Crack path analysis of spent nuclear fuel cladding using the strain energy-based Dijkstra algorithm
[Display omitted] •Proposed method uses strain energy-based Dijkstra algorithm for crack prediction.•Achieves 92.78% accuracy in predicting crack initiation in spent fuel cladding.•Predicted crack paths are within 200 μm of actual paths.•Finite element analysis quantifies resistance changes, enhanci...
        Saved in:
      
    
          | Published in | Nuclear engineering and design Vol. 429; p. 113661 | 
|---|---|
| Main Authors | , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
            Elsevier B.V
    
        01.12.2024
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0029-5493 | 
| DOI | 10.1016/j.nucengdes.2024.113661 | 
Cover
| Abstract | [Display omitted]
•Proposed method uses strain energy-based Dijkstra algorithm for crack prediction.•Achieves 92.78% accuracy in predicting crack initiation in spent fuel cladding.•Predicted crack paths are within 200 μm of actual paths.•Finite element analysis quantifies resistance changes, enhancing prediction reliability.•Enhances safety assessments and management strategies for nuclear fuel.
The integrity of spent fuel cladding is crucial for preventing the release of radioactive materials, which pose significant risks to public safety and the environment. However, accurately predicting cracks in cladding tubes remains a challenge. This study proposes a novel method for predicting crack paths in spent nuclear fuel cladding tubes using the Dijkstra algorithm, based on strain energy. In this method, cladding images are segmented into cladding and hydride pixels, followed by a finite element analysis to calculate the strain energy. The Dijkstra algorithm utilizes this strain energy data from hydrides to predict crack paths in areas with low resistance to loading. The predicted path exhibited an accuracy of 92.78 % with respect to the initiation point of the actual crack path and was located within 200 μm of the actual crack path. The proposed method demonstrates a higher similarity to the actual crack path than conventional image-based methods. These results suggest that the safety assessment of spent nuclear fuel can be enhanced, enabling the development of effective management strategies for spent nuclear fuel. | 
    
|---|---|
| AbstractList | [Display omitted]
•Proposed method uses strain energy-based Dijkstra algorithm for crack prediction.•Achieves 92.78% accuracy in predicting crack initiation in spent fuel cladding.•Predicted crack paths are within 200 μm of actual paths.•Finite element analysis quantifies resistance changes, enhancing prediction reliability.•Enhances safety assessments and management strategies for nuclear fuel.
The integrity of spent fuel cladding is crucial for preventing the release of radioactive materials, which pose significant risks to public safety and the environment. However, accurately predicting cracks in cladding tubes remains a challenge. This study proposes a novel method for predicting crack paths in spent nuclear fuel cladding tubes using the Dijkstra algorithm, based on strain energy. In this method, cladding images are segmented into cladding and hydride pixels, followed by a finite element analysis to calculate the strain energy. The Dijkstra algorithm utilizes this strain energy data from hydrides to predict crack paths in areas with low resistance to loading. The predicted path exhibited an accuracy of 92.78 % with respect to the initiation point of the actual crack path and was located within 200 μm of the actual crack path. The proposed method demonstrates a higher similarity to the actual crack path than conventional image-based methods. These results suggest that the safety assessment of spent nuclear fuel can be enhanced, enabling the development of effective management strategies for spent nuclear fuel. | 
    
| ArticleNumber | 113661 | 
    
| Author | Baik, Jee A Kim, Jung Jin  | 
    
| Author_xml | – sequence: 1 givenname: Jee A surname: Baik fullname: Baik, Jee A – sequence: 2 givenname: Jung Jin surname: Kim fullname: Kim, Jung Jin email: kjj4537@gmail.com  | 
    
| BookMark | eNqFkMtqwzAQRbVIoUnab6h-wK4kv5chfUKgm3YtpNHIkePIQXIK-fvapHTbWczAhXsYzoos_OCRkAfOUs54-dil_gzoW4MxFUzkKedZWfIFWTImmqTIm-yWrGLs2DyNWBLYBgUHelLjniqv-kt0kQ6WxhP6kU60HlWg9ow9hV4Z43xLz3He4x5pHINynqLH0F4SrSIa-uS6w5xT1bdDcOP-eEdurOoj3v_eNfl6ef7cviW7j9f37WaXgCj5mOgqLwqdGQuc2bqaQihK0KrQADUYUythTVNWuc0xq1TNKis0h4bVNYpS22xNqisXwhBjQCtPwR1VuEjO5OxHdvLPj5z9yKufqbm5NnF679thkBEcekDjAsIozeD-ZfwA8Wd5bA | 
    
| Cites_doi | 10.1016/j.net.2020.05.026 10.7733/jnfcwt.2018.16.4.455 10.1016/j.net.2021.11.007 10.1080/00223131.2013.859106 10.1016/j.jnucmat.2014.06.049 10.1080/00223131.2022.2127954 10.1016/j.net.2024.01.004 10.1007/BF01386390 10.1016/j.jnucmat.2014.09.025 10.1080/00223131.2014.978829 10.1016/j.jnucmat.2011.09.005 10.7734/COSEIK.2013.26.2.165 10.1016/j.jallcom.2017.07.321 10.1520/JAI101183 10.2172/1415916 10.2172/1530074 10.1016/j.nucengdes.2023.112523 10.3390/jimaging7030057 10.1016/j.jnucmat.2023.154560 10.1016/j.jnucmat.2021.152817 10.1016/j.jnucmat.2019.02.042 10.1038/ncomms7583 10.1007/s10704-024-00781-8 10.1016/j.jnucmat.2007.06.012 10.1016/j.egyr.2021.09.013 10.21741/9781644900574-26 10.1080/10255842.2020.1789863 10.1016/j.jnucmat.2022.153647 10.1016/S0022-3115(01)00438-X 10.3795/KSME-A.2016.40.5.469 10.1088/0022-3727/49/40/405302 10.1109/TSMC.1979.4310076  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2024 Elsevier B.V. | 
    
| Copyright_xml | – notice: 2024 Elsevier B.V. | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1016/j.nucengdes.2024.113661 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Engineering | 
    
| ExternalDocumentID | 10_1016_j_nucengdes_2024_113661 S0029549324007611  | 
    
| GroupedDBID | --K --M -~X .~1 0R~ 123 1B1 1RT 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXKI AAXUO ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SES SEW SPC SPCBC SSR SST SSZ T5K TN5 ZMT ~02 ~G- 29N AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HME HVGLF HZ~ LY6 LY7 LZ3 R2- SAC SET SHN UHS WUQ XPP ~HD  | 
    
| ID | FETCH-LOGICAL-c261t-b7455b3dfc10f87c26c56cba5bcc8cdd8a2fd9674f4e37a807f2b1c9088e26bf3 | 
    
| IEDL.DBID | .~1 | 
    
| ISSN | 0029-5493 | 
    
| IngestDate | Wed Oct 01 01:57:45 EDT 2025 Sat Nov 16 15:59:02 EST 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Keywords | Crack path Spent nuclear fuel Finite element analysis Strain energy Dijkstra algorithm  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c261t-b7455b3dfc10f87c26c56cba5bcc8cdd8a2fd9674f4e37a807f2b1c9088e26bf3 | 
    
| ParticipantIDs | crossref_primary_10_1016_j_nucengdes_2024_113661 elsevier_sciencedirect_doi_10_1016_j_nucengdes_2024_113661  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2024-12-01 2024-12-00  | 
    
| PublicationDateYYYYMMDD | 2024-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2024 text: 2024-12-01 day: 01  | 
    
| PublicationDecade | 2020 | 
    
| PublicationTitle | Nuclear engineering and design | 
    
| PublicationYear | 2024 | 
    
| Publisher | Elsevier B.V | 
    
| Publisher_xml | – name: Elsevier B.V | 
    
| References | Park, Park (b0115) 2018; 16 François, Petit, Auzoux, Le Boulch, Zarpellon Nascimento, Besson (b0035) 2024; 247 Kim, Kim, Cho (b0055) 2013; 26 Sui, Baimpas, Dolbnya, Prisacariu, Korsunsky (b0145) 2015; 6 Falcinelli, Whyne (b0030) 2020; 23 Qin, Szpunar, Kozinski (b0120) 2015; 471 Wu, Mu, Gordon, Olson, Liu, Shayer, Yu (b0175) 2021; 5 Yoo, Kim, Park, Kim (b0185) 2023; 413 Lei, Mao, Zhang, Wang, Chen (b0095) 2021; 7 Bair, Zaeem, Tonks (b0010) 2016; 49 Raynaud, Koss, Motta, Chan (b0125) 2008; 5 Stoll, Slavinskaya (b0140) 2023; 60 Jarmer, R., King, J., Craft, A., O’brien, R., 2020. Quantitative crack analysis using indirect neutron radiography and neutron activation analysis with contrast enhancement agents, in: Materials Research Proceedings. pp. 164–172. https://doi.org/10.21741/9781644900574-26. Goll, Spilker, Toscano (b0045) 2001; 289 Wang, J.-A., Wang, H., 2018. CIRFT Data Update and Data Analyses for Spent Nuclear Fuel Vibration Reliability Study. Oak Ridge, TN (United States). https://doi.org/10.2172/1415916. Kim, Kim, Kook, Kim (b0060) 2015; 456 Ge, Yu, Tomizawa, Song, Yusa (b0040) 2021; 70 Lehmann, Thomsen, Strobl, Trtik, Bertsch, Dai (b0090) 2021; 7 Kim, Lee (b0075) 2024; 56 Otsu (b0110) 1979; 9 Woo, Lee (b0170) 2023; 584 . Dijkstra (b0025) 1959; 1 Kwon (b0080) 2016; 40 Raynaud, Koss, Motta (b0130) 2012; 420 Kim, Kook, Kim, Kim (b0070) 2015; 52 Nemade, Shikalgar (b0105) 2020; IOSR-JMCE 17 Xin, Yuyu, Libin (b0180) 2020; 52 Chu, Wu, Kuo (b0015) 2008; 373 Suman, Khan, Pathak, Singh (b0150) 2017; 726 Lee, Kim, Kook, Kim (b0085) 2018; 56 Simon, Frank, Chen, Daymond, Tonks, Motta (b0135) 2021; 547 Desquines, Drouan, Billone, Puls, March, Fourgeaud, Getrey, Elbaz, Philippe (b0020) 2014; 453 Kim, Kim, Woo, Lee (b0065) 2022; 564 Andersson, O., Asfaw, K., Bassing, G., Cavellec, R., Depas, V., Lipar, M., Nikolaki, M., 2022. Maintenance, Testing, Surveillance and Inspection in Nuclear Power Plants. Motta, Capolungo, Chen, Cinbiz, Daymond, Koss, Lacroix, Pastore, Simon, Tonks, Wirth, Zikry (b0100) 2019; 518 Bang, S., Kim, H. a., Noh, J. soo, Kim, D., Keum, K., Lee, Y., 2022. Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations. Nucl. Eng. Technol. 54, 1579–1587. Udagawa, Mihara, Sugiyama, Suzuki, Amaya (b0155) 2014; 51 Wang, J.-A., 2019. Fracture Toughness Evaluation for Spent Nuclear Fuel Clad Systems Using Spiral Notch Torsion Fracture Toughness Test. Oak Ridge, TN (United States). https://doi.org/10.2172/1530074. Stoll (10.1016/j.nucengdes.2024.113661_b0140) 2023; 60 Motta (10.1016/j.nucengdes.2024.113661_b0100) 2019; 518 Xin (10.1016/j.nucengdes.2024.113661_b0180) 2020; 52 Ge (10.1016/j.nucengdes.2024.113661_b0040) 2021; 70 10.1016/j.nucengdes.2024.113661_bib186 10.1016/j.nucengdes.2024.113661_b0050 Dijkstra (10.1016/j.nucengdes.2024.113661_b0025) 1959; 1 Kim (10.1016/j.nucengdes.2024.113661_b0055) 2013; 26 Kim (10.1016/j.nucengdes.2024.113661_b0065) 2022; 564 Simon (10.1016/j.nucengdes.2024.113661_b0135) 2021; 547 Otsu (10.1016/j.nucengdes.2024.113661_b0110) 1979; 9 Raynaud (10.1016/j.nucengdes.2024.113661_b0125) 2008; 5 Raynaud (10.1016/j.nucengdes.2024.113661_b0130) 2012; 420 Park (10.1016/j.nucengdes.2024.113661_b0115) 2018; 16 Kwon (10.1016/j.nucengdes.2024.113661_b0080) 2016; 40 Goll (10.1016/j.nucengdes.2024.113661_b0045) 2001; 289 Lei (10.1016/j.nucengdes.2024.113661_b0095) 2021; 7 Suman (10.1016/j.nucengdes.2024.113661_b0150) 2017; 726 François (10.1016/j.nucengdes.2024.113661_b0035) 2024; 247 Bair (10.1016/j.nucengdes.2024.113661_b0010) 2016; 49 Kim (10.1016/j.nucengdes.2024.113661_b0075) 2024; 56 Yoo (10.1016/j.nucengdes.2024.113661_b0185) 2023; 413 Udagawa (10.1016/j.nucengdes.2024.113661_b0155) 2014; 51 10.1016/j.nucengdes.2024.113661_b0160 Wu (10.1016/j.nucengdes.2024.113661_b0175) 2021; 5 Lehmann (10.1016/j.nucengdes.2024.113661_b0090) 2021; 7 Chu (10.1016/j.nucengdes.2024.113661_b0015) 2008; 373 Desquines (10.1016/j.nucengdes.2024.113661_b0020) 2014; 453 Woo (10.1016/j.nucengdes.2024.113661_b0170) 2023; 584 10.1016/j.nucengdes.2024.113661_b0005 Kim (10.1016/j.nucengdes.2024.113661_b0060) 2015; 456 Qin (10.1016/j.nucengdes.2024.113661_b0120) 2015; 471 Falcinelli (10.1016/j.nucengdes.2024.113661_b0030) 2020; 23 10.1016/j.nucengdes.2024.113661_b0165 Lee (10.1016/j.nucengdes.2024.113661_b0085) 2018; 56 Sui (10.1016/j.nucengdes.2024.113661_b0145) 2015; 6 Kim (10.1016/j.nucengdes.2024.113661_b0070) 2015; 52 Nemade (10.1016/j.nucengdes.2024.113661_b0105) 2020; IOSR-JMCE 17  | 
    
| References_xml | – volume: 1 start-page: 269 year: 1959 end-page: 271 ident: b0025 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. – volume: 584 year: 2023 ident: b0170 article-title: Understanding the mechanical integrity of Zircaloy cladding with various radial and circumferential hydride morphologies via image analysis publication-title: J. Nucl. Mater. – volume: 23 start-page: 1138 year: 2020 end-page: 1161 ident: b0030 article-title: Image-based finite-element modeling of the human femur publication-title: Comput. Methods Biomech. Biomed. Engin. – volume: 289 start-page: 247 year: 2001 end-page: 253 ident: b0045 article-title: Short-time creep and rupture tests on high burnup fuel rod cladding publication-title: J. Nucl. Mater. – volume: 518 start-page: 440 year: 2019 end-page: 460 ident: b0100 article-title: Hydrogen in zirconium alloys: a review publication-title: J. Nucl. Mater. – reference: Andersson, O., Asfaw, K., Bassing, G., Cavellec, R., Depas, V., Lipar, M., Nikolaki, M., 2022. Maintenance, Testing, Surveillance and Inspection in Nuclear Power Plants. – volume: 420 start-page: 69 year: 2012 end-page: 82 ident: b0130 article-title: Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet publication-title: J. Nucl. Mater. – volume: 51 start-page: 208 year: 2014 end-page: 219 ident: b0155 article-title: Simulation of the fracture behavior of Zircaloy-4 cladding under reactivity-initiated accident conditions with a damage mechanics model combined with fuel performance codes FEMAXI-7 and RANNS publication-title: J. Nucl. Sci. Technol. – reference: Wang, J.-A., Wang, H., 2018. CIRFT Data Update and Data Analyses for Spent Nuclear Fuel Vibration Reliability Study. Oak Ridge, TN (United States). https://doi.org/10.2172/1415916. – volume: 456 start-page: 235 year: 2015 end-page: 245 ident: b0060 article-title: Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding publication-title: J. Nucl. Mater. – volume: 52 start-page: 717 year: 2015 end-page: 727 ident: b0070 article-title: Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation publication-title: J. Nucl. Sci. Technol. – volume: 40 start-page: 469 year: 2016 end-page: 481 ident: b0080 article-title: Impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground publication-title: Trans. Korean Soc. Mech. Eng. A – volume: 5 start-page: 28 year: 2021 ident: b0175 article-title: Development of a numerical model for simulating stress corrosion cracking in spent nuclear fuel canisters. npj Mater publication-title: Degrad. – volume: IOSR-JMCE 17 start-page: 44 year: 2020 end-page: 48 ident: b0105 article-title: The mesh quality significance in finite element analysis publication-title: IOSR J. Mech Civ. Eng. – volume: 547 year: 2021 ident: b0135 article-title: Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis publication-title: J. Nucl. Mater. – volume: 16 start-page: 455 year: 2018 end-page: 472 ident: b0115 article-title: Review of research on chloride-induced stress corrosion cracking of dry storage canisters in the United States publication-title: J. Nucl. Fuel Cycle Waste Technol. – volume: 7 start-page: 5922 year: 2021 end-page: 5932 ident: b0095 article-title: Crack prediction in sheet forming of zirconium alloys used in nuclear fuel assembly by support vector machine method publication-title: Energy Rep. – volume: 5 year: 2008 ident: b0125 article-title: Fracture toughness of hydrided Zircaloy-4 sheet under through-thickness crack growth conditions publication-title: J. ASTM Int. – volume: 6 start-page: 1 year: 2015 end-page: 9 ident: b0145 article-title: Multiple-length-scale deformation analysis in a thermoplastic polyurethane publication-title: Nat. Commun. – volume: 9 start-page: 62 year: 1979 end-page: 66 ident: b0110 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man. Cybern. – reference: Wang, J.-A., 2019. Fracture Toughness Evaluation for Spent Nuclear Fuel Clad Systems Using Spiral Notch Torsion Fracture Toughness Test. Oak Ridge, TN (United States). https://doi.org/10.2172/1530074. – reference: Bang, S., Kim, H. a., Noh, J. soo, Kim, D., Keum, K., Lee, Y., 2022. Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations. Nucl. Eng. Technol. 54, 1579–1587. – volume: 52 start-page: 2901 year: 2020 end-page: 2909 ident: b0180 article-title: Thermal creep behavior of CZ cladding under biaxial stress state publication-title: Nucl. Eng. Technol. – volume: 56 start-page: 79 year: 2018 end-page: 92 ident: b0085 article-title: A review of factors influencing the hydride reorientation phenomena in zirconium alloy cladding during long-term dry storage publication-title: Korean J. Met. Mater. – volume: 373 start-page: 319 year: 2008 end-page: 327 ident: b0015 article-title: Hydride reorientation in Zircaloy-4 cladding publication-title: J. Nucl. Mater. – reference: . – reference: Jarmer, R., King, J., Craft, A., O’brien, R., 2020. Quantitative crack analysis using indirect neutron radiography and neutron activation analysis with contrast enhancement agents, in: Materials Research Proceedings. pp. 164–172. https://doi.org/10.21741/9781644900574-26. – volume: 247 start-page: 51 year: 2024 end-page: 72 ident: b0035 article-title: Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking publication-title: Int. J. Fract. – volume: 70 start-page: 1 year: 2021 end-page: 10 ident: b0040 article-title: Inspection of pitting corrosions on weld overlay cladding using uniform and rotating eddy current testing publication-title: IEEE Trans. Instrum. Meas. – volume: 26 start-page: 165 year: 2013 end-page: 171 ident: b0055 article-title: Transformation of dynamic loads into equivalent static load based on the stress constraint conditions publication-title: J. Comput. Struct. Eng. Inst. Korea – volume: 564 year: 2022 ident: b0065 article-title: Development of an image analysis code for hydrided Zircaloy using Dijkstra’s algorithm and sensitivity analysis of radial hydride continuous path publication-title: J. Nucl. Mater. – volume: 413 year: 2023 ident: b0185 article-title: Development of nuclear fuel assembly finite element model for mechanical integrity evaluation publication-title: Nucl. Eng. Des. – volume: 7 start-page: 57 year: 2021 ident: b0090 article-title: NEURAP—a dedicated neutron-imaging facility for highly radioactive samples publication-title: J. Imaging – volume: 471 year: 2015 ident: b0120 article-title: Hydride-induced degradation of zirconium alloys: A criterion for complete ductile-to-brittle transition and its dependence on microstructure publication-title: Proc. r. Soc. A Math. Phys. Eng. Sci. – volume: 49 year: 2016 ident: b0010 article-title: A phase-field model to study the effects of temperature change on shape evolution of γ -hydrides in zirconium publication-title: J. Phys. d. Appl. Phys. – volume: 56 start-page: 1975 year: 2024 end-page: 1988 ident: b0075 article-title: Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides publication-title: Nucl. Eng. Technol. – volume: 453 start-page: 131 year: 2014 end-page: 150 ident: b0020 article-title: Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding publication-title: J. Nucl. Mater. – volume: 60 start-page: 573 year: 2023 end-page: 602 ident: b0140 article-title: Corrosion behavior of zirconium alloys in the aqueous environment. Phenomenological aspects overview publication-title: J. Nucl. Sci. Technol. – volume: 726 start-page: 107 year: 2017 end-page: 113 ident: b0150 article-title: Investigation of elevated-temperature mechanical properties of δ-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation publication-title: J. Alloys Compd. – volume: 52 start-page: 2901 year: 2020 ident: 10.1016/j.nucengdes.2024.113661_b0180 article-title: Thermal creep behavior of CZ cladding under biaxial stress state publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2020.05.026 – volume: 16 start-page: 455 year: 2018 ident: 10.1016/j.nucengdes.2024.113661_b0115 article-title: Review of research on chloride-induced stress corrosion cracking of dry storage canisters in the United States publication-title: J. Nucl. Fuel Cycle Waste Technol. doi: 10.7733/jnfcwt.2018.16.4.455 – ident: 10.1016/j.nucengdes.2024.113661_bib186 doi: 10.1016/j.net.2021.11.007 – volume: 51 start-page: 208 year: 2014 ident: 10.1016/j.nucengdes.2024.113661_b0155 article-title: Simulation of the fracture behavior of Zircaloy-4 cladding under reactivity-initiated accident conditions with a damage mechanics model combined with fuel performance codes FEMAXI-7 and RANNS publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2013.859106 – volume: 453 start-page: 131 year: 2014 ident: 10.1016/j.nucengdes.2024.113661_b0020 article-title: Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.06.049 – ident: 10.1016/j.nucengdes.2024.113661_b0005 – volume: 60 start-page: 573 year: 2023 ident: 10.1016/j.nucengdes.2024.113661_b0140 article-title: Corrosion behavior of zirconium alloys in the aqueous environment. Phenomenological aspects overview publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2022.2127954 – volume: 56 start-page: 1975 year: 2024 ident: 10.1016/j.nucengdes.2024.113661_b0075 article-title: Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides publication-title: Nucl. Eng. Technol. doi: 10.1016/j.net.2024.01.004 – volume: 1 start-page: 269 year: 1959 ident: 10.1016/j.nucengdes.2024.113661_b0025 article-title: A note on two problems in connexion with graphs publication-title: Numer. Math. doi: 10.1007/BF01386390 – volume: 456 start-page: 235 year: 2015 ident: 10.1016/j.nucengdes.2024.113661_b0060 article-title: Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2014.09.025 – volume: 52 start-page: 717 year: 2015 ident: 10.1016/j.nucengdes.2024.113661_b0070 article-title: Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation publication-title: J. Nucl. Sci. Technol. doi: 10.1080/00223131.2014.978829 – volume: 420 start-page: 69 year: 2012 ident: 10.1016/j.nucengdes.2024.113661_b0130 article-title: Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2011.09.005 – volume: 5 start-page: 28 year: 2021 ident: 10.1016/j.nucengdes.2024.113661_b0175 article-title: Development of a numerical model for simulating stress corrosion cracking in spent nuclear fuel canisters. npj Mater publication-title: Degrad. – volume: 26 start-page: 165 year: 2013 ident: 10.1016/j.nucengdes.2024.113661_b0055 article-title: Transformation of dynamic loads into equivalent static load based on the stress constraint conditions publication-title: J. Comput. Struct. Eng. Inst. Korea doi: 10.7734/COSEIK.2013.26.2.165 – volume: 726 start-page: 107 year: 2017 ident: 10.1016/j.nucengdes.2024.113661_b0150 article-title: Investigation of elevated-temperature mechanical properties of δ-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.07.321 – volume: 5 year: 2008 ident: 10.1016/j.nucengdes.2024.113661_b0125 article-title: Fracture toughness of hydrided Zircaloy-4 sheet under through-thickness crack growth conditions publication-title: J. ASTM Int. doi: 10.1520/JAI101183 – ident: 10.1016/j.nucengdes.2024.113661_b0160 doi: 10.2172/1415916 – ident: 10.1016/j.nucengdes.2024.113661_b0165 doi: 10.2172/1530074 – volume: 413 year: 2023 ident: 10.1016/j.nucengdes.2024.113661_b0185 article-title: Development of nuclear fuel assembly finite element model for mechanical integrity evaluation publication-title: Nucl. Eng. Des. doi: 10.1016/j.nucengdes.2023.112523 – volume: IOSR-JMCE 17 start-page: 44 year: 2020 ident: 10.1016/j.nucengdes.2024.113661_b0105 article-title: The mesh quality significance in finite element analysis publication-title: IOSR J. Mech Civ. Eng. – volume: 7 start-page: 57 year: 2021 ident: 10.1016/j.nucengdes.2024.113661_b0090 article-title: NEURAP—a dedicated neutron-imaging facility for highly radioactive samples publication-title: J. Imaging doi: 10.3390/jimaging7030057 – volume: 584 year: 2023 ident: 10.1016/j.nucengdes.2024.113661_b0170 article-title: Understanding the mechanical integrity of Zircaloy cladding with various radial and circumferential hydride morphologies via image analysis publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2023.154560 – volume: 547 year: 2021 ident: 10.1016/j.nucengdes.2024.113661_b0135 article-title: Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2021.152817 – volume: 518 start-page: 440 year: 2019 ident: 10.1016/j.nucengdes.2024.113661_b0100 article-title: Hydrogen in zirconium alloys: a review publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2019.02.042 – volume: 56 start-page: 79 year: 2018 ident: 10.1016/j.nucengdes.2024.113661_b0085 article-title: A review of factors influencing the hydride reorientation phenomena in zirconium alloy cladding during long-term dry storage publication-title: Korean J. Met. Mater. – volume: 6 start-page: 1 year: 2015 ident: 10.1016/j.nucengdes.2024.113661_b0145 article-title: Multiple-length-scale deformation analysis in a thermoplastic polyurethane publication-title: Nat. Commun. doi: 10.1038/ncomms7583 – volume: 471 year: 2015 ident: 10.1016/j.nucengdes.2024.113661_b0120 article-title: Hydride-induced degradation of zirconium alloys: A criterion for complete ductile-to-brittle transition and its dependence on microstructure publication-title: Proc. r. Soc. A Math. Phys. Eng. Sci. – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.nucengdes.2024.113661_b0040 article-title: Inspection of pitting corrosions on weld overlay cladding using uniform and rotating eddy current testing publication-title: IEEE Trans. Instrum. Meas. – volume: 247 start-page: 51 year: 2024 ident: 10.1016/j.nucengdes.2024.113661_b0035 article-title: Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking publication-title: Int. J. Fract. doi: 10.1007/s10704-024-00781-8 – volume: 373 start-page: 319 year: 2008 ident: 10.1016/j.nucengdes.2024.113661_b0015 article-title: Hydride reorientation in Zircaloy-4 cladding publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2007.06.012 – volume: 7 start-page: 5922 year: 2021 ident: 10.1016/j.nucengdes.2024.113661_b0095 article-title: Crack prediction in sheet forming of zirconium alloys used in nuclear fuel assembly by support vector machine method publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.09.013 – ident: 10.1016/j.nucengdes.2024.113661_b0050 doi: 10.21741/9781644900574-26 – volume: 23 start-page: 1138 year: 2020 ident: 10.1016/j.nucengdes.2024.113661_b0030 article-title: Image-based finite-element modeling of the human femur publication-title: Comput. Methods Biomech. Biomed. Engin. doi: 10.1080/10255842.2020.1789863 – volume: 564 year: 2022 ident: 10.1016/j.nucengdes.2024.113661_b0065 article-title: Development of an image analysis code for hydrided Zircaloy using Dijkstra’s algorithm and sensitivity analysis of radial hydride continuous path publication-title: J. Nucl. Mater. doi: 10.1016/j.jnucmat.2022.153647 – volume: 289 start-page: 247 year: 2001 ident: 10.1016/j.nucengdes.2024.113661_b0045 article-title: Short-time creep and rupture tests on high burnup fuel rod cladding publication-title: J. Nucl. Mater. doi: 10.1016/S0022-3115(01)00438-X – volume: 40 start-page: 469 year: 2016 ident: 10.1016/j.nucengdes.2024.113661_b0080 article-title: Impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground publication-title: Trans. Korean Soc. Mech. Eng. A doi: 10.3795/KSME-A.2016.40.5.469 – volume: 49 year: 2016 ident: 10.1016/j.nucengdes.2024.113661_b0010 article-title: A phase-field model to study the effects of temperature change on shape evolution of γ -hydrides in zirconium publication-title: J. Phys. d. Appl. Phys. doi: 10.1088/0022-3727/49/40/405302 – volume: 9 start-page: 62 year: 1979 ident: 10.1016/j.nucengdes.2024.113661_b0110 article-title: A threshold selection method from gray-level histograms publication-title: IEEE Trans. Syst. Man. Cybern. doi: 10.1109/TSMC.1979.4310076  | 
    
| SSID | ssj0000092 | 
    
| Score | 2.411966 | 
    
| Snippet | [Display omitted]
•Proposed method uses strain energy-based Dijkstra algorithm for crack prediction.•Achieves 92.78% accuracy in predicting crack initiation in... | 
    
| SourceID | crossref elsevier  | 
    
| SourceType | Index Database Publisher  | 
    
| StartPage | 113661 | 
    
| SubjectTerms | Crack path Dijkstra algorithm Finite element analysis Spent nuclear fuel Strain energy  | 
    
| Title | Crack path analysis of spent nuclear fuel cladding using the strain energy-based Dijkstra algorithm | 
    
| URI | https://dx.doi.org/10.1016/j.nucengdes.2024.113661 | 
    
| Volume | 429 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0029-5493 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000092 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] issn: 0029-5493 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000092 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] issn: 0029-5493 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000092 providerName: Elsevier – providerCode: PRVESC databaseName: Science Direct issn: 0029-5493 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0000092 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0029-5493 databaseCode: AKRWK dateStart: 19660101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000092 providerName: Library Specific Holdings  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpn5YE1NC87CVtVqAqITlTqFvkcO6QtadWmK78dXx6olZAYGHOKJetzcg_5u-8IuQPXk1L55k_jTFm-Am0BsNDSWjJwkyTUCvud30Z8OPZfJmzSIv2mFwZplbXvr3x66a1rS7dGs7vMMuzxLe-oUFEOi_Gyg90PcIrB_ZezlQJHbkPzwLd3OF65gS9PE4W63a5fzjfhzu8RaivqDI7IYZ0u0l61o2PSUvkJOdgSETwlsr8SckZxtDAVtcQIXWi6Xpp4QnPUKxYrqjdqTuUc6UN5SpHtnlKT-9F1OSOCqrIF0MKYltDHbDpDOxXzdLHKio_PMzIePL33h1Y9OsGSpiQqLAh8xsBLtHRsHQbGKBmXIBhIGUpzBMLVScQDX_vKC0RoB9oFRyLpSbkctHdO2vkiVxeEahsiFzRPQgAUXxNYT2vNI5NK2A7AJbEbuOJlpZARN9SxafyDcIwIxxXCl-ShgTXeOezY-PG_Fl_9Z_E12cenio9yQ9rFaqNuTVZRQKf8bDpkr_f8Ohx9A76e0Hk | 
    
| linkProvider | Elsevier | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUqOAAHxCrK6gPX0MSJs3BDhapA21Mr9RZlHDt0Ia3S9Mq348mCWgmJA9dxLFnPySzKmzeE3AOzhZCO_tJcLg1HgjIAuG8oJTiwOPaVxH7n_sDtjpy3MR83SLvuhUFaZeX7S59eeOvK0qrQbC0nE-zxLf5RoaIcFuO6BNp1OPOwAnv4sjZy4IDVPA98fIvklWr80iSWKNzNnGLAiWv9HqI2wk7niBxW-SJ9Ko90TBoyPSEHGyqCp0S0s0jMKM4WplGlMUIXiq6WOqDQFAWLo4yqtZxTMUf-UJpQpLsnVCd_dFUMiaCy6AE0MKjF9HkynaGdRvNkkU3yj88zMuq8DNtdo5qdYAhdE-UGeA7nYMdKWKbyPW0U3BUQcRDCF_oOIqbiwPUc5Ujbi3zTUwwsgawnyVxQ9jnZSRepvCBUmRAwUG7sA6D6WoQFtVJuoHMJ0wJoErOGK1yWEhlhzR2bhj8Ih4hwWCLcJI81rOHWbYfakf-1-fI_m-_IXnfY74W918H7FdnHlZKcck128mwtb3SKkcNt8Qp9A74S0g4 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crack+path+analysis+of+spent+nuclear+fuel+cladding+using+the+strain+energy-based+Dijkstra+algorithm&rft.jtitle=Nuclear+engineering+and+design&rft.au=Baik%2C+Jee+A&rft.au=Kim%2C+Jung+Jin&rft.date=2024-12-01&rft.issn=0029-5493&rft.volume=429&rft.spage=113661&rft_id=info:doi/10.1016%2Fj.nucengdes.2024.113661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nucengdes_2024_113661 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon |