Anomalous Channel Length Dependence of Hot-Carrier-Induced Saturation Drain Current Degradation in n-Type MOSFETs

The dependencies of hot-carrier-induced degradations on the effective channel length Lch,eff are investigated for n-type metal-oxide-semiconductor field effect transistor (MOSFETs). Our experiments find that, with decreasing Lch,eff, the saturation drain current (Iasat ) degradation is unexpectedly...

Full description

Saved in:
Bibliographic Details
Published inChinese physics letters Vol. 32; no. 8; pp. 193 - 195
Main Author 张春伟 刘斯扬 孙伟锋 周雷雷 张艺 苏巍 张爱军 刘玉伟 胡久利 何骁伟
Format Journal Article
LanguageEnglish
Published 01.08.2015
Subjects
Online AccessGet full text
ISSN0256-307X
1741-3540
DOI10.1088/0256-307X/32/8/088502

Cover

More Information
Summary:The dependencies of hot-carrier-induced degradations on the effective channel length Lch,eff are investigated for n-type metal-oxide-semiconductor field effect transistor (MOSFETs). Our experiments find that, with decreasing Lch,eff, the saturation drain current (Iasat ) degradation is unexpectedly alleviated. The further study demonstrates that the anomalous Lch,eff dependence of Idsat degradation is induced by the increasing influence of the substrate current degradation on the lazar degradation with Lch,eff reducing.
Bibliography:11-1959/O4
ZHANG Chun-Wei, LIU Si-Yang, SUN Wei-Feng, ZHOU Lei-Lei, ZHANG Yi, SU Wei, ZHANG Ai-Jun, LIU Yu-Wei, HU Jiu-Li, HE Xiao-Wei( 1 National ASIC System Engineering Technology Research Center, Southeast University, Nanjing 210096 2 CSMC Technologies Corporation, Wuxi 214028)
The dependencies of hot-carrier-induced degradations on the effective channel length Lch,eff are investigated for n-type metal-oxide-semiconductor field effect transistor (MOSFETs). Our experiments find that, with decreasing Lch,eff, the saturation drain current (Iasat ) degradation is unexpectedly alleviated. The further study demonstrates that the anomalous Lch,eff dependence of Idsat degradation is induced by the increasing influence of the substrate current degradation on the lazar degradation with Lch,eff reducing.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/32/8/088502