A linearly interpolated DOA estimation algorithm based on Variational Bayesian Inference
•Acoustic source direction of arrival estimation based on Variational Bayesian Inference.•A grid interpolation algorithm to perform off-grid direction of arrival estimation.•This algorithm still performs well under the condition of a coarse grid. Acoustic source localization constitutes a pivotal re...
Saved in:
| Published in | Applied acoustics Vol. 240; p. 110968 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
05.12.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0003-682X |
| DOI | 10.1016/j.apacoust.2025.110968 |
Cover
| Abstract | •Acoustic source direction of arrival estimation based on Variational Bayesian Inference.•A grid interpolation algorithm to perform off-grid direction of arrival estimation.•This algorithm still performs well under the condition of a coarse grid.
Acoustic source localization constitutes a pivotal research subject within the domain of Direction-of-Arrival (DOA) estimation. In particular, DOA estimation algorithms based on Sparse Bayesian Learning (SBL) tend to experience severe performance degradation when the chosen grid intervals are large. To solve this problem, this paper proposes a DOA estimation algorithm named Linear Interpolation Temporal Correlation − Variational Bayesian Inference (LITC-VBI) based on Variational Bayesian Inference (VBI). Within the framework of the VBI, a novel signal model is constructed by exploiting the inherent temporal correlation of the incident acoustic signal. In addition, by combining the linear interpolation method, a new off-grid model is constructed. This model improves the accuracy and stability of DOA estimation in the off-grid scenario. Simulation results demonstrate that the DOA estimation performance is significantly improved and that it outperforms several existing SBL-based DOA estimation methods. |
|---|---|
| AbstractList | •Acoustic source direction of arrival estimation based on Variational Bayesian Inference.•A grid interpolation algorithm to perform off-grid direction of arrival estimation.•This algorithm still performs well under the condition of a coarse grid.
Acoustic source localization constitutes a pivotal research subject within the domain of Direction-of-Arrival (DOA) estimation. In particular, DOA estimation algorithms based on Sparse Bayesian Learning (SBL) tend to experience severe performance degradation when the chosen grid intervals are large. To solve this problem, this paper proposes a DOA estimation algorithm named Linear Interpolation Temporal Correlation − Variational Bayesian Inference (LITC-VBI) based on Variational Bayesian Inference (VBI). Within the framework of the VBI, a novel signal model is constructed by exploiting the inherent temporal correlation of the incident acoustic signal. In addition, by combining the linear interpolation method, a new off-grid model is constructed. This model improves the accuracy and stability of DOA estimation in the off-grid scenario. Simulation results demonstrate that the DOA estimation performance is significantly improved and that it outperforms several existing SBL-based DOA estimation methods. |
| ArticleNumber | 110968 |
| Author | Liu, Jialei Cui, Yingkai Cui, Lin |
| Author_xml | – sequence: 1 givenname: Lin surname: Cui fullname: Cui, Lin organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China – sequence: 2 givenname: Yingkai surname: Cui fullname: Cui, Yingkai email: cykclever@163.com organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China – sequence: 3 givenname: Jialei surname: Liu fullname: Liu, Jialei organization: School of Electronics and Information, Xi’an Polytechnic University, Xi’an 710048, China |
| BookMark | eNqFkM1OAjEUhbvAREBfwfQFZmznpzPsRFQkIWGjhl1zp72jJUNL2mrC21tE165uzj05JyffhIyss0jIDWc5Z1zc7nI4gHKfIeYFK-qcczYT7YiMGWNlJtpie0kmIeySTHY9Jts5HYxF8MORGhvRH9wAETV92Mwphmj2EI2zFIZ350382NMOQrLT6w28-TFhoPdwxGDA0pXt0aNVeEUuehgCXv_eKXl9enxZPGfrzXK1mK8zVQges55rLXjbtbyoGbQzYFCzQkPNy0b0dcVAzMq2a5qqb0tkXan6RgusUrhiulPllIhzr_IuBI-9PPg02h8lZ_LERO7kHxN5YiLPTFLw7hzEtO7LoJdBmdNybTyqKLUz_1V8A8Atctg |
| Cites_doi | 10.1109/LSP.2021.3104503 10.1109/79.526899 10.1109/LSP.2016.2636319 10.1109/TSP.2022.3173731 10.1016/j.apacoust.2023.109677 10.1016/j.apacoust.2023.109521 10.1109/MSP.2008.929620 10.1109/LSP.2020.3048833 10.1109/TSP.2012.2222378 10.1109/JSAC.2022.3155529 10.1109/TIT.2006.871582 10.1109/TITS.2023.3330172 10.1109/JSTSP.2019.2900912 10.1109/TAES.2023.3335194 10.1109/JOE.2016.2615720 10.1016/j.apacoust.2023.109848 10.1109/TSP.2022.3146791 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apacoust.2025.110968 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| ExternalDocumentID | 10_1016_j_apacoust_2025_110968 S0003682X25004402 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABJNI ABMAC ABNEU ACDAQ ACFVG ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGCQF AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AIVDX AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SPD SSQ SST SSZ T5K XPP ZMT ~02 ~G- ~HD AAQXK AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AFFNX AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ R2- SET VH1 WUQ ZY4 |
| ID | FETCH-LOGICAL-c261t-f1dd618b81250a89a0a502da51376f540a6938b774f83e0b3cf7d6e426140dbc3 |
| IEDL.DBID | .~1 |
| ISSN | 0003-682X |
| IngestDate | Wed Oct 01 05:36:52 EDT 2025 Sat Sep 13 17:02:45 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Variational Bayesian Inference Direction-of-arrival (DOA) estimation Temporal Correlation structure Linear Interpolation Sparse Bayesian Learning (SBL) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c261t-f1dd618b81250a89a0a502da51376f540a6938b774f83e0b3cf7d6e426140dbc3 |
| ParticipantIDs | crossref_primary_10_1016_j_apacoust_2025_110968 elsevier_sciencedirect_doi_10_1016_j_apacoust_2025_110968 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-05 |
| PublicationDateYYYYMMDD | 2025-12-05 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-05 day: 05 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied acoustics |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Chen, Chen, Zheng, Wang (b0025) 2022; 70 Krim, Viberg (b0005) 1996; 13 Wang, Yu, Li, Ji, Chen (b0060) 2021; 28 Yang, Xie, Zhang (b0080) 2013; 61 Chen, Chen, Guo, Zhang, Wang (b0030) 2024; 25 Cao, Dai, Xu, Chang (b0100) 2021; 28 Gemba, Nannuru, Gerstoft (b0065) 2019; 13 Zhang, Rao (b0075) 2011; 5 Weiss, Arikan, Vishnu, Deane, Singer (b0070) 2022; 70 Cawley, Talbot (b0090) 2007; 8 Dai, So (b0055) 2021; 69 Tzikas, Likas, Galatsanos (b0095) 2008; 25 Tollefsen, Dosso (b0040) 2016; 42 Donoho (b0045) 2006; 52 Dai, Bao, Xu, Chang (b0085) 2017; 24 Zhang, Shi, Wen (b0015) 2024; 60 Wang, Li, Shen, Liu, Zhao (b0035) 2024; 217 Cheng, Liao (b0010) 2022; 40 Lu, Yang, Yang (b0050) 2023; 211 Wang, Zhuang, Zhang, Jing, Yu, Xiao (b0020) 2023; 214 Dai (10.1016/j.apacoust.2025.110968_b0055) 2021; 69 Wang (10.1016/j.apacoust.2025.110968_b0020) 2023; 214 Cheng (10.1016/j.apacoust.2025.110968_b0010) 2022; 40 Yang (10.1016/j.apacoust.2025.110968_b0080) 2013; 61 Cao (10.1016/j.apacoust.2025.110968_b0100) 2021; 28 Chen (10.1016/j.apacoust.2025.110968_b0030) 2024; 25 Weiss (10.1016/j.apacoust.2025.110968_b0070) 2022; 70 Zhang (10.1016/j.apacoust.2025.110968_b0075) 2011; 5 Zhang (10.1016/j.apacoust.2025.110968_b0015) 2024; 60 Wang (10.1016/j.apacoust.2025.110968_b0035) 2024; 217 Tzikas (10.1016/j.apacoust.2025.110968_b0095) 2008; 25 Krim (10.1016/j.apacoust.2025.110968_b0005) 1996; 13 Cawley (10.1016/j.apacoust.2025.110968_b0090) 2007; 8 Chen (10.1016/j.apacoust.2025.110968_b0025) 2022; 70 Donoho (10.1016/j.apacoust.2025.110968_b0045) 2006; 52 Tollefsen (10.1016/j.apacoust.2025.110968_b0040) 2016; 42 Wang (10.1016/j.apacoust.2025.110968_b0060) 2021; 28 Lu (10.1016/j.apacoust.2025.110968_b0050) 2023; 211 Gemba (10.1016/j.apacoust.2025.110968_b0065) 2019; 13 Dai (10.1016/j.apacoust.2025.110968_b0085) 2017; 24 |
| References_xml | – volume: 69 start-page: 4977 year: 2021 end-page: 4990 ident: b0055 article-title: Real-Valued Sparse Bayesian Learning for DOA Estimation With Arbitrary Linear Arrays. publication-title: Signal Process – volume: 40 start-page: 1890 year: 2022 end-page: 1905 ident: b0010 article-title: QoS-Aware Hybrid Beamforming and DOA Estimation in Multi-Carrier Dual-Function Radar-Communication Systems publication-title: IEEE J on Sel Areas in Commun – volume: 214 year: 2023 ident: b0020 article-title: Weighted block ℓ1 norm induced 2D off-grid compressive beamforming for acoustic source localization: Methodology and applications publication-title: Appl Acoust – volume: 25 start-page: 131 year: 2008 end-page: 146 ident: b0095 article-title: The variational approximation for Bayesian inference publication-title: IEEE Signal Process Mag – volume: 8 start-page: 841 year: 2007 end-page: 861 ident: b0090 article-title: Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters publication-title: J of Mach Learn Res – volume: 52 start-page: 1289 year: 2006 end-page: 1306 ident: b0045 article-title: Compressed sensing publication-title: IEEE Trans on Inf Theory – volume: 217 year: 2024 ident: b0035 article-title: An effective DOA estimation method for low SIR in small-size hydrophone array publication-title: Appl Acoust – volume: 13 start-page: 49 year: 2019 end-page: 60 ident: b0065 article-title: Robust ocean acoustic localization with sparse Bayesian learning publication-title: IEEE J of Sel Top in Signal Process – volume: 25 start-page: 5554 year: 2024 end-page: 5566 ident: b0030 article-title: A RIS-Based Vehicle DOA Estimation Method With Integrated Sensing and Communication System publication-title: IEEE Trans on Intell Transp Systems – volume: 60 start-page: 1299 year: 2024 end-page: 1308 ident: b0015 article-title: Phase Compensation-Based 2D-DOA Estimation for EMVS-MIMO Radar publication-title: IEEE Trans on Aerosp and Electron Syst – volume: 70 start-page: 743 year: 2022 end-page: 755 ident: b0025 article-title: Efficient DOA Estimation Method for Reconfigurable Intelligent Surfaces Aided UAV Swarm publication-title: IEEE Trans on Signal Process – volume: 61 start-page: 38 year: 2013 end-page: 43 ident: b0080 article-title: Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference publication-title: IEEE Trans on Signal Process – volume: 28 start-page: 1744 year: 2021 end-page: 1748 ident: b0060 article-title: Sparse Bayesian Learning Using Generalized Double Pareto Prior for DOA Estimation publication-title: IEEE Signal Process Lett – volume: 24 start-page: 46 year: 2017 end-page: 50 ident: b0085 article-title: Root Sparse Bayesian Learning for Off-Grid DOA Estimation publication-title: IEEE Signal Process Lett – volume: 211 year: 2023 ident: b0050 article-title: An efficient off-grid direction-of-arrival estimation method based on inverse-free sparse Bayesian learning publication-title: Appl Acoust – volume: 70 start-page: 3090 year: 2022 end-page: 3106 ident: b0070 article-title: A semi-blind method for localization of underwater acoustic sources publication-title: IEEE Trans on Signal Process – volume: 28 start-page: 214 year: 2021 end-page: 228 ident: b0100 article-title: Fast Variational Bayesian Inference for Temporally Correlated Sparse Signal Recovery publication-title: IEEE Signal Process Lett – volume: 13 start-page: 67 year: 1996 end-page: 94 ident: b0005 article-title: Two decades of array signal processing research: the parametric approach publication-title: IEEE Signal Process Mag – volume: 42 start-page: 654 year: 2016 end-page: 662 ident: b0040 article-title: Source localization with multiple hydrophone arrays via matched-field processing publication-title: IEEE J of Ocean Eng – volume: 5 start-page: 912 year: 2011 end-page: 926 ident: b0075 article-title: Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning. IEEE J of Sel Top publication-title: Signal Process – volume: 28 start-page: 1744 year: 2021 ident: 10.1016/j.apacoust.2025.110968_b0060 article-title: Sparse Bayesian Learning Using Generalized Double Pareto Prior for DOA Estimation publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2021.3104503 – volume: 5 start-page: 912 issue: 5 year: 2011 ident: 10.1016/j.apacoust.2025.110968_b0075 article-title: Sparse Signal Recovery With Temporally Correlated Source Vectors Using Sparse Bayesian Learning. IEEE J of Sel Top publication-title: Signal Process – volume: 13 start-page: 67 issue: 4 year: 1996 ident: 10.1016/j.apacoust.2025.110968_b0005 article-title: Two decades of array signal processing research: the parametric approach publication-title: IEEE Signal Process Mag doi: 10.1109/79.526899 – volume: 24 start-page: 46 issue: 1 year: 2017 ident: 10.1016/j.apacoust.2025.110968_b0085 article-title: Root Sparse Bayesian Learning for Off-Grid DOA Estimation publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2016.2636319 – volume: 8 start-page: 841 issue: 4 year: 2007 ident: 10.1016/j.apacoust.2025.110968_b0090 article-title: Preventing Over-Fitting during Model Selection via Bayesian Regularisation of the Hyper-Parameters publication-title: J of Mach Learn Res – volume: 70 start-page: 3090 year: 2022 ident: 10.1016/j.apacoust.2025.110968_b0070 article-title: A semi-blind method for localization of underwater acoustic sources publication-title: IEEE Trans on Signal Process doi: 10.1109/TSP.2022.3173731 – volume: 214 year: 2023 ident: 10.1016/j.apacoust.2025.110968_b0020 article-title: Weighted block ℓ1 norm induced 2D off-grid compressive beamforming for acoustic source localization: Methodology and applications publication-title: Appl Acoust doi: 10.1016/j.apacoust.2023.109677 – volume: 211 year: 2023 ident: 10.1016/j.apacoust.2025.110968_b0050 article-title: An efficient off-grid direction-of-arrival estimation method based on inverse-free sparse Bayesian learning publication-title: Appl Acoust doi: 10.1016/j.apacoust.2023.109521 – volume: 25 start-page: 131 issue: 6 year: 2008 ident: 10.1016/j.apacoust.2025.110968_b0095 article-title: The variational approximation for Bayesian inference publication-title: IEEE Signal Process Mag doi: 10.1109/MSP.2008.929620 – volume: 28 start-page: 214 year: 2021 ident: 10.1016/j.apacoust.2025.110968_b0100 article-title: Fast Variational Bayesian Inference for Temporally Correlated Sparse Signal Recovery publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2020.3048833 – volume: 61 start-page: 38 issue: 1 year: 2013 ident: 10.1016/j.apacoust.2025.110968_b0080 article-title: Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference publication-title: IEEE Trans on Signal Process doi: 10.1109/TSP.2012.2222378 – volume: 40 start-page: 1890 issue: 6 year: 2022 ident: 10.1016/j.apacoust.2025.110968_b0010 article-title: QoS-Aware Hybrid Beamforming and DOA Estimation in Multi-Carrier Dual-Function Radar-Communication Systems publication-title: IEEE J on Sel Areas in Commun doi: 10.1109/JSAC.2022.3155529 – volume: 52 start-page: 1289 issue: 4 year: 2006 ident: 10.1016/j.apacoust.2025.110968_b0045 article-title: Compressed sensing publication-title: IEEE Trans on Inf Theory doi: 10.1109/TIT.2006.871582 – volume: 25 start-page: 5554 issue: 6 year: 2024 ident: 10.1016/j.apacoust.2025.110968_b0030 article-title: A RIS-Based Vehicle DOA Estimation Method With Integrated Sensing and Communication System publication-title: IEEE Trans on Intell Transp Systems doi: 10.1109/TITS.2023.3330172 – volume: 13 start-page: 49 issue: 1 year: 2019 ident: 10.1016/j.apacoust.2025.110968_b0065 article-title: Robust ocean acoustic localization with sparse Bayesian learning publication-title: IEEE J of Sel Top in Signal Process doi: 10.1109/JSTSP.2019.2900912 – volume: 60 start-page: 1299 issue: 2 year: 2024 ident: 10.1016/j.apacoust.2025.110968_b0015 article-title: Phase Compensation-Based 2D-DOA Estimation for EMVS-MIMO Radar publication-title: IEEE Trans on Aerosp and Electron Syst doi: 10.1109/TAES.2023.3335194 – volume: 42 start-page: 654 issue: 3 year: 2016 ident: 10.1016/j.apacoust.2025.110968_b0040 article-title: Source localization with multiple hydrophone arrays via matched-field processing publication-title: IEEE J of Ocean Eng doi: 10.1109/JOE.2016.2615720 – volume: 69 start-page: 4977 year: 2021 ident: 10.1016/j.apacoust.2025.110968_b0055 article-title: Real-Valued Sparse Bayesian Learning for DOA Estimation With Arbitrary Linear Arrays.IEEE Trans on publication-title: Signal Process – volume: 217 year: 2024 ident: 10.1016/j.apacoust.2025.110968_b0035 article-title: An effective DOA estimation method for low SIR in small-size hydrophone array publication-title: Appl Acoust doi: 10.1016/j.apacoust.2023.109848 – volume: 70 start-page: 743 year: 2022 ident: 10.1016/j.apacoust.2025.110968_b0025 article-title: Efficient DOA Estimation Method for Reconfigurable Intelligent Surfaces Aided UAV Swarm publication-title: IEEE Trans on Signal Process doi: 10.1109/TSP.2022.3146791 |
| SSID | ssj0000255 |
| Score | 2.4287965 |
| Snippet | •Acoustic source direction of arrival estimation based on Variational Bayesian Inference.•A grid interpolation algorithm to perform off-grid direction of... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 110968 |
| SubjectTerms | Direction-of-arrival (DOA) estimation Linear Interpolation Sparse Bayesian Learning (SBL) Temporal Correlation structure Variational Bayesian Inference |
| Title | A linearly interpolated DOA estimation algorithm based on Variational Bayesian Inference |
| URI | https://dx.doi.org/10.1016/j.apacoust.2025.110968 |
| Volume | 240 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0003-682X databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000255 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0003-682X databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000255 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0003-682X databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000255 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0003-682X databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000255 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0003-682X databaseCode: AKRWK dateStart: 19680101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000255 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB1KRdCDaFWsH2UPXtPma5P0WIulVezJSm5hN7urKbUtNR68-NudyQdWEDx4zCYLYZK8NxPmvQG4NtIgyAlpeUi2lh8J_OYckVrGDw0RvtBFV-XDNBjP_LuYxw0Y1loYaqussL_E9AKtq5VeFc3eOstI44voG7kxkjjNTSYc9v2Qphh0P7_bPChnrqfm0dVbKuF5F_koXZG0wcXLCvNNslz9jaC2SGd0CAdVtsgG5Q0dQUMvW7C_5SHYgt2ihzN9O4Z4wChnJMdilpXjsxaYSSqG9R8jM41SpcjE4nm1yfKXV0YUphguPWHFXP0VZDfiQ5Oykk1qLeAJzEa3j8OxVQ1OsFIsiHLLOEoFTiSRvLktor6wBbddJbiDcGIwRxNB34skZn74PLQtvdSEKtBUTfm2kql3Cs3laqnPgHnataWxueBkfy4RkhSWJH7IQ6x08FQbenW0knXpj5HUjWPzpI5vQvFNyvi2oV8HNfnxpBME8T_2nv9j7wXs0VHRisIvoZlv3vUVJhS57BRvTAd2BpP78fQL4VrKzQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4QjVEPRlEjPvfgtdDXtuWIRAIKnMD0ttnt7moJAsF68OJvd6aPiImJB6_7SJrZ9vtmmvm-JeTWSAMgJ6TlAdlafiTgm3NEYhk_NEj4QuddlaNx0J_6DzGLa6RbaWGwrbLE_gLTc7QuR1plNFurNEWNL6Bv5MZA4nhvMuDwts_cECuw5ud3nwcmzdW1ebh8QyY8awIhJUvUNriwLHffRM_V3xhqg3V6h-SgTBdpp3iiI1LTizrZ3zARrJOdvIkzeTsmcYdi0oiWxTQt7s-aQyqpKBSAFN00CpkiFfPn5TrNXl4pcpiiMPQEJXP5W5DeiQ-N0ko6qMSAJ2Tau590-1Z5c4KVQEWUWcZRKnAiCezNbBG1hS2Y7SrBHMATA0maCNpeJCH1gwPRtvQSE6pAYznl20om3inZWiwX-oxQT7u2NDYTDP3PJWCSgprED1kIpQ5MNUirihZfFQYZvOocm_Eqvhzjy4v4Nki7Cir_cdQcUPyPvef_2HtDdvuT0ZAPB-PHC7KHM3lfCrskW9n6XV9BdpHJ6_zt-QLHk8xi |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+linearly+interpolated+DOA+estimation+algorithm+based+on+Variational+Bayesian+Inference&rft.jtitle=Applied+acoustics&rft.au=Cui%2C+Lin&rft.au=Cui%2C+Yingkai&rft.au=Liu%2C+Jialei&rft.date=2025-12-05&rft.pub=Elsevier+Ltd&rft.issn=0003-682X&rft.volume=240&rft_id=info:doi/10.1016%2Fj.apacoust.2025.110968&rft.externalDocID=S0003682X25004402 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-682X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-682X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-682X&client=summon |