Simulation of football sport PID controller based on BP neural network
Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the learning space of multi-agents will increase dramatically with the increase in the number of agents, so the learning difficulty will also increa...
        Saved in:
      
    
          | Published in | Journal of intelligent & fuzzy systems Vol. 40; no. 4; pp. 7483 - 7495 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        London
          Sage Publications Ltd
    
        01.01.2021
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 1064-1246 1875-8967  | 
| DOI | 10.3233/JIFS-189570 | 
Cover
| Abstract | Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the learning space of multi-agents will increase dramatically with the increase in the number of agents, so the learning difficulty will also increase. Based on BP neural network as the model structure foundation, this research combines PID controller to control the process of model operation. In order to improve the calculation accuracy to improve the control effect, the prediction output is obtained through the prediction model instead of the actual measured value. In addition, with the football robot as the object, this research studies the multi-agent reinforcement learning problem and its application in the football robot. The content includes single-agent reinforcement learning, multi-agent system reinforcement learning, and ball hunting, role assignment, and action selection in football robot decision strategies based on this. The simulation results show that the method proposed in this paper has certain effects. | 
    
|---|---|
| AbstractList | Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the learning space of multi-agents will increase dramatically with the increase in the number of agents, so the learning difficulty will also increase. Based on BP neural network as the model structure foundation, this research combines PID controller to control the process of model operation. In order to improve the calculation accuracy to improve the control effect, the prediction output is obtained through the prediction model instead of the actual measured value. In addition, with the football robot as the object, this research studies the multi-agent reinforcement learning problem and its application in the football robot. The content includes single-agent reinforcement learning, multi-agent system reinforcement learning, and ball hunting, role assignment, and action selection in football robot decision strategies based on this. The simulation results show that the method proposed in this paper has certain effects. | 
    
| Author | Lv, Qiangguo | 
    
| Author_xml | – sequence: 1 givenname: Qiangguo surname: Lv fullname: Lv, Qiangguo organization: Bohai University, Jinzhou, Liaoning, China  | 
    
| BookMark | eNptkM1KAzEUhYNUsK2ufIGASxnNfzJLra1WChaq6yGZSWBqOqlJBvHtnVpX4uaeu_jOvZwzAaMudBaAS4xuKKH09nm52BRYlVyiEzDGSvJClUKOhh0JVmDCxBmYpLRFCEtO0BgsNu2u9zq3oYPBQRdCNtp7mPYhZrhePsA6dDkG722ERifbwIG8X8PO9lH7QfJniO_n4NRpn-zFr07B22L-OnsqVi-Py9ndqqiJwHmYxihVGmUdboxWmDppkS4l5sRRQ1EjmGoIw1wQ1hghndOM1k5x02glCZ2Cq-PdfQwfvU252oY-dsPLinCMS0kZ4wOFj1QdQ0rRuqpu80_GHHXrK4yqQ13Voa7qWNfguf7j2cd2p-PXv_Q3BbdsmA | 
    
| CitedBy_id | crossref_primary_10_1007_s00500_023_08356_w | 
    
| ContentType | Journal Article | 
    
| Copyright | Copyright IOS Press BV 2021 | 
    
| Copyright_xml | – notice: Copyright IOS Press BV 2021 | 
    
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D  | 
    
| DOI | 10.3233/JIFS-189570 | 
    
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts  Academic Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional  | 
    
| DatabaseTitleList | Computer and Information Systems Abstracts | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| EISSN | 1875-8967 | 
    
| EndPage | 7495 | 
    
| ExternalDocumentID | 10_3233_JIFS_189570 | 
    
| GroupedDBID | .4S .DC 0R~ 4.4 5GY 8VB AAYXX ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF CITATION DU5 EAD EAP EBA EBR EBS EBU EDO EMK EPL EST ESX H13 HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 7SC 8FD AAGLT JQ2 L7M L~C L~D  | 
    
| ID | FETCH-LOGICAL-c261t-c2bb889b8ef1dba813f7e0a97152f3b30d648d2415624db67ffa43cf85bda8723 | 
    
| ISSN | 1064-1246 | 
    
| IngestDate | Fri Jul 25 10:13:39 EDT 2025 Thu Apr 24 22:50:26 EDT 2025 Wed Oct 01 06:27:51 EDT 2025  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c261t-c2bb889b8ef1dba813f7e0a97152f3b30d648d2415624db67ffa43cf85bda8723 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| PQID | 2511973445 | 
    
| PQPubID | 2046407 | 
    
| PageCount | 13 | 
    
| ParticipantIDs | proquest_journals_2511973445 crossref_citationtrail_10_3233_JIFS_189570 crossref_primary_10_3233_JIFS_189570  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2021-01-01 | 
    
| PublicationDateYYYYMMDD | 2021-01-01 | 
    
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | London | 
    
| PublicationPlace_xml | – name: London | 
    
| PublicationTitle | Journal of intelligent & fuzzy systems | 
    
| PublicationYear | 2021 | 
    
| Publisher | Sage Publications Ltd | 
    
| Publisher_xml | – name: Sage Publications Ltd | 
    
| SSID | ssj0017520 | 
    
| Score | 2.2280746 | 
    
| Snippet | Multi-agent reinforcement learning in football simulation can be extended by single-agent reinforcement learning. However, compared with single agents, the... | 
    
| SourceID | proquest crossref  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 7483 | 
    
| SubjectTerms | Controllers Football Learning Multiagent systems Neural networks Prediction models Proportional integral derivative Robots Simulation  | 
    
| Title | Simulation of football sport PID controller based on BP neural network | 
    
| URI | https://www.proquest.com/docview/2511973445 | 
    
| Volume | 40 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-8967 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: AMVHM dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLZYuWyHaYOhscHkAyeqbKnt1A638qMqiKICBXGLajuukKBBkE6if_2eYydNUZEYF6uy7ET19-L3Pf_4HkI74FM5t0GOVCoMWFvJQCgdBlJToxhJpTI2UOyftXtX7OQmuplnKixul-Tyt5otvVfyHlShDnC1t2T_A9nqoVABvwFfKAFhKN-E8eXtvc--ZTmfybJc2p3mIlJtDo4Py4Pod-lj07orbbcG9gdNK2IJ0EzcEfBX-OltJdaZF_ZhprPZs1d-roj46V-L0TnY2Hg8zepLCKRVW0Jwsx7wkgAcvdekdnUQyAQidrkyyqnSKSt5k2C1eY8zl47G-1DOXObMl_MzJXb9uHty3L0MWiKOXM6QRRXsF96pOjMI0YrtntjOiev8Aa0SmMzDBlrt9K97_Wr7iEfEyVD4_-UuZtruf2rvXqQii564oBfDL-izH3fccSB_RSvpZA19qqlFrqPzi6PhRecAXM0eniOPM4NL5HGBPAbk8Rx5XCCPoeX-ADvksUf-G7rqHg0PeoHPiBEoiHRzKKUUIpYiNS0tR6JFDU_DUcyBhRkqaajbTOgiKCdMyzY3ZsSoMiKSeiQ4oRuoMckm6XeEgXkSm_2YKqFZSsHXSG1iDtEwYUDao020Ww5OorxcvM1acpcsAWIT7VSNH5xKyvJmW-UoJ_4zekpIsZNNGYt-vO0pP9HHuRFvoUb-OE23gRnm8pe3g38Ss2FW | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation+of+football+sport+PID+controller+based+on+BP+neural+network&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Lv%2C+Qiangguo&rft.date=2021-01-01&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=40&rft.issue=4&rft.spage=7483&rft.epage=7495&rft_id=info:doi/10.3233%2FJIFS-189570&rft.externalDBID=n%2Fa&rft.externalDocID=10_3233_JIFS_189570 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |