Investigation of aerodynamic performance and operational optimization of wing sails at varying spacings
The aerodynamic performance of sails determines the effectiveness of wind-assisted propulsion, with spacing being a key factor in sail interaction and thrust contribution. Investigating the aerodynamic performance and optimization of operation modes for sails under varying spacing will guide ship en...
Saved in:
| Published in | Ocean engineering Vol. 333; p. 121444 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
30.07.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0029-8018 |
| DOI | 10.1016/j.oceaneng.2025.121444 |
Cover
| Abstract | The aerodynamic performance of sails determines the effectiveness of wind-assisted propulsion, with spacing being a key factor in sail interaction and thrust contribution. Investigating the aerodynamic performance and optimization of operation modes for sails under varying spacing will guide ship energy savings and emission reduction. The aerodynamic characteristics of crescent sails within 0°–60° angle of attack (AOA) range are systematically analyzed using a three-dimensional computational fluid dynamics (CFD) method validated by experiments. Based on the CFD results, an optimization procedure for the AOA under varying spacing is developed by integrating a surrogate model with a genetic algorithm. The variation of thrust coefficient (CT) and Energy Efficiency Design Index (EEDI) are examined. Specifically, desynchronized operation indicated a substantial advantage in enhancing the CT over synchronized operation; however, the improvement potential decreases with increasing spacing, from 12.6 % to 1.6 %. Meanwhile, the improvements in EEDI range from 1.7 % to 13.7 % on a 300,000-ton tanker. In the synchronized operation, the sail interaction effect is directly proportional to AOA and inversely proportional to spacing. In desynchronized operation, the optimized AOA configuration enables more wind energy to reach the downstream sail, which effectively enhances its thrust and hence the performance of the whole system.
•The wing sails interaction is investigated with varing sapcing by using CFD codes.•The AOAs are optimized using a joint CFD, surrogate model and GA procedure.•Interaction is proportional to AOA in synchronization and inversely to spacing.•The improvement potential of system thrust is inversely proportional to spacing.•The EEDI improvements of optimal operation is 1.7 %–13.7 % in a VLCC. |
|---|---|
| AbstractList | The aerodynamic performance of sails determines the effectiveness of wind-assisted propulsion, with spacing being a key factor in sail interaction and thrust contribution. Investigating the aerodynamic performance and optimization of operation modes for sails under varying spacing will guide ship energy savings and emission reduction. The aerodynamic characteristics of crescent sails within 0°–60° angle of attack (AOA) range are systematically analyzed using a three-dimensional computational fluid dynamics (CFD) method validated by experiments. Based on the CFD results, an optimization procedure for the AOA under varying spacing is developed by integrating a surrogate model with a genetic algorithm. The variation of thrust coefficient (CT) and Energy Efficiency Design Index (EEDI) are examined. Specifically, desynchronized operation indicated a substantial advantage in enhancing the CT over synchronized operation; however, the improvement potential decreases with increasing spacing, from 12.6 % to 1.6 %. Meanwhile, the improvements in EEDI range from 1.7 % to 13.7 % on a 300,000-ton tanker. In the synchronized operation, the sail interaction effect is directly proportional to AOA and inversely proportional to spacing. In desynchronized operation, the optimized AOA configuration enables more wind energy to reach the downstream sail, which effectively enhances its thrust and hence the performance of the whole system.
•The wing sails interaction is investigated with varing sapcing by using CFD codes.•The AOAs are optimized using a joint CFD, surrogate model and GA procedure.•Interaction is proportional to AOA in synchronization and inversely to spacing.•The improvement potential of system thrust is inversely proportional to spacing.•The EEDI improvements of optimal operation is 1.7 %–13.7 % in a VLCC. |
| ArticleNumber | 121444 |
| Author | Li, Xiaowu Peng, Guisheng Ma, Ranqi Zhang, Rui Ruan, Zhang Cao, Jianlin Wang, Kai Wu, Jianyi Huang, Lianzhong |
| Author_xml | – sequence: 1 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China – sequence: 2 givenname: Lianzhong orcidid: 0009-0006-3886-4447 surname: Huang fullname: Huang, Lianzhong email: huanglz@dlmu.edu.cn organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China – sequence: 3 givenname: Guisheng surname: Peng fullname: Peng, Guisheng organization: Dalian Shipbuilding Industry Co., Ltd., Dalian, 116011, Liaoning, China – sequence: 4 givenname: Zhang surname: Ruan fullname: Ruan, Zhang organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China – sequence: 5 givenname: Ranqi surname: Ma fullname: Ma, Ranqi organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China – sequence: 6 givenname: Kai surname: Wang fullname: Wang, Kai organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China – sequence: 7 givenname: Jianlin surname: Cao fullname: Cao, Jianlin organization: Marine Engineering College, Dalian Maritime University, Dalian, 116026, Liaoning, China – sequence: 8 givenname: Jianyi surname: Wu fullname: Wu, Jianyi organization: China Merchants Energy Shipping Co., Ltd., Shenzhen, 518067, Guangdong, China – sequence: 9 givenname: Xiaowu surname: Li fullname: Li, Xiaowu organization: China Merchants Energy Shipping Co., Ltd., Shenzhen, 518067, Guangdong, China |
| BookMark | eNqFkM1OwzAQhH0oEm3hFZBfIGXtOE5yA1X8VKrEBc7W1j-Rq8au7KioPD1pC1w5zWq1M5r9ZmQSYrCE3DFYMGDyfruI2mKwoVtw4NWCcSaEmJApAG-LBlhzTWY5bwFASiinpFuFg82D73DwMdDoKNoUzTFg7zXd2-Ri6jFoSzEYGsfF-RB34zz43n_9-T596GhGv8sUB3rAdDwv9qhHzTfkyuEu29sfnZOP56f35WuxfntZLR_XheaSDYUFpxtnqlq2lSgdNy3ABiqNcgPQcFeKkqNBNFKAELUEFGLTtFjZFuva6XJO5CVXp5hzsk7tk-_HMoqBOiFSW_WLSJ0QqQui0fhwMdqx3cHbpLL2dnzc-GT1oEz0_0V8A_34eYI |
| Cites_doi | 10.1007/s13344-019-0073-x 10.1016/j.oceaneng.2014.07.024 10.2514/3.12149 10.1016/j.oceaneng.2024.117897 10.1016/j.jweia.2013.05.015 10.3390/jmse11112123 10.1021/acssuschemeng.3c02914 10.1016/j.oceaneng.2019.01.026 10.1016/j.jclepro.2024.141359 10.1016/j.apor.2021.102788 10.1007/s11804-021-00219-w 10.3390/jmse10121969 10.1016/j.apor.2022.103209 10.1007/s11770-013-0407-z 10.1016/j.oceaneng.2023.115349 10.1016/j.enconman.2024.118976 10.1016/j.oceaneng.2023.114055 10.1016/j.oceaneng.2016.05.051 10.1016/j.envpol.2024.125170 10.1016/j.oceaneng.2021.109903 10.1016/j.jclepro.2024.140922 10.1016/j.oceaneng.2015.06.009 10.2478/pomr-2019-0067 10.1080/17445302.2023.2256601 10.1016/j.jweia.2007.04.001 10.1016/j.oceaneng.2024.119142 10.3390/jmse12091585 10.1016/j.energy.2024.131948 10.1007/s00773-004-0189-3 10.1016/j.apenergy.2023.121369 10.1016/j.oceaneng.2022.111345 10.1016/j.oceaneng.2023.114341 10.1016/j.oceaneng.2023.116596 10.3390/jmse11040789 10.3390/jmse12081425 10.1080/20464177.2017.1319997 10.1016/j.oceaneng.2015.02.005 10.1016/j.jbiomech.2010.04.038 10.5957/JSPD.10220024 10.1016/j.ijheatmasstransfer.2006.03.009 10.1080/20464177.2018.1492341 10.3233/ISP-180143 10.3390/jmse12060985 10.1016/j.oceaneng.2023.115946 10.2478/pomr-2021-0046 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2025.121444 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2025_121444 S0029801825011576 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGRNS AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLECG BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ADMUD ADNMO AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 R2- SAC SET WUQ ~HD |
| ID | FETCH-LOGICAL-c261t-e0fc8fd5769543f2d900b05ca6b0082f3432adaad64044760a44b89a5e9a77fc3 |
| IEDL.DBID | .~1 |
| ISSN | 0029-8018 |
| IngestDate | Wed Oct 01 05:54:52 EDT 2025 Sat Jul 05 17:11:23 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Genetic algorithm (GA) Energy efficiency design index (EEDI) Wind-assisted propulsion technology Computational fluid dynamics (CFD) Optimization of angle of attack Interaction of crescent wing sails Spacing ratio |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c261t-e0fc8fd5769543f2d900b05ca6b0082f3432adaad64044760a44b89a5e9a77fc3 |
| ORCID | 0009-0006-3886-4447 |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2025_121444 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_121444 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-30 |
| PublicationDateYYYYMMDD | 2025-07-30 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Gu, Tong (bib19) 2019; 60 Laryea, Schiffauerova (bib27) 2024; 303 Chambers (bib6) 2000 Menter (bib43) 1994; 32 Li, Nihei, Nakashima, Ikeda (bib35) 2015; 98 Li, Zhang, Zhang, Yang, Guo (bib31) 2021; 114 Sun, Yu, Zhang, Jin (bib52) 2019; 33 Zhang, Huang, Peng, Ma, Wang, Tian, Song (bib59) 2023; 288 Ma, Wang, Wang, Zhao, Jiang, Liu, Xing, Huang (bib41) 2023; 11 Huang, Fan, Xu, Liu (bib21) 2022; 10 Zhang, Huang, Ma, Peng, Ruan, Wang, Zhao, Li, Wang (bib58) 2024; 305 Wang, Li, Zuo, Yuan, Wu (bib54) 2024; 12 Li, Zhang, Li, Dai, Li (bib32) 2019; 26 Bot, Viola, Flay, Brett (bib4) 2014; 90 Hussain, Amin (bib22) 2021; 20 Lindstad, Polic, Rialland, Sandaas, Stokke (bib34) 2023; 39 (bib44) 2021 Fang, Tian, Zhang, Xu, Ding, Wang, Xia (bib12) 2024; vol. 319 Cairns, Vezza, Green, MacVicar (bib5) 2021; 240 Makram, Panagiotou, Mattheou (bib38) 2023; 276 Rony, Mofijur, Hasan, Rasul, Jahirul, Ahmed, Kalam, Badruddin, Khan, Show (bib48) 2023; 338 Shih, Liou, Shabbir, Yang, Zhu (bib50) 1995; 24 Kuang, Li, Su, Song, Wang, Zhang, Ma (bib25) 2023; 287 Ouchi, Uzawa, Kanai, Katori (bib45) 2013 (bib47) 2015 Ma, Bi, Hu, Zheng, Gan (bib42) 2019; 173 Hu, Zeng, Li (bib23) 2012 Sundaram, Karimi (bib51) 2023; 11 Chen, Song, Zhang (bib9) 2013; 119 Salim, Cheah (bib49) 2009 Viola, Sacher, Xu, Wang (bib53) 2015; 105 (bib40) 2022 Bordogna, Keuning, Huijsmans, Belloli (bib3) 2018; 65 Zou, Hu, Zhou, Li, Dunn (bib63) 2013; 10 Zhu, Yao, Ringsberg (bib61) 2024; 19 Grasberger, Forbush (bib18) 2023; 11 Lasher, Flaherty (bib28) 2009; 3 Atkinson, Binns (bib1) 2018; 17 Chen, Pan, Zhang, Zheng, Xia, Chen (bib8) 2023; 27 Freitas, Gervasio (bib15) 2024 Lindstad, Lagemann, Rialland, Gamlem, Valland (bib33) 2021; 101 Defraeye, Blocken, Koninckx, Hespel, Carmeliet (bib10) 2010; 43 Zhu, Yao, Thies, Ringsberg, Ramne (bib62) 2023; 285 Guzelbulut, Badalotti, Suzuki (bib20) 2024; 312 Zhang, Hu, He (bib57) 2022; 28 Majidian, Ahani, Wang (bib37) 2022; 124 Yasuda, Taniguchi, Katayama (bib55) 2024; 12 Chen, Pan, Song, Zheng (bib7) 2016; 57 Galimova, Fasihi, Bogdanov, Breyer (bib17) 2023; 347 Park, Oh, Lim (bib46) 2006; 49 Malmek, Larsson, Werner, Ringsberg, Bensow, Finnsgård (bib39) 2024; 293 Zeng, Zhang, Cai, Zhou (bib56) 2023; 278 Zhang, Huang, Wang, Ma, Ruan, Wang (bib60) 2024; 443 Kume, Hamada, Kobayashi, Yamanaka (bib26) 2022; 254 Duan, Shi, Guo, Bao (bib11) 2022 Lee, Jo, Lee, Choi (bib30) 2016; 121 Feng, Qu, Wu, Zhu, Jing (bib13) 2024; 446 Karountzos, Giannaki, Kepaptsoglou (bib24) 2024; 12 Atkinson, Binns (bib2) 2018; 17 Fujiwara, Hearn, Kitamura, Ueno, Minami (bib16) 2005; 10 Li, Tang (bib36) 2024; 319 Lasher, Sonnenmeier (bib29) 2008; 96 (bib14) 2017 Chen (10.1016/j.oceaneng.2025.121444_bib7) 2016; 57 Zou (10.1016/j.oceaneng.2025.121444_bib63) 2013; 10 Li (10.1016/j.oceaneng.2025.121444_bib35) 2015; 98 Ma (10.1016/j.oceaneng.2025.121444_bib42) 2019; 173 Salim (10.1016/j.oceaneng.2025.121444_bib49) 2009 Ma (10.1016/j.oceaneng.2025.121444_bib41) 2023; 11 Viola (10.1016/j.oceaneng.2025.121444_bib53) 2015; 105 Duan (10.1016/j.oceaneng.2025.121444_bib11) 2022 Lindstad (10.1016/j.oceaneng.2025.121444_bib33) 2021; 101 Shih (10.1016/j.oceaneng.2025.121444_bib50) 1995; 24 Atkinson (10.1016/j.oceaneng.2025.121444_bib2) 2018; 17 Zhang (10.1016/j.oceaneng.2025.121444_bib59) 2023; 288 Yasuda (10.1016/j.oceaneng.2025.121444_bib55) 2024; 12 Kuang (10.1016/j.oceaneng.2025.121444_bib25) 2023; 287 Bot (10.1016/j.oceaneng.2025.121444_bib4) 2014; 90 Zhu (10.1016/j.oceaneng.2025.121444_bib61) 2024; 19 Zhang (10.1016/j.oceaneng.2025.121444_bib58) 2024; 305 Majidian (10.1016/j.oceaneng.2025.121444_bib37) 2022; 124 Bordogna (10.1016/j.oceaneng.2025.121444_bib3) 2018; 65 Freitas (10.1016/j.oceaneng.2025.121444_bib15) 2024 Grasberger (10.1016/j.oceaneng.2025.121444_bib18) 2023; 11 Li (10.1016/j.oceaneng.2025.121444_bib31) 2021; 114 Menter (10.1016/j.oceaneng.2025.121444_bib43) 1994; 32 Cairns (10.1016/j.oceaneng.2025.121444_bib5) 2021; 240 Lee (10.1016/j.oceaneng.2025.121444_bib30) 2016; 121 Zhang (10.1016/j.oceaneng.2025.121444_bib57) 2022; 28 Chen (10.1016/j.oceaneng.2025.121444_bib8) 2023; 27 Lasher (10.1016/j.oceaneng.2025.121444_bib29) 2008; 96 (10.1016/j.oceaneng.2025.121444_bib14) 2017 Sun (10.1016/j.oceaneng.2025.121444_bib52) 2019; 33 Park (10.1016/j.oceaneng.2025.121444_bib46) 2006; 49 Guzelbulut (10.1016/j.oceaneng.2025.121444_bib20) 2024; 312 (10.1016/j.oceaneng.2025.121444_bib40) 2022 Ouchi (10.1016/j.oceaneng.2025.121444_bib45) 2013 Zhang (10.1016/j.oceaneng.2025.121444_bib60) 2024; 443 Chambers (10.1016/j.oceaneng.2025.121444_bib6) 2000 Kume (10.1016/j.oceaneng.2025.121444_bib26) 2022; 254 Wang (10.1016/j.oceaneng.2025.121444_bib54) 2024; 12 Li (10.1016/j.oceaneng.2025.121444_bib36) 2024; 319 Zeng (10.1016/j.oceaneng.2025.121444_bib56) 2023; 278 Defraeye (10.1016/j.oceaneng.2025.121444_bib10) 2010; 43 Galimova (10.1016/j.oceaneng.2025.121444_bib17) 2023; 347 Gu (10.1016/j.oceaneng.2025.121444_bib19) 2019; 60 Laryea (10.1016/j.oceaneng.2025.121444_bib27) 2024; 303 Feng (10.1016/j.oceaneng.2025.121444_bib13) 2024; 446 Rony (10.1016/j.oceaneng.2025.121444_bib48) 2023; 338 Lindstad (10.1016/j.oceaneng.2025.121444_bib34) 2023; 39 Makram (10.1016/j.oceaneng.2025.121444_bib38) 2023; 276 Fujiwara (10.1016/j.oceaneng.2025.121444_bib16) 2005; 10 Huang (10.1016/j.oceaneng.2025.121444_bib21) 2022; 10 Chen (10.1016/j.oceaneng.2025.121444_bib9) 2013; 119 Lasher (10.1016/j.oceaneng.2025.121444_bib28) 2009; 3 Fang (10.1016/j.oceaneng.2025.121444_bib12) 2024; vol. 319 Li (10.1016/j.oceaneng.2025.121444_bib32) 2019; 26 (10.1016/j.oceaneng.2025.121444_bib47) 2015 (10.1016/j.oceaneng.2025.121444_bib44) 2021 Malmek (10.1016/j.oceaneng.2025.121444_bib39) 2024; 293 Karountzos (10.1016/j.oceaneng.2025.121444_bib24) 2024; 12 Atkinson (10.1016/j.oceaneng.2025.121444_bib1) 2018; 17 Sundaram (10.1016/j.oceaneng.2025.121444_bib51) 2023; 11 Hussain (10.1016/j.oceaneng.2025.121444_bib22) 2021; 20 Hu (10.1016/j.oceaneng.2025.121444_bib23) 2012 Zhu (10.1016/j.oceaneng.2025.121444_bib62) 2023; 285 |
| References_xml | – volume: 19 start-page: 134 year: 2024 end-page: 147 ident: bib61 article-title: Unsteady RANS and IDDES studies on a telescopic crescent-shaped wingsail publication-title: Ships Offshore Struct. – volume: 11 start-page: 13584 year: 2023 end-page: 13593 ident: bib51 article-title: Sustainability analysis of an LNG bunkering protocol publication-title: ACS Sustain. Chem. Eng. – volume: 114 year: 2021 ident: bib31 article-title: An assisted propulsion device of vessel utilizing wind energy based on magnus effect publication-title: Appl. Ocean Res. – volume: 27 start-page: 471 year: 2023 end-page: 480 ident: bib8 article-title: Evaluation of energy savings for a sail-assisted ship under differential sailing strategy publication-title: J. Ship Mech. – volume: 57 start-page: 169 year: 2016 end-page: 177 ident: bib7 article-title: Evaluation of energy savings for a sail-assisted VLCC under different sail attack angle strategies publication-title: Shipbuilding of China – volume: 338 year: 2023 ident: bib48 article-title: Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals publication-title: Fuel – year: 2022 ident: bib40 article-title: Guidelines on the Method of Calculation of the Attained Energy Efficiency Design Index (EEDI) for New Ships – year: 2021 ident: bib44 article-title: Guidance on treatment of innovative energy efficiency technologies for calculation and verification of the attained EEDI and EEXI publication-title: MEPC 77th Session – volume: 285 year: 2023 ident: bib62 article-title: Propulsive performance of a rigid wingsail with crescent-shaped profiles publication-title: Ocean Eng. – year: 2009 ident: bib49 article-title: Wall Y+ strategy for dealing with wall-bounded turbulent flows publication-title: Proceedings of the International MultiConference of Engineers and Computer Scientists – volume: 10 start-page: 397 year: 2013 end-page: 410 ident: bib63 article-title: Analysis of radial basis function interpolation approach publication-title: Appl. Geophys. – start-page: 562 year: 2013 end-page: 567 ident: bib45 article-title: Wind Challenger” the next generation hybrid sailing vessel publication-title: Third International Symposium on Marine Propulsors smp’13 – volume: 288 year: 2023 ident: bib59 article-title: A novel method of desynchronized operation of sails for ship wind-assisted propulsion system publication-title: Ocean Eng. – volume: 101 year: 2021 ident: bib33 article-title: Reduction of maritime GHG emissions and the potential role of E-fuels publication-title: Transport. Res. Transport Environ. – volume: 276 year: 2023 ident: bib38 article-title: Wingsail layout design and shape optimization using a CFD-Aided taguchi approach: the aegean marathon case study publication-title: Ocean Eng. – volume: 43 start-page: 2281 year: 2010 end-page: 2287 ident: bib10 article-title: Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches publication-title: J. Biomech. – volume: 20 start-page: 426 year: 2021 end-page: 445 ident: bib22 article-title: A comprehensive analysis of the stability and powering performances of a hard sail-assisted bulk carrier publication-title: J. Mar. Sci. Appl. – volume: 39 start-page: 194 year: 2023 end-page: 204 ident: bib34 article-title: Reaching IMO 2050 GHG targets exclusively through energy efficiency measures publication-title: J. Ship Prod. Des – volume: vol. 319 year: 2024 ident: bib12 publication-title: Aerodynamic Analysis of Rigid Wing Sail Based on CFD Simulation for the Design of High-Performance Unmanned Sailboats – volume: 303 year: 2024 ident: bib27 article-title: A novel standalone hybrid renewable energy systems onboard conventional and autonomous tugboats publication-title: Energy – volume: 10 start-page: 131 year: 2005 end-page: 146 ident: bib16 article-title: Steady sailing performance of a hybrid-sail assisted bulk carrier publication-title: J. Mar. Sci. Technol. – volume: 3 start-page: 71 year: 2009 end-page: 83 ident: bib28 article-title: CFD analysis of the survivability of a square-rigged sailing vessel publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 17 start-page: 99 year: 2018 end-page: 105 ident: bib2 article-title: Power profile for segment rigid sail publication-title: J. Marine Eng.; Technol. – volume: 98 start-page: 23 year: 2015 end-page: 31 ident: bib35 article-title: A study on the performance of Cascade hard sails and sail-equipped vessels publication-title: Ocean Eng. – volume: 33 start-page: 746 year: 2019 end-page: 752 ident: bib52 article-title: Analysis of influencing factors on lift coefficients of autonomous sail-boat double sail propulsion system based on vortex panel method publication-title: China Ocean Eng. – volume: 446 year: 2024 ident: bib13 article-title: Utilizing waste heat from natural gas engine and LNG cold energy to meet heat-electric-cold demands of carbon capture and storage for ship decarbonization: design, optimization and 4E analysis publication-title: J. Clean. Prod. – volume: 254 year: 2022 ident: bib26 article-title: Evaluation of aerodynamic characteristics of a ship with flettner rotors by wind tunnel tests and RANS-Based CFD publication-title: Ocean Eng. – volume: 121 start-page: 422 year: 2016 end-page: 436 ident: bib30 article-title: Surrogate model based design optimization of multiple wing sails considering flow interaction effect publication-title: Ocean Eng. – volume: 347 year: 2023 ident: bib17 article-title: Impact of international transportation chains on cost of green e-hydrogen: global cost of hydrogen and consequences for Germany and Finland publication-title: Appl. Energy – volume: 10 start-page: 1969 year: 2022 ident: bib21 article-title: Life cycle greenhouse gas emission assessment for using alternative marine fuels: a very large crude carrier (VLCC) case study publication-title: J. Mar. Sci. Eng. – volume: 11 start-page: 789 year: 2023 ident: bib41 article-title: Evaluation method for energy saving of sail-assisted ship based on wind resource analysis of typical route publication-title: J. Mar. Sci. Eng. – volume: 96 start-page: 143 year: 2008 end-page: 165 ident: bib29 article-title: An analysis of practical RANS simulations for spinnaker aerodynamics publication-title: J. Wind Eng. Ind. Aerod. – volume: 60 start-page: 107 year: 2019 end-page: 116 ident: bib19 article-title: Study on calculation method of contribution of wing-sail propulsion technology to EEDI publication-title: Shipbuilding of China – year: 2015 ident: bib47 article-title: Hydrodynamic Test Procedures for Surface Ship Models in Wind Tunnels – volume: 12 start-page: 1585 year: 2024 ident: bib24 article-title: GIS-based optimal siting of offshore wind farms to support zero-emission ferry routes publication-title: J. Mar. Sci. Eng. – year: 2017 ident: bib14 article-title: Fluent User's Guide – volume: 65 start-page: 93 year: 2018 end-page: 125 ident: bib3 article-title: Wind-tunnel experiments on the aerodynamic interaction between two rigid sails used for wind-assisted propulsion publication-title: ISP – volume: 312 year: 2024 ident: bib20 article-title: Optimization techniques for the design of crescent-shaped hard sails for wind-assisted ship propulsion publication-title: Ocean Eng. – volume: 49 start-page: 3439 year: 2006 end-page: 3447 ident: bib46 article-title: The application of the CFD and kriging method to an optimization of heat sink publication-title: Int. J. Heat Mass Tran. – volume: 278 year: 2023 ident: bib56 article-title: Wake distortion analysis of a dynarig and its application in a sail array design publication-title: Ocean Eng. – volume: 105 start-page: 33 year: 2015 end-page: 42 ident: bib53 article-title: A numerical method for the design of ships with wind-assisted propulsion publication-title: Ocean Eng. – volume: 124 year: 2022 ident: bib37 article-title: Aerodynamic study of pyramid stacking configuration on mega-sized container ships using CFD to optimize lateral drag publication-title: Appl. Ocean Res. – volume: 17 start-page: 143 year: 2018 end-page: 152 ident: bib1 article-title: Analysis of drag, airflow and surface pressure characteristics of a segment rigid sail publication-title: J. Marine Eng.; Technol. – volume: 293 year: 2024 ident: bib39 article-title: Rapid aerodynamic method for predicting the performance of interacting wing sails publication-title: Ocean Eng. – volume: 240 year: 2021 ident: bib5 article-title: Numerical optimisation of a ship wind-assisted propulsion system using blowing and suction over a range of wind conditions publication-title: Ocean Eng. – volume: 24 year: 1995 ident: bib50 article-title: A new k-ε eddy viscosity model for high: reynolds number turbulent flows publication-title: Compurers Fluids – year: 2000 ident: bib6 article-title: The Practical Handbook of Genetic Algorithms Applications – volume: 12 start-page: 985 year: 2024 ident: bib54 article-title: Computational fluid dynamics investigation of the spacing of the aerodynamic characteristics for multiple wingsails on ships publication-title: J. Mar. Sci. Eng. – volume: 305 year: 2024 ident: bib58 article-title: Numerical investigation on the effects of heel on the aerodynamic performance of wing sails publication-title: Ocean Eng. – volume: 119 start-page: 69 year: 2013 end-page: 77 ident: bib9 article-title: A statistical method to merge wind cases for wind power assessment of wind farm publication-title: J. Wind Eng. Ind. Aerod. – volume: 173 start-page: 687 year: 2019 end-page: 699 ident: bib42 article-title: Hard sail optimization and energy efficiency enhancement for sail-assisted vessel publication-title: Ocean Eng. – volume: 443 year: 2024 ident: bib60 article-title: Novel optimized layout for flettner rotors based on reuse of wake energy publication-title: J. Clean. Prod. – year: 2024 ident: bib15 article-title: The challenge of benchmarking carbon emissions in maritime ports publication-title: Environ. Pollut. – volume: 90 start-page: 84 year: 2014 end-page: 92 ident: bib4 article-title: Wind-tunnel pressure measurements on model-scale rigid downwind sails publication-title: Ocean Eng. – volume: 11 start-page: 2123 year: 2023 ident: bib18 article-title: Investigating a renewable-resource-targeting Mobile aquaculture system using route optimization based on optimal foraging theory publication-title: J. Mar. Sci. Eng. – start-page: 1457 year: 2022 end-page: 1462 ident: bib11 article-title: Aerodynamic simulation of aircraft crusing characteristics based on FLUENT publication-title: Presented at the 19th IEEE International Conference on Mechatronics and Automation – start-page: 2249 year: 2012 end-page: 2254 ident: bib23 article-title: Research on the aerodynamic characteristics of ellipse wing sail publication-title: Renewable Sustain. Energy – volume: 12 start-page: 1425 year: 2024 ident: bib55 article-title: Numerical investigation of aerodynamic interactions between rigid sails attached to ship publication-title: J. Mar. Sci. Eng. – volume: 319 year: 2024 ident: bib36 article-title: Circulation-controlled wind-assisted ship propulsion: technical innovations for future shipping industry decarbonization publication-title: Energy Convers. Manag. – volume: 287 year: 2023 ident: bib25 article-title: Effect of chord length ratio on aerodynamic performance of two-element wing sail publication-title: Ocean Eng. – volume: 28 start-page: 20 year: 2022 end-page: 29 ident: bib57 article-title: Wind tunnel experiment of multi-mode ARC sail device publication-title: Pol. Marit. Res. – volume: 26 start-page: 61 year: 2019 end-page: 68 ident: bib32 article-title: Aerodynamic performance of a new double-flap wing sail publication-title: Pol. Marit. Res. – volume: 32 start-page: 1598 year: 1994 end-page: 1605 ident: bib43 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. – volume: 33 start-page: 746 year: 2019 ident: 10.1016/j.oceaneng.2025.121444_bib52 article-title: Analysis of influencing factors on lift coefficients of autonomous sail-boat double sail propulsion system based on vortex panel method publication-title: China Ocean Eng. doi: 10.1007/s13344-019-0073-x – volume: 90 start-page: 84 year: 2014 ident: 10.1016/j.oceaneng.2025.121444_bib4 article-title: Wind-tunnel pressure measurements on model-scale rigid downwind sails publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2014.07.024 – volume: 32 start-page: 1598 year: 1994 ident: 10.1016/j.oceaneng.2025.121444_bib43 article-title: Two-equation eddy-viscosity turbulence models for engineering applications publication-title: AIAA J. doi: 10.2514/3.12149 – volume: 305 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib58 article-title: Numerical investigation on the effects of heel on the aerodynamic performance of wing sails publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117897 – volume: 119 start-page: 69 year: 2013 ident: 10.1016/j.oceaneng.2025.121444_bib9 article-title: A statistical method to merge wind cases for wind power assessment of wind farm publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2013.05.015 – volume: 11 start-page: 2123 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib18 article-title: Investigating a renewable-resource-targeting Mobile aquaculture system using route optimization based on optimal foraging theory publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse11112123 – year: 2017 ident: 10.1016/j.oceaneng.2025.121444_bib14 – volume: 11 start-page: 13584 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib51 article-title: Sustainability analysis of an LNG bunkering protocol publication-title: ACS Sustain. Chem. Eng. doi: 10.1021/acssuschemeng.3c02914 – volume: 173 start-page: 687 year: 2019 ident: 10.1016/j.oceaneng.2025.121444_bib42 article-title: Hard sail optimization and energy efficiency enhancement for sail-assisted vessel publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.01.026 – year: 2009 ident: 10.1016/j.oceaneng.2025.121444_bib49 article-title: Wall Y+ strategy for dealing with wall-bounded turbulent flows – volume: 446 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib13 article-title: Utilizing waste heat from natural gas engine and LNG cold energy to meet heat-electric-cold demands of carbon capture and storage for ship decarbonization: design, optimization and 4E analysis publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.141359 – volume: 114 year: 2021 ident: 10.1016/j.oceaneng.2025.121444_bib31 article-title: An assisted propulsion device of vessel utilizing wind energy based on magnus effect publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102788 – volume: 20 start-page: 426 year: 2021 ident: 10.1016/j.oceaneng.2025.121444_bib22 article-title: A comprehensive analysis of the stability and powering performances of a hard sail-assisted bulk carrier publication-title: J. Mar. Sci. Appl. doi: 10.1007/s11804-021-00219-w – year: 2015 ident: 10.1016/j.oceaneng.2025.121444_bib47 – year: 2000 ident: 10.1016/j.oceaneng.2025.121444_bib6 – volume: 57 start-page: 169 year: 2016 ident: 10.1016/j.oceaneng.2025.121444_bib7 article-title: Evaluation of energy savings for a sail-assisted VLCC under different sail attack angle strategies publication-title: Shipbuilding of China – volume: 10 start-page: 1969 year: 2022 ident: 10.1016/j.oceaneng.2025.121444_bib21 article-title: Life cycle greenhouse gas emission assessment for using alternative marine fuels: a very large crude carrier (VLCC) case study publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse10121969 – start-page: 1457 year: 2022 ident: 10.1016/j.oceaneng.2025.121444_bib11 article-title: Aerodynamic simulation of aircraft crusing characteristics based on FLUENT – volume: 60 start-page: 107 issue: 2 year: 2019 ident: 10.1016/j.oceaneng.2025.121444_bib19 article-title: Study on calculation method of contribution of wing-sail propulsion technology to EEDI publication-title: Shipbuilding of China – volume: 124 year: 2022 ident: 10.1016/j.oceaneng.2025.121444_bib37 article-title: Aerodynamic study of pyramid stacking configuration on mega-sized container ships using CFD to optimize lateral drag publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2022.103209 – volume: 10 start-page: 397 issue: 4 year: 2013 ident: 10.1016/j.oceaneng.2025.121444_bib63 article-title: Analysis of radial basis function interpolation approach publication-title: Appl. Geophys. doi: 10.1007/s11770-013-0407-z – volume: 285 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib62 article-title: Propulsive performance of a rigid wingsail with crescent-shaped profiles publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115349 – volume: 319 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib36 article-title: Circulation-controlled wind-assisted ship propulsion: technical innovations for future shipping industry decarbonization publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2024.118976 – volume: 276 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib38 article-title: Wingsail layout design and shape optimization using a CFD-Aided taguchi approach: the aegean marathon case study publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114055 – volume: 121 start-page: 422 year: 2016 ident: 10.1016/j.oceaneng.2025.121444_bib30 article-title: Surrogate model based design optimization of multiple wing sails considering flow interaction effect publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2016.05.051 – year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib15 article-title: The challenge of benchmarking carbon emissions in maritime ports publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2024.125170 – volume: vol. 319 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib12 – volume: 240 year: 2021 ident: 10.1016/j.oceaneng.2025.121444_bib5 article-title: Numerical optimisation of a ship wind-assisted propulsion system using blowing and suction over a range of wind conditions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109903 – volume: 443 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib60 article-title: Novel optimized layout for flettner rotors based on reuse of wake energy publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2024.140922 – volume: 105 start-page: 33 year: 2015 ident: 10.1016/j.oceaneng.2025.121444_bib53 article-title: A numerical method for the design of ships with wind-assisted propulsion publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.06.009 – volume: 26 start-page: 61 year: 2019 ident: 10.1016/j.oceaneng.2025.121444_bib32 article-title: Aerodynamic performance of a new double-flap wing sail publication-title: Pol. Marit. Res. doi: 10.2478/pomr-2019-0067 – volume: 19 start-page: 134 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib61 article-title: Unsteady RANS and IDDES studies on a telescopic crescent-shaped wingsail publication-title: Ships Offshore Struct. doi: 10.1080/17445302.2023.2256601 – volume: 96 start-page: 143 year: 2008 ident: 10.1016/j.oceaneng.2025.121444_bib29 article-title: An analysis of practical RANS simulations for spinnaker aerodynamics publication-title: J. Wind Eng. Ind. Aerod. doi: 10.1016/j.jweia.2007.04.001 – volume: 24 year: 1995 ident: 10.1016/j.oceaneng.2025.121444_bib50 article-title: A new k-ε eddy viscosity model for high: reynolds number turbulent flows publication-title: Compurers Fluids – volume: 312 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib20 article-title: Optimization techniques for the design of crescent-shaped hard sails for wind-assisted ship propulsion publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.119142 – volume: 12 start-page: 1585 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib24 article-title: GIS-based optimal siting of offshore wind farms to support zero-emission ferry routes publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse12091585 – volume: 288 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib59 article-title: A novel method of desynchronized operation of sails for ship wind-assisted propulsion system publication-title: Ocean Eng. – volume: 303 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib27 article-title: A novel standalone hybrid renewable energy systems onboard conventional and autonomous tugboats publication-title: Energy doi: 10.1016/j.energy.2024.131948 – volume: 10 start-page: 131 year: 2005 ident: 10.1016/j.oceaneng.2025.121444_bib16 article-title: Steady sailing performance of a hybrid-sail assisted bulk carrier publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-004-0189-3 – volume: 347 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib17 article-title: Impact of international transportation chains on cost of green e-hydrogen: global cost of hydrogen and consequences for Germany and Finland publication-title: Appl. Energy doi: 10.1016/j.apenergy.2023.121369 – volume: 338 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib48 article-title: Alternative fuels to reduce greenhouse gas emissions from marine transport and promote UN sustainable development goals publication-title: Fuel – volume: 254 year: 2022 ident: 10.1016/j.oceaneng.2025.121444_bib26 article-title: Evaluation of aerodynamic characteristics of a ship with flettner rotors by wind tunnel tests and RANS-Based CFD publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.111345 – volume: 278 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib56 article-title: Wake distortion analysis of a dynarig and its application in a sail array design publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114341 – volume: 293 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib39 article-title: Rapid aerodynamic method for predicting the performance of interacting wing sails publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.116596 – year: 2022 ident: 10.1016/j.oceaneng.2025.121444_bib40 – volume: 11 start-page: 789 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib41 article-title: Evaluation method for energy saving of sail-assisted ship based on wind resource analysis of typical route publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse11040789 – volume: 12 start-page: 1425 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib55 article-title: Numerical investigation of aerodynamic interactions between rigid sails attached to ship publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse12081425 – volume: 17 start-page: 99 year: 2018 ident: 10.1016/j.oceaneng.2025.121444_bib2 article-title: Power profile for segment rigid sail publication-title: J. Marine Eng.; Technol. doi: 10.1080/20464177.2017.1319997 – volume: 98 start-page: 23 year: 2015 ident: 10.1016/j.oceaneng.2025.121444_bib35 article-title: A study on the performance of Cascade hard sails and sail-equipped vessels publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2015.02.005 – volume: 101 year: 2021 ident: 10.1016/j.oceaneng.2025.121444_bib33 article-title: Reduction of maritime GHG emissions and the potential role of E-fuels publication-title: Transport. Res. Transport Environ. – volume: 43 start-page: 2281 year: 2010 ident: 10.1016/j.oceaneng.2025.121444_bib10 article-title: Computational fluid dynamics analysis of cyclist aerodynamics: performance of different turbulence-modelling and boundary-layer modelling approaches publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.04.038 – volume: 3 start-page: 71 year: 2009 ident: 10.1016/j.oceaneng.2025.121444_bib28 article-title: CFD analysis of the survivability of a square-rigged sailing vessel publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 27 start-page: 471 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib8 article-title: Evaluation of energy savings for a sail-assisted ship under differential sailing strategy publication-title: J. Ship Mech. – volume: 39 start-page: 194 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib34 article-title: Reaching IMO 2050 GHG targets exclusively through energy efficiency measures publication-title: J. Ship Prod. Des doi: 10.5957/JSPD.10220024 – volume: 49 start-page: 3439 issue: 19–20 year: 2006 ident: 10.1016/j.oceaneng.2025.121444_bib46 article-title: The application of the CFD and kriging method to an optimization of heat sink publication-title: Int. J. Heat Mass Tran. doi: 10.1016/j.ijheatmasstransfer.2006.03.009 – volume: 17 start-page: 143 year: 2018 ident: 10.1016/j.oceaneng.2025.121444_bib1 article-title: Analysis of drag, airflow and surface pressure characteristics of a segment rigid sail publication-title: J. Marine Eng.; Technol. doi: 10.1080/20464177.2018.1492341 – start-page: 562 year: 2013 ident: 10.1016/j.oceaneng.2025.121444_bib45 article-title: Wind Challenger” the next generation hybrid sailing vessel – start-page: 2249 year: 2012 ident: 10.1016/j.oceaneng.2025.121444_bib23 article-title: Research on the aerodynamic characteristics of ellipse wing sail publication-title: Renewable Sustain. Energy – volume: 65 start-page: 93 year: 2018 ident: 10.1016/j.oceaneng.2025.121444_bib3 article-title: Wind-tunnel experiments on the aerodynamic interaction between two rigid sails used for wind-assisted propulsion publication-title: ISP doi: 10.3233/ISP-180143 – volume: 12 start-page: 985 year: 2024 ident: 10.1016/j.oceaneng.2025.121444_bib54 article-title: Computational fluid dynamics investigation of the spacing of the aerodynamic characteristics for multiple wingsails on ships publication-title: J. Mar. Sci. Eng. doi: 10.3390/jmse12060985 – volume: 287 year: 2023 ident: 10.1016/j.oceaneng.2025.121444_bib25 article-title: Effect of chord length ratio on aerodynamic performance of two-element wing sail publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.115946 – year: 2021 ident: 10.1016/j.oceaneng.2025.121444_bib44 article-title: Guidance on treatment of innovative energy efficiency technologies for calculation and verification of the attained EEDI and EEXI – volume: 28 start-page: 20 year: 2022 ident: 10.1016/j.oceaneng.2025.121444_bib57 article-title: Wind tunnel experiment of multi-mode ARC sail device publication-title: Pol. Marit. Res. doi: 10.2478/pomr-2021-0046 |
| SSID | ssj0006603 |
| Score | 2.4371085 |
| Snippet | The aerodynamic performance of sails determines the effectiveness of wind-assisted propulsion, with spacing being a key factor in sail interaction and thrust... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 121444 |
| SubjectTerms | Computational fluid dynamics (CFD) Energy efficiency design index (EEDI) Genetic algorithm (GA) Interaction of crescent wing sails Optimization of angle of attack Spacing ratio Wind-assisted propulsion technology |
| Title | Investigation of aerodynamic performance and operational optimization of wing sails at varying spacings |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2025.121444 |
| Volume | 333 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0029-8018 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0029-8018 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) issn: 0029-8018 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Complete Freedom Collection (Elsevier) issn: 0029-8018 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0029-8018 databaseCode: AKRWK dateStart: 19700101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PS8MwFA5jXlQQnYrzFzl47ZZtSdscx3BMxXlxsFtJ82N0aFu2qnjxb_dlTVkFwYOXUkJfKF_C974X3ntB6KYne0qGvvYCzmOPGniEsI-8WIEY4SZUVNujgcepP5nR-zmbN9CoqoWxaZWO-0tO37C1G-k6NLt5ktga3z4HfoUQx8qawLbdpjSwtxh0vrZpHr5PBlWah_26ViW87ICLEKlOFxAn9plttEAp_d1B1ZzO-BAdOLWIh-UPHaGGTltor9ZDsIX2n-zsrvH0MVrUGmdkKc4MFho4srx3HufbMgEsUoWzXK_caSC8F8mrq8q0dh8wPV6L5GWNRYHfxepzMwAxtj1cP0Gz8e3zaOK5yxQ8CUFS4WliZGgU4MQZHZi-4oTEhEnhx1YGGFtgKpQQyqcEYPSJoDQOuWCaiyAwcnCKmmmW6jOEIWKSAnSXMCygkgegsCRIAVhyGTOmdRt1KwSjvOyZEVXJZMuowjyymEcl5m3EK6CjH6sfAbH_YXv-D9sLtFtmAwDRkkvULFZv-gpERhFfb3bRNdoZ3j1Mpt9_EtOv |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_mfPADRKfi_MyDr926LWmbRxmOqdt82WBvJU2TsaFt2arii3-7l7VlFQQffCkl7YXwS7j73XF3AbhtyVYoPUdZLueBRTU-PDxHVhAiGeHaC6kyoYHhyOlP6OOUTSvQLWphTFplrvsznb7W1vlIM0ezmcznpsa3zVG_ootjaI3rbME2ZW3XeGCNr02eh-PYnSLPw_xeKhNeNNBGiEhFM3QU28x0WqCU_m6hSlandwgHOV0kd9mKjqCiohrslZoI1mD_2cyed54-hlmpc0YckVgToVBJZhfPk2RTJ0BEFJI4Ucs8HIjv6fw1L8s0ch84PVmJ-cuKiJS8i-XnegCdbBNdP4FJ737c7Vv5bQqWRC8ptZStpadDBIoz2tHtkNt2YDMpnMDwAG0qTEUoROhQm1LXsQWlgccFU1y4rpadU6hGcaTOgKDLJAUSL6GZSyV3kWJJ5AK45zJgTKk6NAsE_SRrmuEX2WQLv8DcN5j7GeZ14AXQ_o_t91Gz_yF7_g_ZG9jpj4cDf_AwerqAXfNlHbi1L6GaLt_UFTKONLhen6hvjgrVSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Investigation+of+aerodynamic+performance+and+operational+optimization+of+wing+sails+at+varying+spacings&rft.jtitle=Ocean+engineering&rft.au=Zhang%2C+Rui&rft.au=Huang%2C+Lianzhong&rft.au=Peng%2C+Guisheng&rft.au=Ruan%2C+Zhang&rft.date=2025-07-30&rft.pub=Elsevier+Ltd&rft.issn=0029-8018&rft.volume=333&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.121444&rft.externalDocID=S0029801825011576 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |