Design and analysis of a dual mode CMOS field programmable analog array

This paper presents a novel field-programmable analog array (FPAA) architecture featuring a dual mode including discrete-time (DT) and continuous-time (CT) operation modes, along with a highly routable connection boxes (CBs) based interconnection lattice. The dual mode circuit for the FPAA is capabl...

Full description

Saved in:
Bibliographic Details
Published inJournal of semiconductors Vol. 35; no. 10; pp. 152 - 162
Main Author 程小燕 杨海钢 尹韬 吴其松 张洪锋 刘飞
Format Journal Article
LanguageEnglish
Published 01.10.2014
Subjects
Online AccessGet full text
ISSN1674-4926
DOI10.1088/1674-4926/35/10/105011

Cover

More Information
Summary:This paper presents a novel field-programmable analog array (FPAA) architecture featuring a dual mode including discrete-time (DT) and continuous-time (CT) operation modes, along with a highly routable connection boxes (CBs) based interconnection lattice. The dual mode circuit for the FPAA is capable of achieving targeted op- timal performance in different applications. The architecture utilizes routing switches in a CB not only for the signal interconnection purpose but also for control of the electrical charge transfer required in switched-capacitor circuits. This way, the performance of the circuit in either mode shall not be hampered with adding of programmability. The proposed FPAA is designed and implemented in a 0.18 μm standard CMOS process with a 3.3 V supply voltage. The result from post-layout simulation shows that a maximum bandwidth of 265 MHz through the interconnection network is achieved. The measured results from demonstrated examples show that the maximum signal bandwidth of up to 2 MHz in CT mode is obtained with the spurious free dynamic range of 54 dB, while the signal processing precision in DT mode reaches 96.4%.
Bibliography:field-programmable gate array; field-programmable analog array; configurable analog block; rail-to- rail; biquadratic filters
This paper presents a novel field-programmable analog array (FPAA) architecture featuring a dual mode including discrete-time (DT) and continuous-time (CT) operation modes, along with a highly routable connection boxes (CBs) based interconnection lattice. The dual mode circuit for the FPAA is capable of achieving targeted op- timal performance in different applications. The architecture utilizes routing switches in a CB not only for the signal interconnection purpose but also for control of the electrical charge transfer required in switched-capacitor circuits. This way, the performance of the circuit in either mode shall not be hampered with adding of programmability. The proposed FPAA is designed and implemented in a 0.18 μm standard CMOS process with a 3.3 V supply voltage. The result from post-layout simulation shows that a maximum bandwidth of 265 MHz through the interconnection network is achieved. The measured results from demonstrated examples show that the maximum signal bandwidth of up to 2 MHz in CT mode is obtained with the spurious free dynamic range of 54 dB, while the signal processing precision in DT mode reaches 96.4%.
11-5781/TN
Cheng Xiaoyan, Yang Haigang, Yin Tao, Wu Qisong,Zhang Hongfeng,Liu Fei(1 Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China 2University of Chinese Academy of Sciences, Beijing 100049, China)
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1674-4926
DOI:10.1088/1674-4926/35/10/105011