav, Kabir
Author_xml – sequence: 1
  givenname: Michael
  orcidid: 0000-0001-7196-9765
  surname: Blaivas
  fullname: Blaivas, Michael
  organization: Department of Medicine University of South Carolina School of Medicine Columbia SC USA, Department of Emergency Medicine St. Francis Hospital Columbus GA USA
– sequence: 2
  givenname: Laura N.
  surname: Blaivas
  fullname: Blaivas, Laura N.
  organization: Michigan State University East Lansing MI USA
– sequence: 3
  givenname: Kendra
  surname: Campbell
  fullname: Campbell, Kendra
  organization: Department of Emergency Medicine Harbor‐UCLA Medical Center Torrance CA USA
– sequence: 4
  givenname: Joseph
  surname: Thomas
  fullname: Thomas, Joseph
  organization: Department of Cardiology Harbor‐UCLA Medical Center Torrance CA USA, David Geffen School of Medicine at UCLA Los Angeles CA USA
– sequence: 5
  givenname: Sonia
  surname: Shah
  fullname: Shah, Sonia
  organization: Department of Cardiology Harbor‐UCLA Medical Center Torrance CA USA, David Geffen School of Medicine at UCLA Los Angeles CA USA
– sequence: 6
  givenname: Kabir
  orcidid: 0000-0002-1092-9935
  surname: Yadav
  fullname: Yadav, Kabir
  organization: Department of Emergency Medicine Harbor‐UCLA Medical Center Torrance CA USA, David Geffen School of Medicine at UCLA Los Angeles CA USA
– sequence: 7
  givenname: Yiju Teresa
  surname: Liu
  fullname: Liu, Yiju Teresa
  organization: Department of Emergency Medicine Harbor‐UCLA Medical Center Torrance CA USA, David Geffen School of Medicine at UCLA Los Angeles CA USA
BookMark eNptkD1PwzAQhi1UJNrCwD_ICENa24nthK0qX5WCusAcXZ1z5ZI4xXYG_j2BMiGWe6XT855Oz4xMXO-QkGtGF4xSvjwM3YKJoijPyJQJQdNSsmxCppSrIs15qS7ILITDiFKm8im5e4F36_bJykdrrLbQJhsXsW3tHp3GpMKud9Bgsh1i0pvkHiKcluGSnBtoA1795py8PT68rp_Tavu0Wa-qVHPJY4rGNJwXQiopMRcCpdFaoWpKEMpgk_MGxsG4KXKTSyhVyZuS7lhmAMxOZHNyc7p79P3HgCHWnQ16fBEc9kOouaRcZkVeyBFdnlDt-xA8mlrbCNH2Lnqwbc1o_W2pHi3VP5bGxu2fxtHbDvznP-wXkkBp-g
CitedBy_id crossref_primary_10_3389_fcvm_2024_1418741
crossref_primary_10_3390_diagnostics14151669
crossref_primary_10_1016_j_wfumbo_2023_100014
crossref_primary_10_1016_j_wfumbo_2024_100049
Cites_doi 10.1080/21556660.2021.1930548
10.2147/OAEM.S304153
10.1111/echo.14546
10.1007/s11548-019-02046-5
10.1007/s00428-019-02594-w
10.1002/jum.15527
10.1002/jum.15765
10.1002/jum.15206
10.1097/01.shk.0000186931.02852.5f
10.1002/jum.15270
10.1002/emp2.12206
10.1016/S0196-0644(01)70030-3
10.1016/j.ajem.2004.11.007
10.1001/jamacardio.2021.0185
10.1016/j.procs.2018.08.190
10.1038/s41598-021-99107-0
10.1038/s41597-021-01033-3
10.1111/1754-9485.13261
10.1161/01.CIR.94.3.460
10.1002/emp2.12018
10.1007/s10278-019-00208-0
10.1197/aemj.9.3.186
10.3390/s21165283
10.1016/S0196-0644(05)82784-2
10.12788/jhm.3079
10.1016/S0894-7317(00)90024-5
10.1016/j.media.2021.102139
10.1007/s11897-021-00530-1
10.1111/j.1553-2712.2001.tb00174.x
10.1016/j.echo.2015.06.011
10.1097/01.CCM.0000133017.34137.82
10.1155/2018/4168538
10.1016/j.ultrasmedbio.2020.12.003
10.1016/j.acra.2019.12.024
10.1371/journal.pmed.1002699
10.1002/jum.15413
10.1155/2021/5779740
10.1016/j.pcad.2020.07.003
ContentType Journal Article
Copyright 2021 American Institute of Ultrasound in Medicine.
Copyright_xml – notice: 2021 American Institute of Ultrasound in Medicine.
DBID AAYXX
CITATION
7X8
DOI 10.1002/jum.15889
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1550-9613
EndPage 2069
ExternalDocumentID 10_1002_jum_15889
GroupedDBID ---
.55
.GJ
0R~
18M
1KJ
1OB
1OC
33P
34G
39C
53G
5GY
5RE
5VS
6PF
AAHQN
AAIPD
AAMMB
AAMNL
AANLZ
AAWTL
AAYCA
AAYXX
AAZKR
ABCUV
ABDPE
ABDQB
ABJNI
ABLJU
ABOCM
ABQWH
ACCZN
ACGFO
ACGFS
ACGOF
ACPOU
ACXQS
ADBBV
ADBTR
ADKYN
ADXAS
ADZMN
AEFGJ
AEIGN
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFWVQ
AGHNM
AGXDD
AGYGG
AHBTC
AIDQK
AIDYY
AITYG
AIURR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMYDB
BFHJK
C45
CITATION
DCZOG
DU5
EBS
EJD
F5P
H13
HDBZQ
HGLYW
KQ8
LATKE
LEEKS
LH4
LOXES
LUTES
LYRES
MEWTI
N4W
O9-
OVD
P2P
P2W
RHI
ROL
RS9
SAMSI
SUPJJ
TEORI
TUL
TWZ
USG
WIH
WIJ
WIK
WOHZO
WXSBR
X7M
ZGI
ZVN
ZXP
ZZTAW
7X8
ID FETCH-LOGICAL-c262t-effd22856766e455e6fcc7e7d9a57fed42dad4212f84f46a9792d90b13faafb53
ISSN 0278-4297
1550-9613
IngestDate Fri Sep 05 13:52:56 EDT 2025
Thu Apr 24 23:09:59 EDT 2025
Wed Oct 01 04:57:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c262t-effd22856766e455e6fcc7e7d9a57fed42dad4212f84f46a9792d90b13faafb53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7196-9765
0000-0002-1092-9935
PQID 2602638486
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2602638486
crossref_citationtrail_10_1002_jum_15889
crossref_primary_10_1002_jum_15889
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-00
PublicationDecade 2020
PublicationTitle Journal of ultrasound in medicine
PublicationYear 2022
References e_1_2_7_6_1
e_1_2_7_5_1
Liang Y (e_1_2_7_34_1) 2021; 20
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_28_1
e_1_2_7_29_1
Karp J (e_1_2_7_2_1) 2021; 19
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_37_1
e_1_2_7_38_1
e_1_2_7_39_1
References_xml – ident: e_1_2_7_26_1
  doi: 10.1080/21556660.2021.1930548
– ident: e_1_2_7_4_1
  doi: 10.2147/OAEM.S304153
– ident: e_1_2_7_7_1
  doi: 10.1111/echo.14546
– ident: e_1_2_7_37_1
  doi: 10.1007/s11548-019-02046-5
– ident: e_1_2_7_20_1
  doi: 10.1007/s00428-019-02594-w
– ident: e_1_2_7_22_1
  doi: 10.1002/jum.15527
– ident: e_1_2_7_40_1
  doi: 10.1002/jum.15765
– ident: e_1_2_7_21_1
  doi: 10.1002/jum.15206
– ident: e_1_2_7_24_1
  doi: 10.1097/01.shk.0000186931.02852.5f
– ident: e_1_2_7_33_1
  doi: 10.1002/jum.15270
– ident: e_1_2_7_17_1
  doi: 10.1002/emp2.12206
– ident: e_1_2_7_23_1
  doi: 10.1016/S0196-0644(01)70030-3
– ident: e_1_2_7_29_1
  doi: 10.1016/j.ajem.2004.11.007
– ident: e_1_2_7_6_1
  doi: 10.1001/jamacardio.2021.0185
– ident: e_1_2_7_12_1
  doi: 10.1016/j.procs.2018.08.190
– ident: e_1_2_7_30_1
  doi: 10.1038/s41598-021-99107-0
– ident: e_1_2_7_32_1
  doi: 10.1038/s41597-021-01033-3
– ident: e_1_2_7_35_1
  doi: 10.1111/1754-9485.13261
– ident: e_1_2_7_11_1
  doi: 10.1161/01.CIR.94.3.460
– ident: e_1_2_7_38_1
  doi: 10.1002/emp2.12018
– ident: e_1_2_7_15_1
  doi: 10.1007/s10278-019-00208-0
– ident: e_1_2_7_16_1
  doi: 10.1197/aemj.9.3.186
– ident: e_1_2_7_39_1
  doi: 10.3390/s21165283
– ident: e_1_2_7_28_1
  doi: 10.1016/S0196-0644(05)82784-2
– volume: 19
  start-page: 1
  year: 2021
  ident: e_1_2_7_2_1
  article-title: The role of PoCUS in the assessment of COVID‐19 patients
  publication-title: J Ultrasound
– ident: e_1_2_7_10_1
  doi: 10.12788/jhm.3079
– ident: e_1_2_7_9_1
  doi: 10.1016/S0894-7317(00)90024-5
– ident: e_1_2_7_31_1
  doi: 10.1016/j.media.2021.102139
– ident: e_1_2_7_8_1
  doi: 10.1007/s11897-021-00530-1
– ident: e_1_2_7_27_1
  doi: 10.1111/j.1553-2712.2001.tb00174.x
– ident: e_1_2_7_41_1
  doi: 10.1016/j.echo.2015.06.011
– ident: e_1_2_7_25_1
  doi: 10.1097/01.CCM.0000133017.34137.82
– ident: e_1_2_7_14_1
  doi: 10.1155/2018/4168538
– ident: e_1_2_7_5_1
  doi: 10.1016/j.ultrasmedbio.2020.12.003
– ident: e_1_2_7_18_1
– ident: e_1_2_7_36_1
  doi: 10.1016/j.acra.2019.12.024
– ident: e_1_2_7_13_1
  doi: 10.1371/journal.pmed.1002699
– ident: e_1_2_7_19_1
  doi: 10.1002/jum.15413
– volume: 20
  start-page: 5779740
  year: 2021
  ident: e_1_2_7_34_1
  article-title: Research on classification of fine‐grained rock images based on deep learning
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2021/5779740
– ident: e_1_2_7_3_1
  doi: 10.1016/j.pcad.2020.07.003
SSID ssj0020174
Score 2.34884
Snippet A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 2059
Subtitle Adaptation of a Public Apical Echo Database for Creation of a Subxiphoid Visual Estimation Automatic Ejection Fraction Machine Learning Algorithm
Title Making Artificial Intelligence Lemonade Out of Data Lemons
URI https://www.proquest.com/docview/2602638486
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1550-9613
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020174
  issn: 0278-4297
  databaseCode: KQ8
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMQFQQG1tKCAOCBVWXYdP-LeEA-VxxYhtVJvkWOPpaJlF20SDv31jOM4m2UXqXCJEidxEs-XmbHnRchL5ZQ0ICepFSBThtOvNC8hS4FrTVnJM9vWOpyeipNz9umCX6xch9rokrocmautcSX_Q1VsQ7r6KNl_oGzfKTbgPtIXt0hh3F6LxtO2lJRfYL_sEkF8HGbY_AL4JtrC0demtfe_07UOjdVfdNJmVi915Sst-XWQDbv7TF_-CgFgQ2_79TM-0FofnY62GTeQq9tlLweCb9LADDFYgMC5a3R_i3yK4kQUxVqQm9DxUT5OlQhhppHRsskAUPmQa467rODQHYbqLRvcPWSL_d78GE14nquVCItm-z8kW-9vGHIz0wJvLdpbb5JbFMWAr_Xx-VtvdkJlKKTtjl8UU1GN6ev-qesKzLr8bpWSs_vkXke55E2AxgNyA-a75M60o9suud06-JrqITkOWElWWEmGWEkiVhLESrJwicdKaKwekfMP78_enqRd3YzUUEHrFJyzlOZcSCGAcQ7CGSNBWqW5dGAZtdp6TwCXM8eEVlJRq8blJHNaO_w_H5Od-WIOeyTx6xdGQFlKw5mjWSmdZUpY7Nxr7nSfvIqDUZguqbyvbTIrNoZ8n7zoL_0ZMqlsu-h5HNEC-Zw3Xuk5LJqqoL5WWpazXDy5TkcH5O4Kq4dkp1428BTVx7p81pL8NwG8cK0
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Making+Artificial+Intelligence+Lemonade+Out+of+Data+Lemons&rft.jtitle=Journal+of+ultrasound+in+medicine&rft.au=Blaivas%2C+Michael&rft.au=Blaivas%2C+Laura+N.&rft.au=Campbell%2C+Kendra&rft.au=Thomas%2C+Joseph&rft.date=2022-08-01&rft.issn=0278-4297&rft.eissn=1550-9613&rft.volume=41&rft.issue=8&rft.spage=2059&rft.epage=2069&rft_id=info:doi/10.1002%2Fjum.15889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jum_15889
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-4297&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-4297&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-4297&client=summon