Rational design of Ni-incorporated CuO bifunctional electrocatalyst for sustainable H2 and formate production from biomass
The co-production of value-added chemicals and sustainable hydrogen through the electrochemical bio-refinery of cellulosic biomass serves as a promising technology for enabling carbon-neutral cycles. The Ni-incorporated CuO, prepared by simple solution-based synthesis, was rationally designed for ef...
Saved in:
Published in | International journal of hydrogen energy Vol. 151; p. 150232 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
24.07.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-3199 |
DOI | 10.1016/j.ijhydene.2025.150232 |
Cover
Abstract | The co-production of value-added chemicals and sustainable hydrogen through the electrochemical bio-refinery of cellulosic biomass serves as a promising technology for enabling carbon-neutral cycles. The Ni-incorporated CuO, prepared by simple solution-based synthesis, was rationally designed for efficient and selective formate (FA) production from electrocatalytic cellulosic biomass valorization. With Ni incorporation, the Fermi level of CuO shifts toward a more negative potential, resulting in the free hole injection into the electrolyte at a less positive potential and, thereby, a lower operation potential for electrocatalytic FA production compared to CuO. Among a series of compositions, the CuO with 16 % Ni incorporation (CuNiOx r = 0.16) exhibits the most promising electrocatalytic activity toward selective FA production from glucose with a turnover frequency of 207 ± 23 h−1 at 1.4 V vs. reversible hydrogen electrode, much higher than that of CuO (117 ± 7 h−1). Notably, CuNiOx also acts as an effective precatalyst for the hydrogen evolution reaction, which could be converted into a Cu/NiO hydrogen evolution catalyst under cathodic conditions. The cathodically treated CuNiOx r = 0.16 (CuNiOx r = 0.16 red.) has a much smaller overpotential of 197 mV at 10 mA cm−2 compared to that of cathodically treated CuO (468 mV). A solar-driven electrochemical glucose valorization system for the co-production of green hydrogen and FA was successfully constructed by pairing CuNiOx r = 0.16 and CuNiOx r = 0.16 red. in a two-electrode flow system. This work shows that the band structure of electrocatalysts is also an inescapable consideration for designing effective electrocatalysts for biomass valorization.
[Display omitted]
•A simple, scalable process of CuNiOx for various substrates is demonstrated.•Ni-incorporated CuO exhibits notable activity for glucose oxidation.•The role of Ni in the electrocatalytic activity of CuNiOx is revealed.•CuNiOx shows promising H2 production activity via an in-situ formation of Cu/NiO.•A solar flow system for the selective production of formate and H2 is demonstrated. |
---|---|
AbstractList | The co-production of value-added chemicals and sustainable hydrogen through the electrochemical bio-refinery of cellulosic biomass serves as a promising technology for enabling carbon-neutral cycles. The Ni-incorporated CuO, prepared by simple solution-based synthesis, was rationally designed for efficient and selective formate (FA) production from electrocatalytic cellulosic biomass valorization. With Ni incorporation, the Fermi level of CuO shifts toward a more negative potential, resulting in the free hole injection into the electrolyte at a less positive potential and, thereby, a lower operation potential for electrocatalytic FA production compared to CuO. Among a series of compositions, the CuO with 16 % Ni incorporation (CuNiOx r = 0.16) exhibits the most promising electrocatalytic activity toward selective FA production from glucose with a turnover frequency of 207 ± 23 h−1 at 1.4 V vs. reversible hydrogen electrode, much higher than that of CuO (117 ± 7 h−1). Notably, CuNiOx also acts as an effective precatalyst for the hydrogen evolution reaction, which could be converted into a Cu/NiO hydrogen evolution catalyst under cathodic conditions. The cathodically treated CuNiOx r = 0.16 (CuNiOx r = 0.16 red.) has a much smaller overpotential of 197 mV at 10 mA cm−2 compared to that of cathodically treated CuO (468 mV). A solar-driven electrochemical glucose valorization system for the co-production of green hydrogen and FA was successfully constructed by pairing CuNiOx r = 0.16 and CuNiOx r = 0.16 red. in a two-electrode flow system. This work shows that the band structure of electrocatalysts is also an inescapable consideration for designing effective electrocatalysts for biomass valorization.
[Display omitted]
•A simple, scalable process of CuNiOx for various substrates is demonstrated.•Ni-incorporated CuO exhibits notable activity for glucose oxidation.•The role of Ni in the electrocatalytic activity of CuNiOx is revealed.•CuNiOx shows promising H2 production activity via an in-situ formation of Cu/NiO.•A solar flow system for the selective production of formate and H2 is demonstrated. |
ArticleNumber | 150232 |
Author | Chuang, Ping-Chang Lai, Yi-Hsuan |
Author_xml | – sequence: 1 givenname: Ping-Chang surname: Chuang fullname: Chuang, Ping-Chang organization: Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan – sequence: 2 givenname: Yi-Hsuan orcidid: 0000-0003-1979-4720 surname: Lai fullname: Lai, Yi-Hsuan email: yhlai@gs.ncku.edu.tw organization: Department of Materials Science and Engineering, National Cheng Kung University, No.1, University Road, Tainan City, 701, Taiwan |
BookMark | eNqFkNFKwzAUhnMxwW36CpIX6EzSLlvvlKFOGA5Er8NpcqIpbTKSVphPb-vmtZyLA4f__zh8MzLxwSMhN5wtOOPytl64-vNo0ONCMLFc8CUTuZiQKcsly3JelpdkllLNGF-xopyS71foXPDQUIPJfXgaLH1xmfM6xEOI0KGhm35PK2d7r89RbFB3MWjooDmmjtoQaepTB85D1SDdCgrejOd2ANBDDKb_7VIbQzuwQgspXZELC03C6_Oek_fHh7fNNtvtn54397tMC8m7zHIrGSBYNKUoZYGoAaRYVYxhBVXOjdbFchy71hw4Ym7MqloLW0idY5XPiTxxdQwpRbTqEF0L8ag4U6M1Vas_a2q0pk7WhuLdqYjDd18Oo0raoddoXBwEKBPcf4gf5hWBvg |
Cites_doi | 10.1039/C7NR07224D 10.1007/s11244-015-0499-1 10.1002/aenm.202200827 10.1021/acs.chemrev.4c00211 10.1021/acscatal.1c05341 10.1021/acscatal.6b00205 10.1039/D3EY00017F 10.1002/celc.201901592 10.1021/acsenergylett.0c02692 10.1038/s41467-023-41497-y 10.1021/acscatal.2c05871 10.1002/anie.202006722 10.1039/C9GC02201E 10.1016/j.apcatb.2020.119178 10.1016/S0010-938X(01)00085-3 10.1039/C9SE00558G 10.1002/smll.202404478 10.1016/j.ces.2024.119937 10.1038/s41467-023-35875-9 10.1039/C004268D 10.1039/D0GC04263C 10.1007/s10971-015-3953-4 10.1007/s10854-023-10167-6 10.1038/s41467-019-14157-3 10.1002/anie.202305843 10.1021/acssuschemeng.8b05095 10.1021/acsami.9b18663 10.1002/aenm.202101180 10.1038/s41467-022-33637-7 10.1016/j.ijhydene.2021.12.267 10.1016/j.cap.2021.07.018 10.1016/j.renene.2017.10.083 10.1039/D1RA06737K 10.1002/anie.202215894 10.1016/j.scib.2023.09.033 10.1039/D2EE00461E 10.1039/D1TA10903K 10.1016/j.jallcom.2020.153784 10.1021/acs.jpcc.7b02771 10.1038/ncomms5695 10.1002/cssc.201702075 10.1016/j.cej.2024.158011 10.1351/pac198658070955 10.1039/D2CY00950A 10.1039/C7TA02835K 10.1039/c2ee22784c 10.1039/D3TA02133E 10.1038/s41570-023-00567-x 10.1016/j.mssp.2013.09.013 10.1016/j.electacta.2024.144114 10.1039/D0TA11850H 10.1039/C5PY00263J 10.1016/j.cej.2023.146413 10.1016/j.jechem.2023.01.039 10.1016/0013-4686(95)00359-2 |
ContentType | Journal Article |
Copyright | 2025 Hydrogen Energy Publications LLC |
Copyright_xml | – notice: 2025 Hydrogen Energy Publications LLC |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ijhydene.2025.150232 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_ijhydene_2025_150232 S0360319925032306 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AARLI AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADECG ADEZE AEBSH AEIPS AEKER AENEX AEUPX AEZYN AFJKZ AFPUW AFRZQ AFTJW AFXIZ AFZHZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHHHB AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AJSZI AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA HZ~ IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSK SSM SSR SSZ T5K TN5 XPP ZMT ~G- 29J AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF R2- RIG SAC SCB SSH T9H WUQ |
ID | FETCH-LOGICAL-c261t-f1f60aeafed92964eecaa627b00ebab31dcc454545f8c1a1ee3dd7b82f46c3eb3 |
IEDL.DBID | AIKHN |
ISSN | 0360-3199 |
IngestDate | Wed Jul 16 16:41:26 EDT 2025 Sat Aug 09 17:31:31 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Formate Biomass Electroreforming CuO CuNiOx Hydrogen |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c261t-f1f60aeafed92964eecaa627b00ebab31dcc454545f8c1a1ee3dd7b82f46c3eb3 |
ORCID | 0000-0003-1979-4720 |
ParticipantIDs | crossref_primary_10_1016_j_ijhydene_2025_150232 elsevier_sciencedirect_doi_10_1016_j_ijhydene_2025_150232 |
PublicationCentury | 2000 |
PublicationDate | 2025-07-24 |
PublicationDateYYYYMMDD | 2025-07-24 |
PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-24 day: 24 |
PublicationDecade | 2020 |
PublicationTitle | International journal of hydrogen energy |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Lam, Miller, Linley, Manuel, Pereira, Reisner (bib4) 2023; 62 Wu, Zhao, Li, Liu (bib43) 2022; 10 Voß, Pickel, Albert (bib11) 2019; 7 Bard, Faulkner (bib35) 2000 Wang, Chen, Qi, Wu, Gözaydın, Yan, Zhong, Jin (bib9) 2019; 21 Shen, Smith, Li, Guo, Zhang, Qi (bib5) 2021; 23 Daoudi, Jellal, Haddout, Zimou, El Khouja, Nouneh, Lharch, Fahoume, Bendoumou (bib29) 2023; 34 Zheng, Li, Ci, Cai, Ding, Zhang, Wen (bib40) 2020; 277 Moggia, Kenis, Daems, Breugelmans (bib46) 2020; 7 Kempler, Coridan, Luo (bib57) 2024; 124 Gong, Zhou, Tsai, Zhou, Guan, Lin, Zhang, Hu, Wang, Yang, Pennycook, Hwang, Dai (bib61) 2014; 5 Zhou, Ren, Yao, Li, Xu, Ma, Kong, Zheng, Shao, Duan (bib41) 2023; 14 Lucas, Grim, Tacey, Downes, Hasse, Roman, Farberow, Schaidle, Holewinski (bib19) 2021; 6 Zhang, Qiu, Ma, Wang, Zhang, Ying, Jiang, Zhu, Liu (bib44) 2021; 9 Pawar, Pawar, Hou, Kim, Ahmed, Chavan, Jo, Cho, Inamdar, Gunjakar, Kim, Cha, Im (bib48) 2017; 5 Li, Ma, Gao, Liu, Wang, Shakouri, Chernikov, Wang, Liu, Ma, Wang (bib58) 2022; 15 Tao, Su, Meng, Xue, Zhang, Feng, Zheng, Xu (bib26) 2024; 502 Huang, Hutchison, Santucci, Scully, Rondinelli (bib59) 2017; 121 Liu, Xu, Zhao, Pan, Li, Hu, Fan, Wang, Zhao, Jin, Huber, Yu (bib16) 2020; 11 Kim, Park, Jang, Ahn, Kim (bib27) 2017; 9 Zhu, Zhou, Dong, Xu, Xu, Zheng, Xu, Ma, Li, Shao, Duan (bib42) 2023; 62 Chen, Zhang, Yang, Hu, Wu, Fan, Hao, Shi (bib24) 2024; 291 Vinu, Broadbelt (bib8) 2012; 5 Bulushev, Ross (bib6) 2018; 11 Guo, Li, Wang (bib52) 2022; 12 Tang, Zhang, Qiu, Tan, Wang, Liu, Li (bib18) 2023; 62 Chen, Deutsch, Dinh, Domen, Emery, Forman, Gaillard, Garland, Heske, Jaramillo, Kleiman-Shwarsctein, Miller, Takanabe, Turner (bib36) 2013 Garg, Zanna, Seyeux, Wiame, Maurice, Marcus (bib54) 2024; 484 Tian, Da, Wang, Dou, Cui, Chen, Jiang, Xi, Cui, Luo, Yang, Long, Xiao, Chen (bib13) 2023; 14 Chuang, Lin, Ye, Lai (bib15) 2024; 20 Beden, Largeaud, Kokoh, Lamy (bib47) 1996; 41 (bib7) 2024 Ostervold, Perez Bakovic, Hestekin, Greenlee (bib55) 2021; 11 Chuang, Lai (bib2) 2022; 12 Faverge, Gilles, Bonnefont, Maillard, Coutanceau, Chatenet (bib22) 2023; 13 Mao, Sun, Jiang, Meng, Guo, Qin, Cao (bib60) 2020; 59 Yin, Yang, Zhao, Cui, Zhou, Tian, Li, Hu, Chu (bib30) 2020; 12 Kim, Kim (bib33) 2021; 31 Goetz, Bender, Choi (bib50) 2022; 13 Isikgor, Becer (bib3) 2015; 6 Huang, Li, Zhang, Cai, Chen, Li, Du, Wang (bib32) 2022; 47 Lin, Zhang, Wang, Zhou, Na, Li, Tian, Zhang, Deng, Meng, Wu, Liu, Hu, Zhang (bib39) 2020; 823 Trasatti (bib34) 1986; 58 Sert, Arslanoğlu, Ballice (bib12) 2018; 118 Moges, Chang, Tsai, Su, Hwang (bib20) 2023; 1 Wang, Xu, Wang, Ge, Zhu, Li, Zhou, Chen, Zheng, Duan (bib23) 2023; 68 Lin, Lin, Tsai, Wu (bib1) 2020; 4 Woo, Moon, Lee, Oh, Chae, Jun, Min, Lee (bib56) 2022; 12 Nandi, Park, Shin, Lee, Kim, Ko, Jung, Park, Shin (bib31) 2024; 11 Subramanian, Lakshminarayanan (bib53) 2002; 44 Wang, Xin, Xiao, Zhang, Li, Zhang, Li, Bao, Peng, Yi, Chou (bib62) 2022; 61 Thakur, Mehta, Chaturvedi, Mandal, Nagaiah (bib37) 2023; 11 Bhattacharjee, Linley, Reisner (bib45) 2024; 8 Brouzgou, Tsiakaras (bib21) 2015; 58 Deng, Handoko, Du, Xi, Yeo (bib51) 2016; 6 Wang, Wu, Bodach, Krebs, Schuhmann, Schuth (bib38) 2023; 62 Jin, Enomoto (bib10) 2011; 4 Zhang, Zhan, Zhu, Lai, He, Deng, Zhang, Wang (bib49) 2023; 80 Lai, Yeh, Jhong, Chuang (bib14) 2023; 475 Baturay, Tombak, Kaya, Ocak, Tokus, Aydemir, Kilicoglu (bib25) 2016; 78 Basith, Vijaya, Kennedy, Bououdina (bib28) 2014; 17 Luo, Barrio, Sunny, Li, Steier, Shah, Stephens, Titirici (bib17) 2021; 11 Huang (10.1016/j.ijhydene.2025.150232_bib32) 2022; 47 Gong (10.1016/j.ijhydene.2025.150232_bib61) 2014; 5 Subramanian (10.1016/j.ijhydene.2025.150232_bib53) 2002; 44 Wu (10.1016/j.ijhydene.2025.150232_bib43) 2022; 10 Jin (10.1016/j.ijhydene.2025.150232_bib10) 2011; 4 Lai (10.1016/j.ijhydene.2025.150232_bib14) 2023; 475 Zhu (10.1016/j.ijhydene.2025.150232_bib42) 2023; 62 Beden (10.1016/j.ijhydene.2025.150232_bib47) 1996; 41 Baturay (10.1016/j.ijhydene.2025.150232_bib25) 2016; 78 Chuang (10.1016/j.ijhydene.2025.150232_bib15) 2024; 20 Liu (10.1016/j.ijhydene.2025.150232_bib16) 2020; 11 Zhang (10.1016/j.ijhydene.2025.150232_bib44) 2021; 9 Mao (10.1016/j.ijhydene.2025.150232_bib60) 2020; 59 Bulushev (10.1016/j.ijhydene.2025.150232_bib6) 2018; 11 Zhou (10.1016/j.ijhydene.2025.150232_bib41) 2023; 14 Kim (10.1016/j.ijhydene.2025.150232_bib27) 2017; 9 Sert (10.1016/j.ijhydene.2025.150232_bib12) 2018; 118 Brouzgou (10.1016/j.ijhydene.2025.150232_bib21) 2015; 58 Nandi (10.1016/j.ijhydene.2025.150232_bib31) 2024; 11 Isikgor (10.1016/j.ijhydene.2025.150232_bib3) 2015; 6 Bard (10.1016/j.ijhydene.2025.150232_bib35) 2000 Deng (10.1016/j.ijhydene.2025.150232_bib51) 2016; 6 Moggia (10.1016/j.ijhydene.2025.150232_bib46) 2020; 7 Voß (10.1016/j.ijhydene.2025.150232_bib11) 2019; 7 Faverge (10.1016/j.ijhydene.2025.150232_bib22) 2023; 13 Chen (10.1016/j.ijhydene.2025.150232_bib24) 2024; 291 Tian (10.1016/j.ijhydene.2025.150232_bib13) 2023; 14 Tao (10.1016/j.ijhydene.2025.150232_bib26) 2024; 502 Zheng (10.1016/j.ijhydene.2025.150232_bib40) 2020; 277 Woo (10.1016/j.ijhydene.2025.150232_bib56) 2022; 12 (10.1016/j.ijhydene.2025.150232_bib7) 2024 Wang (10.1016/j.ijhydene.2025.150232_bib9) 2019; 21 Bhattacharjee (10.1016/j.ijhydene.2025.150232_bib45) 2024; 8 Goetz (10.1016/j.ijhydene.2025.150232_bib50) 2022; 13 Basith (10.1016/j.ijhydene.2025.150232_bib28) 2014; 17 Moges (10.1016/j.ijhydene.2025.150232_bib20) 2023; 1 Chuang (10.1016/j.ijhydene.2025.150232_bib2) 2022; 12 Huang (10.1016/j.ijhydene.2025.150232_bib59) 2017; 121 Pawar (10.1016/j.ijhydene.2025.150232_bib48) 2017; 5 Wang (10.1016/j.ijhydene.2025.150232_bib62) 2022; 61 Wang (10.1016/j.ijhydene.2025.150232_bib38) 2023; 62 Ostervold (10.1016/j.ijhydene.2025.150232_bib55) 2021; 11 Guo (10.1016/j.ijhydene.2025.150232_bib52) 2022; 12 Vinu (10.1016/j.ijhydene.2025.150232_bib8) 2012; 5 Thakur (10.1016/j.ijhydene.2025.150232_bib37) 2023; 11 Daoudi (10.1016/j.ijhydene.2025.150232_bib29) 2023; 34 Lam (10.1016/j.ijhydene.2025.150232_bib4) 2023; 62 Shen (10.1016/j.ijhydene.2025.150232_bib5) 2021; 23 Garg (10.1016/j.ijhydene.2025.150232_bib54) 2024; 484 Trasatti (10.1016/j.ijhydene.2025.150232_bib34) 1986; 58 Chen (10.1016/j.ijhydene.2025.150232_bib36) 2013 Li (10.1016/j.ijhydene.2025.150232_bib58) 2022; 15 Wang (10.1016/j.ijhydene.2025.150232_bib23) 2023; 68 Tang (10.1016/j.ijhydene.2025.150232_bib18) 2023; 62 Lin (10.1016/j.ijhydene.2025.150232_bib1) 2020; 4 Kim (10.1016/j.ijhydene.2025.150232_bib33) 2021; 31 Yin (10.1016/j.ijhydene.2025.150232_bib30) 2020; 12 Zhang (10.1016/j.ijhydene.2025.150232_bib49) 2023; 80 Luo (10.1016/j.ijhydene.2025.150232_bib17) 2021; 11 Kempler (10.1016/j.ijhydene.2025.150232_bib57) 2024; 124 Lucas (10.1016/j.ijhydene.2025.150232_bib19) 2021; 6 Lin (10.1016/j.ijhydene.2025.150232_bib39) 2020; 823 |
References_xml | – volume: 12 start-page: 11797 year: 2020 end-page: 11805 ident: bib30 article-title: High responsivity and external quantum efficiency photodetectors based on solution-processed Ni-doped CuO films publication-title: ACS Appl Mater Interfaces – volume: 34 start-page: 819 year: 2023 ident: bib29 article-title: Unravelling the role of nickel incorporation on the physical properties of CuO thin films deposited by spray pyrolysis and theoretical analysis of nanostructured ZnO/Ni:CuO-based heterojunction solar cells publication-title: J Mater Sci Mater Electron – volume: 41 start-page: 701 year: 1996 end-page: 709 ident: bib47 article-title: Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction products publication-title: Electrochim Acta – volume: 23 start-page: 1536 year: 2021 end-page: 1561 ident: bib5 article-title: Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid publication-title: Green Chem – volume: 9 start-page: 10893 year: 2021 end-page: 10908 ident: bib44 article-title: Core-corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H publication-title: J Mater Chem A – volume: 7 start-page: 9754 year: 2019 end-page: 9762 ident: bib11 article-title: Improving the fractionated catalytic oxidation of lignocellulosic biomass to formic acid and cellulose by using design of experiments publication-title: ACS Sustainable Chem Eng – volume: 20 year: 2024 ident: bib15 article-title: Earth-abundant CuWO publication-title: Small – volume: 11 year: 2024 ident: bib31 article-title: NiO as hole transporting layer for inverted perovskite solar cells: a study of X‐ray photoelectron spectroscopy publication-title: Adv Mater Interfac – volume: 62 year: 2023 ident: bib18 article-title: Efficient conversion of biomass to formic acid coupled with low energy consumption hydrogen production from water electrolysis publication-title: Angew Chem Int Ed – volume: 14 start-page: 5621 year: 2023 ident: bib41 article-title: Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations publication-title: Nat Commun – volume: 68 start-page: 2982 year: 2023 end-page: 2992 ident: bib23 article-title: Unraveling the potential-dependent structure evolution in CuO for electrocatalytic biomass valorization publication-title: Sci Bull – volume: 291 year: 2024 ident: bib24 article-title: NiCu-based catalysts with high selectivity for electro-oxidation of glucose to formic acid publication-title: Chem Eng Sci – volume: 8 start-page: 87 year: 2024 end-page: 105 ident: bib45 article-title: Solar reforming as an emerging technology for circular chemical industries publication-title: Nat Rev Chem – year: 2024 ident: bib7 publication-title: Formic acid market size to hit around USD 3.78 Bn by 2034 – volume: 277 year: 2020 ident: bib40 article-title: Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen publication-title: Appl Catal B Environ – volume: 11 start-page: 821 year: 2018 end-page: 836 ident: bib6 article-title: Towards sustainable production of formic acid publication-title: ChemSusChem – volume: 11 year: 2021 ident: bib17 article-title: Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production publication-title: Adv Energy Mater – volume: 12 year: 2022 ident: bib52 article-title: Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction publication-title: Adv Energy Mater – start-page: 736 year: 2000 end-page: 768 ident: bib35 article-title: Photoelectrochemistry and electrogenerated chemiluminescence publication-title: Electrochemical methods: fundamentals and applications – volume: 11 start-page: 265 year: 2020 ident: bib16 article-title: Efficient electrochemical production of glucaric acid and H publication-title: Nat Commun – volume: 1 start-page: 413 year: 2023 end-page: 433 ident: bib20 article-title: Electrocatalysts for value-added electrolysis coupled with hydrogen evolution publication-title: EES Catal – volume: 823 year: 2020 ident: bib39 article-title: Engineered porous Co–Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment publication-title: J Alloys Compd – volume: 124 start-page: 10964 year: 2024 end-page: 11007 ident: bib57 article-title: Gas evolution in water electrolysis publication-title: Chem Rev – volume: 62 year: 2023 ident: bib4 article-title: Comproportionation of CO publication-title: Angew Chem Int Ed – volume: 6 start-page: 2473 year: 2016 end-page: 2481 ident: bib51 article-title: In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of Cu publication-title: ACS Catal – volume: 4 start-page: 382 year: 2011 end-page: 397 ident: bib10 article-title: Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalyzed and oxidation reactions publication-title: Energy Environ Sci – volume: 5 start-page: 9808 year: 2012 end-page: 9826 ident: bib8 article-title: A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition publication-title: Energy Environ Sci – volume: 62 year: 2023 ident: bib42 article-title: Identification of active sites formed on cobalt oxyhydroxide in glucose electrooxidation publication-title: Angew Chem Int Ed – volume: 7 start-page: 86 year: 2020 end-page: 95 ident: bib46 article-title: Electrochemical oxidation of d-glucose in alkaline medium: impact of oxidation potential and chemical side reactions on the selectivity to d-gluconic and d-glucaric acid publication-title: Chemelectrochem – volume: 31 start-page: 52 year: 2021 end-page: 59 ident: bib33 article-title: Absolute work function measurement by using photoelectron spectroscopy publication-title: Curr Appl Phys – volume: 121 start-page: 9782 year: 2017 end-page: 9789 ident: bib59 article-title: Improved electrochemical phase diagrams from theory and experiment: the Ni–water system and its complex compounds publication-title: J Phys Chem C – start-page: 63 year: 2013 end-page: 85 ident: bib36 article-title: Flat-band potential techniques publication-title: Photoelectrochemical water splitting: standards, experimental methods, and protocols – volume: 5 start-page: 4695 year: 2014 ident: bib61 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat Commun – volume: 44 start-page: 535 year: 2002 end-page: 554 ident: bib53 article-title: Effect of adsorption of some azoles on copper passivation in alkaline medium publication-title: Corros Sci – volume: 11 start-page: 15868 year: 2023 end-page: 15877 ident: bib37 article-title: Glucose oxidation assisted hydrogen and gluconic/glucaric acid production using NiVP/Pi bifunctional electrocatalyst publication-title: J Mater Chem A – volume: 13 start-page: 2657 year: 2023 end-page: 2669 ident: bib22 article-title: In situ investigation of d-glucose oxidation into value-added products on Au, Pt, and Pd under alkaline conditions: a comparative study publication-title: ACS Catal – volume: 13 start-page: 5848 year: 2022 ident: bib50 article-title: Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH publication-title: Nat Commun – volume: 12 start-page: 6375 year: 2022 end-page: 6383 ident: bib2 article-title: Selective production of formate over a CuO electrocatalyst by electrochemical and photoelectrochemical biomass valorization publication-title: Catal Sci Technol – volume: 21 start-page: 6089 year: 2019 end-page: 6096 ident: bib9 article-title: Room temperature, near-quantitative conversion of glucose into formic acid publication-title: Green Chem – volume: 11 start-page: 31208 year: 2021 end-page: 31218 ident: bib55 article-title: Electrochemical biomass upgrading: degradation of glucose to lactic acid on a copper(ii) electrode publication-title: RSC Adv – volume: 9 start-page: 19045 year: 2017 end-page: 19049 ident: bib27 article-title: An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer publication-title: Nanoscale – volume: 6 start-page: 1205 year: 2021 end-page: 1270 ident: bib19 article-title: Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application publication-title: ACS Energy Lett – volume: 17 start-page: 110 year: 2014 end-page: 118 ident: bib28 article-title: Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method publication-title: Mater Sci Semicond Process – volume: 5 start-page: 12747 year: 2017 end-page: 12751 ident: bib48 article-title: Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications publication-title: J Mater Chem A – volume: 78 start-page: 422 year: 2016 end-page: 429 ident: bib25 article-title: Modification of electrical and optical properties of CuO thin films by Ni doping publication-title: J Sol Gel Sci Technol – volume: 58 start-page: 1311 year: 2015 end-page: 1327 ident: bib21 article-title: Electrocatalysts for glucose electrooxidation reaction: a review publication-title: Top Catal – volume: 502 year: 2024 ident: bib26 article-title: Enhanced co-production of H publication-title: Chem Eng J – volume: 80 start-page: 58 year: 2023 end-page: 67 ident: bib49 article-title: An efficient electrocatalytic system composed of nickel oxide and nitroxyl radical for the oxidation of bio-platform molecules to dicarboxylic acids publication-title: J Energy Chem – volume: 12 start-page: 4078 year: 2022 end-page: 4091 ident: bib56 article-title: Collaborative electrochemical oxidation of the alcohol and aldehyde groups of 5-hydroxymethylfurfural by NiOOH and Cu(OH) publication-title: ACS Catal – volume: 475 year: 2023 ident: bib14 article-title: Solar-driven hydrogen evolution in alkaline seawater over earth-abundant g-C publication-title: Chem Eng J – volume: 15 start-page: 3004 year: 2022 end-page: 3014 ident: bib58 article-title: Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining publication-title: Energy Environ Sci – volume: 14 start-page: 142 year: 2023 ident: bib13 article-title: Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO publication-title: Nat Commun – volume: 484 year: 2024 ident: bib54 article-title: Interfacial bonding and corrosion inhibition of 2-mercaptobenzimidazole organic films formed on copper surfaces under electrochemical control in acidic chloride solution publication-title: Electrochim Acta – volume: 4 start-page: 625 year: 2020 end-page: 632 ident: bib1 article-title: Facile room-temperature growth of nanostructured CuBi publication-title: Sustain Energy Fuels – volume: 61 year: 2022 ident: bib62 article-title: Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution publication-title: Angew Chem Int Ed – volume: 6 start-page: 4497 year: 2015 end-page: 4559 ident: bib3 article-title: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers publication-title: Polym Chem – volume: 10 start-page: 4791 year: 2022 end-page: 4799 ident: bib43 article-title: Heterogeneity in a metal–organic framework in situ guides engineering Co@CoO heterojunction for electrocatalytic H publication-title: J Mater Chem A – volume: 58 start-page: 955 year: 1986 end-page: 966 ident: bib34 article-title: The absolute electrode potential: an explanatory note (Recommendations 1986) publication-title: Pure Appl Chem – volume: 47 start-page: 9261 year: 2022 end-page: 9272 ident: bib32 article-title: Cu vacancy engineering on facet dependent CuO to enhance water oxidation efficiency publication-title: Int J Hydrogen Energy – volume: 62 year: 2023 ident: bib38 article-title: A novel electrode for value-generating anode reactions in water electrolyzers at industrial current densities publication-title: Angew Chem Int Ed – volume: 59 year: 2020 ident: bib60 article-title: Identifying the transfer kinetics of adsorbed hydroxyl as a descriptor of alkaline hydrogen evolution reaction publication-title: Angew Chem Int Ed – volume: 118 start-page: 993 year: 2018 end-page: 1000 ident: bib12 article-title: Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents publication-title: Renew Energy – volume: 9 start-page: 19045 year: 2017 ident: 10.1016/j.ijhydene.2025.150232_bib27 article-title: An extremely low Pt loading cathode for a highly efficient proton exchange membrane water electrolyzer publication-title: Nanoscale doi: 10.1039/C7NR07224D – volume: 58 start-page: 1311 year: 2015 ident: 10.1016/j.ijhydene.2025.150232_bib21 article-title: Electrocatalysts for glucose electrooxidation reaction: a review publication-title: Top Catal doi: 10.1007/s11244-015-0499-1 – volume: 12 year: 2022 ident: 10.1016/j.ijhydene.2025.150232_bib52 article-title: Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction publication-title: Adv Energy Mater doi: 10.1002/aenm.202200827 – volume: 124 start-page: 10964 year: 2024 ident: 10.1016/j.ijhydene.2025.150232_bib57 article-title: Gas evolution in water electrolysis publication-title: Chem Rev doi: 10.1021/acs.chemrev.4c00211 – volume: 12 start-page: 4078 year: 2022 ident: 10.1016/j.ijhydene.2025.150232_bib56 article-title: Collaborative electrochemical oxidation of the alcohol and aldehyde groups of 5-hydroxymethylfurfural by NiOOH and Cu(OH)2 for superior 2,5-furandicarboxylic acid production publication-title: ACS Catal doi: 10.1021/acscatal.1c05341 – volume: 6 start-page: 2473 year: 2016 ident: 10.1016/j.ijhydene.2025.150232_bib51 article-title: In situ Raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: identification of CuIII oxides as catalytically active species publication-title: ACS Catal doi: 10.1021/acscatal.6b00205 – volume: 1 start-page: 413 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib20 article-title: Electrocatalysts for value-added electrolysis coupled with hydrogen evolution publication-title: EES Catal doi: 10.1039/D3EY00017F – volume: 7 start-page: 86 year: 2020 ident: 10.1016/j.ijhydene.2025.150232_bib46 article-title: Electrochemical oxidation of d-glucose in alkaline medium: impact of oxidation potential and chemical side reactions on the selectivity to d-gluconic and d-glucaric acid publication-title: Chemelectrochem doi: 10.1002/celc.201901592 – volume: 6 start-page: 1205 year: 2021 ident: 10.1016/j.ijhydene.2025.150232_bib19 article-title: Electrochemical routes for the valorization of biomass-derived feedstocks: from chemistry to application publication-title: ACS Energy Lett doi: 10.1021/acsenergylett.0c02692 – volume: 14 start-page: 5621 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib41 article-title: Scalable electrosynthesis of commodity chemicals from biomass by suppressing non-Faradaic transformations publication-title: Nat Commun doi: 10.1038/s41467-023-41497-y – volume: 13 start-page: 2657 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib22 article-title: In situ investigation of d-glucose oxidation into value-added products on Au, Pt, and Pd under alkaline conditions: a comparative study publication-title: ACS Catal doi: 10.1021/acscatal.2c05871 – volume: 59 year: 2020 ident: 10.1016/j.ijhydene.2025.150232_bib60 article-title: Identifying the transfer kinetics of adsorbed hydroxyl as a descriptor of alkaline hydrogen evolution reaction publication-title: Angew Chem Int Ed doi: 10.1002/anie.202006722 – volume: 21 start-page: 6089 year: 2019 ident: 10.1016/j.ijhydene.2025.150232_bib9 article-title: Room temperature, near-quantitative conversion of glucose into formic acid publication-title: Green Chem doi: 10.1039/C9GC02201E – volume: 277 year: 2020 ident: 10.1016/j.ijhydene.2025.150232_bib40 article-title: Three-birds-with-one-stone electrolysis for energy-efficiency production of gluconate and hydrogen publication-title: Appl Catal B Environ doi: 10.1016/j.apcatb.2020.119178 – volume: 44 start-page: 535 year: 2002 ident: 10.1016/j.ijhydene.2025.150232_bib53 article-title: Effect of adsorption of some azoles on copper passivation in alkaline medium publication-title: Corros Sci doi: 10.1016/S0010-938X(01)00085-3 – volume: 4 start-page: 625 year: 2020 ident: 10.1016/j.ijhydene.2025.150232_bib1 article-title: Facile room-temperature growth of nanostructured CuBi2O4 for selective electrochemical reforming and photoelectrochemical hydrogen evolution reactions publication-title: Sustain Energy Fuels doi: 10.1039/C9SE00558G – volume: 20 year: 2024 ident: 10.1016/j.ijhydene.2025.150232_bib15 article-title: Earth-abundant CuWO4 as a versatile platform for photoelectrochemical valorization of soluble biomass under benign conditions publication-title: Small doi: 10.1002/smll.202404478 – start-page: 736 year: 2000 ident: 10.1016/j.ijhydene.2025.150232_bib35 article-title: Photoelectrochemistry and electrogenerated chemiluminescence – volume: 291 year: 2024 ident: 10.1016/j.ijhydene.2025.150232_bib24 article-title: NiCu-based catalysts with high selectivity for electro-oxidation of glucose to formic acid publication-title: Chem Eng Sci doi: 10.1016/j.ces.2024.119937 – volume: 11 year: 2024 ident: 10.1016/j.ijhydene.2025.150232_bib31 article-title: NiO as hole transporting layer for inverted perovskite solar cells: a study of X‐ray photoelectron spectroscopy publication-title: Adv Mater Interfac – volume: 14 start-page: 142 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib13 article-title: Selective photoelectrochemical oxidation of glucose to glucaric acid by single atom Pt decorated defective TiO2 publication-title: Nat Commun doi: 10.1038/s41467-023-35875-9 – volume: 4 start-page: 382 year: 2011 ident: 10.1016/j.ijhydene.2025.150232_bib10 article-title: Rapid and highly selective conversion of biomass into value-added products in hydrothermal conditions: chemistry of acid/base-catalyzed and oxidation reactions publication-title: Energy Environ Sci doi: 10.1039/C004268D – volume: 23 start-page: 1536 year: 2021 ident: 10.1016/j.ijhydene.2025.150232_bib5 article-title: Critical assessment of reaction pathways for conversion of agricultural waste biomass into formic acid publication-title: Green Chem doi: 10.1039/D0GC04263C – volume: 78 start-page: 422 year: 2016 ident: 10.1016/j.ijhydene.2025.150232_bib25 article-title: Modification of electrical and optical properties of CuO thin films by Ni doping publication-title: J Sol Gel Sci Technol doi: 10.1007/s10971-015-3953-4 – volume: 34 start-page: 819 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib29 article-title: Unravelling the role of nickel incorporation on the physical properties of CuO thin films deposited by spray pyrolysis and theoretical analysis of nanostructured ZnO/Ni:CuO-based heterojunction solar cells publication-title: J Mater Sci Mater Electron doi: 10.1007/s10854-023-10167-6 – volume: 11 start-page: 265 year: 2020 ident: 10.1016/j.ijhydene.2025.150232_bib16 article-title: Efficient electrochemical production of glucaric acid and H2 via glucose electrolysis publication-title: Nat Commun doi: 10.1038/s41467-019-14157-3 – volume: 62 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib18 article-title: Efficient conversion of biomass to formic acid coupled with low energy consumption hydrogen production from water electrolysis publication-title: Angew Chem Int Ed doi: 10.1002/anie.202305843 – volume: 7 start-page: 9754 year: 2019 ident: 10.1016/j.ijhydene.2025.150232_bib11 article-title: Improving the fractionated catalytic oxidation of lignocellulosic biomass to formic acid and cellulose by using design of experiments publication-title: ACS Sustainable Chem Eng doi: 10.1021/acssuschemeng.8b05095 – volume: 12 start-page: 11797 year: 2020 ident: 10.1016/j.ijhydene.2025.150232_bib30 article-title: High responsivity and external quantum efficiency photodetectors based on solution-processed Ni-doped CuO films publication-title: ACS Appl Mater Interfaces doi: 10.1021/acsami.9b18663 – volume: 11 year: 2021 ident: 10.1016/j.ijhydene.2025.150232_bib17 article-title: Progress and perspectives in photo- and electrochemical-oxidation of biomass for sustainable chemicals and hydrogen production publication-title: Adv Energy Mater doi: 10.1002/aenm.202101180 – volume: 13 start-page: 5848 year: 2022 ident: 10.1016/j.ijhydene.2025.150232_bib50 article-title: Predictive control of selective secondary alcohol oxidation of glycerol on NiOOH publication-title: Nat Commun doi: 10.1038/s41467-022-33637-7 – volume: 47 start-page: 9261 year: 2022 ident: 10.1016/j.ijhydene.2025.150232_bib32 article-title: Cu vacancy engineering on facet dependent CuO to enhance water oxidation efficiency publication-title: Int J Hydrogen Energy doi: 10.1016/j.ijhydene.2021.12.267 – volume: 31 start-page: 52 year: 2021 ident: 10.1016/j.ijhydene.2025.150232_bib33 article-title: Absolute work function measurement by using photoelectron spectroscopy publication-title: Curr Appl Phys doi: 10.1016/j.cap.2021.07.018 – volume: 118 start-page: 993 year: 2018 ident: 10.1016/j.ijhydene.2025.150232_bib12 article-title: Conversion of sunflower stalk based cellulose to the valuable products using choline chloride based deep eutectic solvents publication-title: Renew Energy doi: 10.1016/j.renene.2017.10.083 – volume: 11 start-page: 31208 year: 2021 ident: 10.1016/j.ijhydene.2025.150232_bib55 article-title: Electrochemical biomass upgrading: degradation of glucose to lactic acid on a copper(ii) electrode publication-title: RSC Adv doi: 10.1039/D1RA06737K – volume: 62 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib4 article-title: Comproportionation of CO2 and cellulose to formate using a floating semiconductor-enzyme photoreforming catalyst publication-title: Angew Chem Int Ed doi: 10.1002/anie.202215894 – volume: 68 start-page: 2982 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib23 article-title: Unraveling the potential-dependent structure evolution in CuO for electrocatalytic biomass valorization publication-title: Sci Bull doi: 10.1016/j.scib.2023.09.033 – start-page: 63 year: 2013 ident: 10.1016/j.ijhydene.2025.150232_bib36 article-title: Flat-band potential techniques – volume: 15 start-page: 3004 year: 2022 ident: 10.1016/j.ijhydene.2025.150232_bib58 article-title: Reconstruction-induced NiCu-based catalysts towards paired electrochemical refining publication-title: Energy Environ Sci doi: 10.1039/D2EE00461E – volume: 10 start-page: 4791 year: 2022 ident: 10.1016/j.ijhydene.2025.150232_bib43 article-title: Heterogeneity in a metal–organic framework in situ guides engineering Co@CoO heterojunction for electrocatalytic H2 production in tandem with glucose oxidation publication-title: J Mater Chem A doi: 10.1039/D1TA10903K – volume: 823 year: 2020 ident: 10.1016/j.ijhydene.2025.150232_bib39 article-title: Engineered porous Co–Ni alloy on carbon cloth as an efficient bifunctional electrocatalyst for glucose electrolysis in alkaline environment publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2020.153784 – volume: 62 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib42 article-title: Identification of active sites formed on cobalt oxyhydroxide in glucose electrooxidation publication-title: Angew Chem Int Ed – volume: 121 start-page: 9782 year: 2017 ident: 10.1016/j.ijhydene.2025.150232_bib59 article-title: Improved electrochemical phase diagrams from theory and experiment: the Ni–water system and its complex compounds publication-title: J Phys Chem C doi: 10.1021/acs.jpcc.7b02771 – volume: 5 start-page: 4695 year: 2014 ident: 10.1016/j.ijhydene.2025.150232_bib61 article-title: Nanoscale nickel oxide/nickel heterostructures for active hydrogen evolution electrocatalysis publication-title: Nat Commun doi: 10.1038/ncomms5695 – volume: 11 start-page: 821 year: 2018 ident: 10.1016/j.ijhydene.2025.150232_bib6 article-title: Towards sustainable production of formic acid publication-title: ChemSusChem doi: 10.1002/cssc.201702075 – volume: 502 year: 2024 ident: 10.1016/j.ijhydene.2025.150232_bib26 article-title: Enhanced co-production of H2 and formic acid via Ni-facilitated Cu+/Cu2+ cycling in an industry-level hybrid water splitting system publication-title: Chem Eng J doi: 10.1016/j.cej.2024.158011 – volume: 58 start-page: 955 year: 1986 ident: 10.1016/j.ijhydene.2025.150232_bib34 article-title: The absolute electrode potential: an explanatory note (Recommendations 1986) publication-title: Pure Appl Chem doi: 10.1351/pac198658070955 – volume: 62 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib38 article-title: A novel electrode for value-generating anode reactions in water electrolyzers at industrial current densities publication-title: Angew Chem Int Ed – volume: 12 start-page: 6375 year: 2022 ident: 10.1016/j.ijhydene.2025.150232_bib2 article-title: Selective production of formate over a CuO electrocatalyst by electrochemical and photoelectrochemical biomass valorization publication-title: Catal Sci Technol doi: 10.1039/D2CY00950A – volume: 5 start-page: 12747 year: 2017 ident: 10.1016/j.ijhydene.2025.150232_bib48 article-title: Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications publication-title: J Mater Chem A doi: 10.1039/C7TA02835K – volume: 5 start-page: 9808 year: 2012 ident: 10.1016/j.ijhydene.2025.150232_bib8 article-title: A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition publication-title: Energy Environ Sci doi: 10.1039/c2ee22784c – volume: 11 start-page: 15868 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib37 article-title: Glucose oxidation assisted hydrogen and gluconic/glucaric acid production using NiVP/Pi bifunctional electrocatalyst publication-title: J Mater Chem A doi: 10.1039/D3TA02133E – volume: 8 start-page: 87 year: 2024 ident: 10.1016/j.ijhydene.2025.150232_bib45 article-title: Solar reforming as an emerging technology for circular chemical industries publication-title: Nat Rev Chem doi: 10.1038/s41570-023-00567-x – volume: 17 start-page: 110 year: 2014 ident: 10.1016/j.ijhydene.2025.150232_bib28 article-title: Structural, morphological, optical, and magnetic properties of Ni-doped CuO nanostructures prepared by a rapid microwave combustion method publication-title: Mater Sci Semicond Process doi: 10.1016/j.mssp.2013.09.013 – volume: 61 year: 2022 ident: 10.1016/j.ijhydene.2025.150232_bib62 article-title: Manipulating the water dissociation electrocatalytic sites of bimetallic nickel-based alloys for highly efficient alkaline hydrogen evolution publication-title: Angew Chem Int Ed – volume: 484 year: 2024 ident: 10.1016/j.ijhydene.2025.150232_bib54 article-title: Interfacial bonding and corrosion inhibition of 2-mercaptobenzimidazole organic films formed on copper surfaces under electrochemical control in acidic chloride solution publication-title: Electrochim Acta doi: 10.1016/j.electacta.2024.144114 – year: 2024 ident: 10.1016/j.ijhydene.2025.150232_bib7 – volume: 9 start-page: 10893 year: 2021 ident: 10.1016/j.ijhydene.2025.150232_bib44 article-title: Core-corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H2 production publication-title: J Mater Chem A doi: 10.1039/D0TA11850H – volume: 6 start-page: 4497 year: 2015 ident: 10.1016/j.ijhydene.2025.150232_bib3 article-title: Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers publication-title: Polym Chem doi: 10.1039/C5PY00263J – volume: 475 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib14 article-title: Solar-driven hydrogen evolution in alkaline seawater over earth-abundant g-C3N4/CuFeO2 heterojunction photocatalyst using microplastic as a feedstock publication-title: Chem Eng J doi: 10.1016/j.cej.2023.146413 – volume: 80 start-page: 58 year: 2023 ident: 10.1016/j.ijhydene.2025.150232_bib49 article-title: An efficient electrocatalytic system composed of nickel oxide and nitroxyl radical for the oxidation of bio-platform molecules to dicarboxylic acids publication-title: J Energy Chem doi: 10.1016/j.jechem.2023.01.039 – volume: 41 start-page: 701 year: 1996 ident: 10.1016/j.ijhydene.2025.150232_bib47 article-title: Fourier transform infrared reflectance spectroscopic investigation of the electrocatalytic oxidation of d-glucose: identification of reactive intermediates and reaction products publication-title: Electrochim Acta doi: 10.1016/0013-4686(95)00359-2 |
SSID | ssj0017049 |
Score | 2.4797757 |
Snippet | The co-production of value-added chemicals and sustainable hydrogen through the electrochemical bio-refinery of cellulosic biomass serves as a promising... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 150232 |
SubjectTerms | Biomass CuNiOx CuO Electroreforming Formate Hydrogen |
Title | Rational design of Ni-incorporated CuO bifunctional electrocatalyst for sustainable H2 and formate production from biomass |
URI | https://dx.doi.org/10.1016/j.ijhydene.2025.150232 |
Volume | 151 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED71scCAeIryqDywpqmd91hVoACiSEClblEcOyId2oqmQxn47dw1DhQJiQFlSnQnRWf77vP57jPAVdCXnnS4b0UuF5ZLtTWIm3OLo7wSkq63pYT-w8iPx-7dxJs0YFj3wlBZpfH9lU_feGvzxTbWtBdFYT-j76UWnAiDuENAugltgdE-bEF7cHsfj74OEwKDglHeIoWtRuFpr5i-rnGFE2Om8HoIj4Qjfo9RW3HnZh_2DGBkg-qfDqChZ4ewu0UjeATvTyajx9SmHoPNczYqLOJdqGiKtWLD1SOTBUUxI2ruv9mkb9bLkiF4ZcvvbioWC5bOFKswrWaLihkWdRl1pDBq20fcfQzjm-uXYWyZOxWsDPdKpZXz3O-nOs21iujEVessTX0R4OrTMsVRU1nmevTkYcZTrrWjVCBDkbt-5uDO-wRas_lMnwLjPAodrTiR4KG7zcNUSoQ7biidUAdad8CurZgsKuqMpK4pmya13ROye1LZvQNRbezkxyRI0L__oXv2D91z2KE3StkK9wJa5dtKXyLWKGUXmr0P3jUz6hMKV9bJ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb8IwDLYYHLYdpj019sxh1wJJSx9HhIbKeEzaQOJWNU2qlQOgAQf262fTdGPSpB2m3tpYqpzE_uLYnwEevIZsSpu7VuBwYTmUW4O4ObU4jldCUntbCugPhm44dp4mzUkJ2kUtDKVVGtuf2_SttTZv6kab9UWW1V_R9lIJToBO3CYgvQcVh5pal6HS6vbC4ddlgmdQMI63SGCnUHhay6ZvG9zhxJgpmjWER8IWv_uoHb_TOYYjAxhZK_-nEyjp2Skc7tAInsHHi4noMbXNx2DzlA0zi3gXcppirVh7_cxkRl7MDDX9b7bhm81yxRC8suV3NRULBYtniuWYVrNFzgyLsowqUhiV7SPuPodx53HUDi3TU8FK8Ky0slKeuo1Yx6lWAd24ap3EsSs83H1axjhrKklQi_ikfsJjrrWtlCd9kTpuYuPJ-wLKs_lMXwLjPPBtrTiR4KG5Tf1YSoQ7ji9tX3taV6FeaDFa5NQZUZFTNo0KvUek9yjXexWCQtnRj0UQoX3_Q_bqH7L3sB-OBv2o3x32ruGAvlD4Vjg3UF69r_Ut4o6VvDPr6hMdoNiv |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rational+design+of+Ni-incorporated+CuO+bifunctional+electrocatalyst+for+sustainable+H2+and+formate+production+from+biomass&rft.jtitle=International+journal+of+hydrogen+energy&rft.au=Chuang%2C+Ping-Chang&rft.au=Lai%2C+Yi-Hsuan&rft.date=2025-07-24&rft.issn=0360-3199&rft.volume=151&rft.spage=150232&rft_id=info:doi/10.1016%2Fj.ijhydene.2025.150232&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijhydene_2025_150232 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-3199&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-3199&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-3199&client=summon |