Making Artificial Intelligence Lemonade Out of Data Lemons Adaptation of a Public Apical Echo Database for Creation of a Subxiphoid Visual Estimation Automatic Ejection Fraction Machine Learning Algorithm
A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.OBJECTIVESA paucity of point-of-care...
Saved in:
| Published in | Journal of ultrasound in medicine Vol. 41; no. 8; pp. 2059 - 2069 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
01.08.2022
|
| Online Access | Get full text |
| ISSN | 0278-4297 1550-9613 1550-9613 |
| DOI | 10.1002/jum.15889 |
Cover
| Abstract | A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.OBJECTIVESA paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.Researchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.METHODSResearchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.The ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.RESULTSThe ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.Researchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases.CONCLUSIONSResearchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases. |
|---|---|
| AbstractList | A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.OBJECTIVESA paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left ventricular ejection fraction (EF) from a subxiphoid (SX) window using only apical 4-chamber (A4C) images.Researchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.METHODSResearchers used a long-short-term-memory algorithm for image analysis. Using the Stanford EchoNet-Dynamic database of 10,036 A4C videos with calculated exact EF, researchers tested 3 ML training permeations. First, training on unaltered Stanford A4C videos, then unaltered and 90° clockwise (CW) rotated videos and finally unaltered, 90° rotated and horizontally flipped videos. As a real-world test, we obtained 615 SX videos from Harbor-UCLA (HUCLA) with EF calculations in 5% ranges. Researchers performed 1000 randomizations of EF point estimation within HUCLA EF ranges to compensate for ML and HUCLA EF mismatch, obtaining a mean value for absolute error (MAE) comparison and performed Bland-Altman analyses.The ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.RESULTSThe ML algorithm EF mean MAE was estimated at 23.0, with a range of 22.8-23.3 using unaltered A4C video, mean MAE was 16.7, with a range of 16.5-16.9 using unaltered and 90° CW rotated video, mean MAE was 16.6, with a range of 16.3-16.8 using unaltered, 90° CW rotated and horizontally flipped video training. Bland-Altman showed weakest agreement at 40-45% EF.Researchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases.CONCLUSIONSResearchers successfully adapted unrelated ultrasound window data to train a POCUS ML algorithm with fair MAE using data manipulation to simulate a different ultrasound examination. This may be important for future POCUS algorithm design to help overcome a paucity of POCUS databases. |
| Author | Blaivas, Laura N. Campbell, Kendra Blaivas, Michael Thomas, Joseph Liu, Yiju Teresa Shah, Sonia Yadav, Kabir |
| Author_xml | – sequence: 1 givenname: Michael orcidid: 0000-0001-7196-9765 surname: Blaivas fullname: Blaivas, Michael organization: Department of Medicine University of South Carolina School of Medicine Columbia SC USA, Department of Emergency Medicine St. Francis Hospital Columbus GA USA – sequence: 2 givenname: Laura N. surname: Blaivas fullname: Blaivas, Laura N. organization: Michigan State University East Lansing MI USA – sequence: 3 givenname: Kendra surname: Campbell fullname: Campbell, Kendra organization: Department of Emergency Medicine Harbor‐UCLA Medical Center Torrance CA USA – sequence: 4 givenname: Joseph surname: Thomas fullname: Thomas, Joseph organization: Department of Cardiology Harbor‐UCLA Medical Center Torrance CA USA, David Geffen School of Medicine at UCLA Los Angeles CA USA – sequence: 5 givenname: Sonia surname: Shah fullname: Shah, Sonia organization: Department of Cardiology Harbor‐UCLA Medical Center Torrance CA USA, David Geffen School of Medicine at UCLA Los Angeles CA USA – sequence: 6 givenname: Kabir orcidid: 0000-0002-1092-9935 surname: Yadav fullname: Yadav, Kabir organization: Department of Emergency Medicine Harbor‐UCLA Medical Center Torrance CA USA, David Geffen School of Medicine at UCLA Los Angeles CA USA – sequence: 7 givenname: Yiju Teresa surname: Liu fullname: Liu, Yiju Teresa organization: Department of Emergency Medicine Harbor‐UCLA Medical Center Torrance CA USA, David Geffen School of Medicine at UCLA Los Angeles CA USA |
| BookMark | eNptkD1PwzAQhi1UJNrCwD_ICENa24nthK0qX5WCusAcXZ1z5ZI4xXYG_j2BMiGWe6XT855Oz4xMXO-QkGtGF4xSvjwM3YKJoijPyJQJQdNSsmxCppSrIs15qS7ILITDiFKm8im5e4F36_bJykdrrLbQJhsXsW3tHp3GpMKud9Bgsh1i0pvkHiKcluGSnBtoA1795py8PT68rp_Tavu0Wa-qVHPJY4rGNJwXQiopMRcCpdFaoWpKEMpgk_MGxsG4KXKTSyhVyZuS7lhmAMxOZHNyc7p79P3HgCHWnQ16fBEc9kOouaRcZkVeyBFdnlDt-xA8mlrbCNH2Lnqwbc1o_W2pHi3VP5bGxu2fxtHbDvznP-wXkkBp-g |
| CitedBy_id | crossref_primary_10_3389_fcvm_2024_1418741 crossref_primary_10_3390_diagnostics14151669 crossref_primary_10_1016_j_wfumbo_2023_100014 crossref_primary_10_1016_j_wfumbo_2024_100049 |
| Cites_doi | 10.1080/21556660.2021.1930548 10.2147/OAEM.S304153 10.1111/echo.14546 10.1007/s11548-019-02046-5 10.1007/s00428-019-02594-w 10.1002/jum.15527 10.1002/jum.15765 10.1002/jum.15206 10.1097/01.shk.0000186931.02852.5f 10.1002/jum.15270 10.1002/emp2.12206 10.1016/S0196-0644(01)70030-3 10.1016/j.ajem.2004.11.007 10.1001/jamacardio.2021.0185 10.1016/j.procs.2018.08.190 10.1038/s41598-021-99107-0 10.1038/s41597-021-01033-3 10.1111/1754-9485.13261 10.1161/01.CIR.94.3.460 10.1002/emp2.12018 10.1007/s10278-019-00208-0 10.1197/aemj.9.3.186 10.3390/s21165283 10.1016/S0196-0644(05)82784-2 10.12788/jhm.3079 10.1016/S0894-7317(00)90024-5 10.1016/j.media.2021.102139 10.1007/s11897-021-00530-1 10.1111/j.1553-2712.2001.tb00174.x 10.1016/j.echo.2015.06.011 10.1097/01.CCM.0000133017.34137.82 10.1155/2018/4168538 10.1016/j.ultrasmedbio.2020.12.003 10.1016/j.acra.2019.12.024 10.1371/journal.pmed.1002699 10.1002/jum.15413 10.1155/2021/5779740 10.1016/j.pcad.2020.07.003 |
| ContentType | Journal Article |
| Copyright | 2021 American Institute of Ultrasound in Medicine. |
| Copyright_xml | – notice: 2021 American Institute of Ultrasound in Medicine. |
| DBID | AAYXX CITATION 7X8 |
| DOI | 10.1002/jum.15889 |
| DatabaseName | CrossRef MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Physics |
| EISSN | 1550-9613 |
| EndPage | 2069 |
| ExternalDocumentID | 10_1002_jum_15889 |
| GroupedDBID | --- .55 .GJ 0R~ 18M 1KJ 1OB 1OC 33P 34G 39C 53G 5GY 5RE 5VS 6PF AAHQN AAIPD AAMMB AAMNL AANLZ AAWTL AAYCA AAYXX AAZKR ABCUV ABDPE ABDQB ABJNI ABLJU ABOCM ABQWH ACCZN ACGFO ACGFS ACGOF ACPOU ACXQS ADBBV ADBTR ADKYN ADXAS ADZMN AEFGJ AEIGN AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFWVQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMYDB BFHJK C45 CITATION DCZOG DU5 EBS EJD F5P H13 HDBZQ HGLYW KQ8 LATKE LEEKS LH4 LOXES LUTES LYRES MEWTI N4W O9- OVD P2P P2W RHI ROL RS9 SAMSI SUPJJ TEORI TUL TWZ USG WIH WIJ WIK WOHZO WXSBR X7M ZGI ZVN ZXP ZZTAW 7X8 |
| ID | FETCH-LOGICAL-c262t-effd22856766e455e6fcc7e7d9a57fed42dad4212f84f46a9792d90b13faafb53 |
| ISSN | 0278-4297 1550-9613 |
| IngestDate | Fri Sep 05 13:52:56 EDT 2025 Thu Apr 24 23:09:59 EDT 2025 Wed Oct 01 04:57:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c262t-effd22856766e455e6fcc7e7d9a57fed42dad4212f84f46a9792d90b13faafb53 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7196-9765 0000-0002-1092-9935 |
| PQID | 2602638486 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | proquest_miscellaneous_2602638486 crossref_citationtrail_10_1002_jum_15889 crossref_primary_10_1002_jum_15889 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2022-08-00 20220801 |
| PublicationDateYYYYMMDD | 2022-08-01 |
| PublicationDate_xml | – month: 08 year: 2022 text: 2022-08-00 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of ultrasound in medicine |
| PublicationYear | 2022 |
| References | e_1_2_7_6_1 e_1_2_7_5_1 Liang Y (e_1_2_7_34_1) 2021; 20 e_1_2_7_4_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_40_1 e_1_2_7_15_1 e_1_2_7_41_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_11_1 e_1_2_7_10_1 e_1_2_7_26_1 e_1_2_7_27_1 e_1_2_7_28_1 e_1_2_7_29_1 Karp J (e_1_2_7_2_1) 2021; 19 e_1_2_7_30_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_24_1 e_1_2_7_32_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_20_1 e_1_2_7_36_1 e_1_2_7_37_1 e_1_2_7_38_1 e_1_2_7_39_1 |
| References_xml | – ident: e_1_2_7_26_1 doi: 10.1080/21556660.2021.1930548 – ident: e_1_2_7_4_1 doi: 10.2147/OAEM.S304153 – ident: e_1_2_7_7_1 doi: 10.1111/echo.14546 – ident: e_1_2_7_37_1 doi: 10.1007/s11548-019-02046-5 – ident: e_1_2_7_20_1 doi: 10.1007/s00428-019-02594-w – ident: e_1_2_7_22_1 doi: 10.1002/jum.15527 – ident: e_1_2_7_40_1 doi: 10.1002/jum.15765 – ident: e_1_2_7_21_1 doi: 10.1002/jum.15206 – ident: e_1_2_7_24_1 doi: 10.1097/01.shk.0000186931.02852.5f – ident: e_1_2_7_33_1 doi: 10.1002/jum.15270 – ident: e_1_2_7_17_1 doi: 10.1002/emp2.12206 – ident: e_1_2_7_23_1 doi: 10.1016/S0196-0644(01)70030-3 – ident: e_1_2_7_29_1 doi: 10.1016/j.ajem.2004.11.007 – ident: e_1_2_7_6_1 doi: 10.1001/jamacardio.2021.0185 – ident: e_1_2_7_12_1 doi: 10.1016/j.procs.2018.08.190 – ident: e_1_2_7_30_1 doi: 10.1038/s41598-021-99107-0 – ident: e_1_2_7_32_1 doi: 10.1038/s41597-021-01033-3 – ident: e_1_2_7_35_1 doi: 10.1111/1754-9485.13261 – ident: e_1_2_7_11_1 doi: 10.1161/01.CIR.94.3.460 – ident: e_1_2_7_38_1 doi: 10.1002/emp2.12018 – ident: e_1_2_7_15_1 doi: 10.1007/s10278-019-00208-0 – ident: e_1_2_7_16_1 doi: 10.1197/aemj.9.3.186 – ident: e_1_2_7_39_1 doi: 10.3390/s21165283 – ident: e_1_2_7_28_1 doi: 10.1016/S0196-0644(05)82784-2 – volume: 19 start-page: 1 year: 2021 ident: e_1_2_7_2_1 article-title: The role of PoCUS in the assessment of COVID‐19 patients publication-title: J Ultrasound – ident: e_1_2_7_10_1 doi: 10.12788/jhm.3079 – ident: e_1_2_7_9_1 doi: 10.1016/S0894-7317(00)90024-5 – ident: e_1_2_7_31_1 doi: 10.1016/j.media.2021.102139 – ident: e_1_2_7_8_1 doi: 10.1007/s11897-021-00530-1 – ident: e_1_2_7_27_1 doi: 10.1111/j.1553-2712.2001.tb00174.x – ident: e_1_2_7_41_1 doi: 10.1016/j.echo.2015.06.011 – ident: e_1_2_7_25_1 doi: 10.1097/01.CCM.0000133017.34137.82 – ident: e_1_2_7_14_1 doi: 10.1155/2018/4168538 – ident: e_1_2_7_5_1 doi: 10.1016/j.ultrasmedbio.2020.12.003 – ident: e_1_2_7_18_1 – ident: e_1_2_7_36_1 doi: 10.1016/j.acra.2019.12.024 – ident: e_1_2_7_13_1 doi: 10.1371/journal.pmed.1002699 – ident: e_1_2_7_19_1 doi: 10.1002/jum.15413 – volume: 20 start-page: 5779740 year: 2021 ident: e_1_2_7_34_1 article-title: Research on classification of fine‐grained rock images based on deep learning publication-title: Comput Intell Neurosci doi: 10.1155/2021/5779740 – ident: e_1_2_7_3_1 doi: 10.1016/j.pcad.2020.07.003 |
| SSID | ssj0020174 |
| Score | 2.34884 |
| Snippet | A paucity of point-of-care ultrasound (POCUS) databases limits machine learning (ML). Assess feasibility of training ML algorithms to visually estimate left... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 2059 |
| Subtitle | Adaptation of a Public Apical Echo Database for Creation of a Subxiphoid Visual Estimation Automatic Ejection Fraction Machine Learning Algorithm |
| Title | Making Artificial Intelligence Lemonade Out of Data Lemons |
| URI | https://www.proquest.com/docview/2602638486 |
| Volume | 41 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1550-9613 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020174 issn: 0278-4297 databaseCode: KQ8 dateStart: 19980101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagCMQFQQG1tKCAOCBVWXYdP-LeEA-VxxYhtVJvkWOPpaJlF20SDv31jOM4m2UXqXCJEidxEs-XmbHnRchL5ZQ0ICepFSBThtOvNC8hS4FrTVnJM9vWOpyeipNz9umCX6xch9rokrocmautcSX_Q1VsQ7r6KNl_oGzfKTbgPtIXt0hh3F6LxtO2lJRfYL_sEkF8HGbY_AL4JtrC0demtfe_07UOjdVfdNJmVi915Sst-XWQDbv7TF_-CgFgQ2_79TM-0FofnY62GTeQq9tlLweCb9LADDFYgMC5a3R_i3yK4kQUxVqQm9DxUT5OlQhhppHRsskAUPmQa467rODQHYbqLRvcPWSL_d78GE14nquVCItm-z8kW-9vGHIz0wJvLdpbb5JbFMWAr_Xx-VtvdkJlKKTtjl8UU1GN6ev-qesKzLr8bpWSs_vkXke55E2AxgNyA-a75M60o9suud06-JrqITkOWElWWEmGWEkiVhLESrJwicdKaKwekfMP78_enqRd3YzUUEHrFJyzlOZcSCGAcQ7CGSNBWqW5dGAZtdp6TwCXM8eEVlJRq8blJHNaO_w_H5Od-WIOeyTx6xdGQFlKw5mjWSmdZUpY7Nxr7nSfvIqDUZguqbyvbTIrNoZ8n7zoL_0ZMqlsu-h5HNEC-Zw3Xuk5LJqqoL5WWpazXDy5TkcH5O4Kq4dkp1428BTVx7p81pL8NwG8cK0 |
| linkProvider | Colorado Alliance of Research Libraries |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Making+Artificial+Intelligence+Lemonade+Out+of+Data+Lemons&rft.jtitle=Journal+of+ultrasound+in+medicine&rft.au=Blaivas%2C+Michael&rft.au=Blaivas%2C+Laura+N.&rft.au=Campbell%2C+Kendra&rft.au=Thomas%2C+Joseph&rft.date=2022-08-01&rft.issn=0278-4297&rft.eissn=1550-9613&rft.volume=41&rft.issue=8&rft.spage=2059&rft.epage=2069&rft_id=info:doi/10.1002%2Fjum.15889&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_jum_15889 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-4297&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-4297&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-4297&client=summon |