Simulation of football sport PID controller based on BP neural network

Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the learning space of multi-agents will increase dramatically with the increase in the number of agents, so the learning difficulty will also increa...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 40; no. 4; pp. 7483 - 7495
Main Author Lv, Qiangguo
Format Journal Article
LanguageEnglish
Published London Sage Publications Ltd 01.01.2021
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-189570

Cover

Abstract Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the learning space of multi-agents will increase dramatically with the increase in the number of agents, so the learning difficulty will also increase. Based on BP neural network as the model structure foundation, this research combines PID controller to control the process of model operation. In order to improve the calculation accuracy to improve the control effect, the prediction output is obtained through the prediction model instead of the actual measured value. In addition, with the football robot as the object, this research studies the multi-agent reinforcement learning problem and its application in the football robot. The content includes single-agent reinforcement learning, multi-agent system reinforcement learning, and ball hunting, role assignment, and action selection in football robot decision strategies based on this. The simulation results show that the method proposed in this paper has certain effects.
AbstractList Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the learning space of multi-agents will increase dramatically with the increase in the number of agents, so the learning difficulty will also increase. Based on BP neural network as the model structure foundation, this research combines PID controller to control the process of model operation. In order to improve the calculation accuracy to improve the control effect, the prediction output is obtained through the prediction model instead of the actual measured value. In addition, with the football robot as the object, this research studies the multi-agent reinforcement learning problem and its application in the football robot. The content includes single-agent reinforcement learning, multi-agent system reinforcement learning, and ball hunting, role assignment, and action selection in football robot decision strategies based on this. The simulation results show that the method proposed in this paper has certain effects.
Author Lv, Qiangguo
Author_xml – sequence: 1
  givenname: Qiangguo
  surname: Lv
  fullname: Lv, Qiangguo
  organization: Bohai University, Jinzhou, Liaoning, China
BookMark eNptkM1KAzEUhYNUsK2ufIGASxnNfzJLra1WChaq6yGZSWBqOqlJBvHtnVpX4uaeu_jOvZwzAaMudBaAS4xuKKH09nm52BRYlVyiEzDGSvJClUKOhh0JVmDCxBmYpLRFCEtO0BgsNu2u9zq3oYPBQRdCNtp7mPYhZrhePsA6dDkG722ERifbwIG8X8PO9lH7QfJniO_n4NRpn-zFr07B22L-OnsqVi-Py9ndqqiJwHmYxihVGmUdboxWmDppkS4l5sRRQ1EjmGoIw1wQ1hghndOM1k5x02glCZ2Cq-PdfQwfvU252oY-dsPLinCMS0kZ4wOFj1QdQ0rRuqpu80_GHHXrK4yqQ13Voa7qWNfguf7j2cd2p-PXv_Q3BbdsmA
CitedBy_id crossref_primary_10_1007_s00500_023_08356_w
ContentType Journal Article
Copyright Copyright IOS Press BV 2021
Copyright_xml – notice: Copyright IOS Press BV 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-189570
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
EndPage 7495
ExternalDocumentID 10_3233_JIFS_189570
GroupedDBID .4S
.DC
0R~
4.4
5GY
8VB
AAYXX
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
CITATION
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
H13
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
7SC
8FD
AAGLT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c261t-c2bb889b8ef1dba813f7e0a97152f3b30d648d2415624db67ffa43cf85bda8723
ISSN 1064-1246
IngestDate Fri Jul 25 10:13:39 EDT 2025
Thu Apr 24 22:50:26 EDT 2025
Wed Oct 01 06:27:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-c2bb889b8ef1dba813f7e0a97152f3b30d648d2415624db67ffa43cf85bda8723
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2511973445
PQPubID 2046407
PageCount 13
ParticipantIDs proquest_journals_2511973445
crossref_citationtrail_10_3233_JIFS_189570
crossref_primary_10_3233_JIFS_189570
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2021
Publisher Sage Publications Ltd
Publisher_xml – name: Sage Publications Ltd
SSID ssj0017520
Score 2.2280746
Snippet Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 7483
SubjectTerms Controllers
Football
Learning
Multiagent systems
Neural networks
Prediction models
Proportional integral derivative
Robots
Simulation
Title Simulation of football sport PID controller based on BP neural network
URI https://www.proquest.com/docview/2511973445
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: AMVHM
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZYuWyHaYOhscHkAyeqbKnt1A638qMqiKICBXGLajuukKBBkE6if_2eYydNUZEYF6uy7ET19-L3Pf_4HkI74FM5t0GOVCoMWFvJQCgdBlJToxhJpTI2UOyftXtX7OQmuplnKixul-Tyt5otvVfyHlShDnC1t2T_A9nqoVABvwFfKAFhKN-E8eXtvc--ZTmfybJc2p3mIlJtDo4Py4Pod-lj07orbbcG9gdNK2IJ0EzcEfBX-OltJdaZF_ZhprPZs1d-roj46V-L0TnY2Hg8zepLCKRVW0Jwsx7wkgAcvdekdnUQyAQidrkyyqnSKSt5k2C1eY8zl47G-1DOXObMl_MzJXb9uHty3L0MWiKOXM6QRRXsF96pOjMI0YrtntjOiev8Aa0SmMzDBlrt9K97_Wr7iEfEyVD4_-UuZtruf2rvXqQii564oBfDL-izH3fccSB_RSvpZA19qqlFrqPzi6PhRecAXM0eniOPM4NL5HGBPAbk8Rx5XCCPoeX-ADvksUf-G7rqHg0PeoHPiBEoiHRzKKUUIpYiNS0tR6JFDU_DUcyBhRkqaajbTOgiKCdMyzY3ZsSoMiKSeiQ4oRuoMckm6XeEgXkSm_2YKqFZSsHXSG1iDtEwYUDao020Ww5OorxcvM1acpcsAWIT7VSNH5xKyvJmW-UoJ_4zekpIsZNNGYt-vO0pP9HHuRFvoUb-OE23gRnm8pe3g38Ss2FW
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+football+sport+PID+controller+based+on+BP+neural+network&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Lv%2C+Qiangguo&rft.date=2021-01-01&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=40&rft.issue=4&rft.spage=7483&rft.epage=7495&rft_id=info:doi/10.3233%2FJIFS-189570&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_JIFS_189570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon