Crack path analysis of spent nuclear fuel cladding using the strain energy-based Dijkstra algorithm

[Display omitted] •Proposed method uses strain energy-based Dijkstra algorithm for crack prediction.•Achieves 92.78% accuracy in predicting crack initiation in spent fuel cladding.•Predicted crack paths are within 200 μm of actual paths.•Finite element analysis quantifies resistance changes, enhanci...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and design Vol. 429; p. 113661
Main Authors Baik, Jee A, Kim, Jung Jin
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.12.2024
Subjects
Online AccessGet full text
ISSN0029-5493
DOI10.1016/j.nucengdes.2024.113661

Cover

Abstract [Display omitted] •Proposed method uses strain energy-based Dijkstra algorithm for crack prediction.•Achieves 92.78% accuracy in predicting crack initiation in spent fuel cladding.•Predicted crack paths are within 200 μm of actual paths.•Finite element analysis quantifies resistance changes, enhancing prediction reliability.•Enhances safety assessments and management strategies for nuclear fuel. The integrity of spent fuel cladding is crucial for preventing the release of radioactive materials, which pose significant risks to public safety and the environment. However, accurately predicting cracks in cladding tubes remains a challenge. This study proposes a novel method for predicting crack paths in spent nuclear fuel cladding tubes using the Dijkstra algorithm, based on strain energy. In this method, cladding images are segmented into cladding and hydride pixels, followed by a finite element analysis to calculate the strain energy. The Dijkstra algorithm utilizes this strain energy data from hydrides to predict crack paths in areas with low resistance to loading. The predicted path exhibited an accuracy of 92.78 % with respect to the initiation point of the actual crack path and was located within 200 μm of the actual crack path. The proposed method demonstrates a higher similarity to the actual crack path than conventional image-based methods. These results suggest that the safety assessment of spent nuclear fuel can be enhanced, enabling the development of effective management strategies for spent nuclear fuel.
AbstractList [Display omitted] •Proposed method uses strain energy-based Dijkstra algorithm for crack prediction.•Achieves 92.78% accuracy in predicting crack initiation in spent fuel cladding.•Predicted crack paths are within 200 μm of actual paths.•Finite element analysis quantifies resistance changes, enhancing prediction reliability.•Enhances safety assessments and management strategies for nuclear fuel. The integrity of spent fuel cladding is crucial for preventing the release of radioactive materials, which pose significant risks to public safety and the environment. However, accurately predicting cracks in cladding tubes remains a challenge. This study proposes a novel method for predicting crack paths in spent nuclear fuel cladding tubes using the Dijkstra algorithm, based on strain energy. In this method, cladding images are segmented into cladding and hydride pixels, followed by a finite element analysis to calculate the strain energy. The Dijkstra algorithm utilizes this strain energy data from hydrides to predict crack paths in areas with low resistance to loading. The predicted path exhibited an accuracy of 92.78 % with respect to the initiation point of the actual crack path and was located within 200 μm of the actual crack path. The proposed method demonstrates a higher similarity to the actual crack path than conventional image-based methods. These results suggest that the safety assessment of spent nuclear fuel can be enhanced, enabling the development of effective management strategies for spent nuclear fuel.
ArticleNumber 113661
Author Baik, Jee A
Kim, Jung Jin
Author_xml – sequence: 1
  givenname: Jee A
  surname: Baik
  fullname: Baik, Jee A
– sequence: 2
  givenname: Jung Jin
  surname: Kim
  fullname: Kim, Jung Jin
  email: kjj4537@gmail.com
BookMark eNqFkMtqwzAQRbVIoUnab6h-wK4kv5chfUKgm3YtpNHIkePIQXIK-fvapHTbWczAhXsYzoos_OCRkAfOUs54-dil_gzoW4MxFUzkKedZWfIFWTImmqTIm-yWrGLs2DyNWBLYBgUHelLjniqv-kt0kQ6WxhP6kU60HlWg9ow9hV4Z43xLz3He4x5pHINynqLH0F4SrSIa-uS6w5xT1bdDcOP-eEdurOoj3v_eNfl6ef7cviW7j9f37WaXgCj5mOgqLwqdGQuc2bqaQihK0KrQADUYUythTVNWuc0xq1TNKis0h4bVNYpS22xNqisXwhBjQCtPwR1VuEjO5OxHdvLPj5z9yKufqbm5NnF679thkBEcekDjAsIozeD-ZfwA8Wd5bA
Cites_doi 10.1016/j.net.2020.05.026
10.7733/jnfcwt.2018.16.4.455
10.1016/j.net.2021.11.007
10.1080/00223131.2013.859106
10.1016/j.jnucmat.2014.06.049
10.1080/00223131.2022.2127954
10.1016/j.net.2024.01.004
10.1007/BF01386390
10.1016/j.jnucmat.2014.09.025
10.1080/00223131.2014.978829
10.1016/j.jnucmat.2011.09.005
10.7734/COSEIK.2013.26.2.165
10.1016/j.jallcom.2017.07.321
10.1520/JAI101183
10.2172/1415916
10.2172/1530074
10.1016/j.nucengdes.2023.112523
10.3390/jimaging7030057
10.1016/j.jnucmat.2023.154560
10.1016/j.jnucmat.2021.152817
10.1016/j.jnucmat.2019.02.042
10.1038/ncomms7583
10.1007/s10704-024-00781-8
10.1016/j.jnucmat.2007.06.012
10.1016/j.egyr.2021.09.013
10.21741/9781644900574-26
10.1080/10255842.2020.1789863
10.1016/j.jnucmat.2022.153647
10.1016/S0022-3115(01)00438-X
10.3795/KSME-A.2016.40.5.469
10.1088/0022-3727/49/40/405302
10.1109/TSMC.1979.4310076
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.nucengdes.2024.113661
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_nucengdes_2024_113661
S0029549324007611
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXKI
AAXUO
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
ZMT
~02
~G-
29N
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HME
HVGLF
HZ~
LY6
LY7
LZ3
R2-
SAC
SET
SHN
UHS
WUQ
XPP
~HD
ID FETCH-LOGICAL-c261t-b7455b3dfc10f87c26c56cba5bcc8cdd8a2fd9674f4e37a807f2b1c9088e26bf3
IEDL.DBID .~1
ISSN 0029-5493
IngestDate Wed Oct 01 01:57:45 EDT 2025
Sat Nov 16 15:59:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Crack path
Spent nuclear fuel
Finite element analysis
Strain energy
Dijkstra algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-b7455b3dfc10f87c26c56cba5bcc8cdd8a2fd9674f4e37a807f2b1c9088e26bf3
ParticipantIDs crossref_primary_10_1016_j_nucengdes_2024_113661
elsevier_sciencedirect_doi_10_1016_j_nucengdes_2024_113661
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-12-01
2024-12-00
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Nuclear engineering and design
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Park, Park (b0115) 2018; 16
François, Petit, Auzoux, Le Boulch, Zarpellon Nascimento, Besson (b0035) 2024; 247
Kim, Kim, Cho (b0055) 2013; 26
Sui, Baimpas, Dolbnya, Prisacariu, Korsunsky (b0145) 2015; 6
Falcinelli, Whyne (b0030) 2020; 23
Qin, Szpunar, Kozinski (b0120) 2015; 471
Wu, Mu, Gordon, Olson, Liu, Shayer, Yu (b0175) 2021; 5
Yoo, Kim, Park, Kim (b0185) 2023; 413
Lei, Mao, Zhang, Wang, Chen (b0095) 2021; 7
Bair, Zaeem, Tonks (b0010) 2016; 49
Raynaud, Koss, Motta, Chan (b0125) 2008; 5
Stoll, Slavinskaya (b0140) 2023; 60
Jarmer, R., King, J., Craft, A., O’brien, R., 2020. Quantitative crack analysis using indirect neutron radiography and neutron activation analysis with contrast enhancement agents, in: Materials Research Proceedings. pp. 164–172. https://doi.org/10.21741/9781644900574-26.
Goll, Spilker, Toscano (b0045) 2001; 289
Wang, J.-A., Wang, H., 2018. CIRFT Data Update and Data Analyses for Spent Nuclear Fuel Vibration Reliability Study. Oak Ridge, TN (United States). https://doi.org/10.2172/1415916.
Kim, Kim, Kook, Kim (b0060) 2015; 456
Ge, Yu, Tomizawa, Song, Yusa (b0040) 2021; 70
Lehmann, Thomsen, Strobl, Trtik, Bertsch, Dai (b0090) 2021; 7
Kim, Lee (b0075) 2024; 56
Otsu (b0110) 1979; 9
Woo, Lee (b0170) 2023; 584
.
Dijkstra (b0025) 1959; 1
Kwon (b0080) 2016; 40
Raynaud, Koss, Motta (b0130) 2012; 420
Kim, Kook, Kim, Kim (b0070) 2015; 52
Nemade, Shikalgar (b0105) 2020; IOSR-JMCE 17
Xin, Yuyu, Libin (b0180) 2020; 52
Chu, Wu, Kuo (b0015) 2008; 373
Suman, Khan, Pathak, Singh (b0150) 2017; 726
Lee, Kim, Kook, Kim (b0085) 2018; 56
Simon, Frank, Chen, Daymond, Tonks, Motta (b0135) 2021; 547
Desquines, Drouan, Billone, Puls, March, Fourgeaud, Getrey, Elbaz, Philippe (b0020) 2014; 453
Kim, Kim, Woo, Lee (b0065) 2022; 564
Andersson, O., Asfaw, K., Bassing, G., Cavellec, R., Depas, V., Lipar, M., Nikolaki, M., 2022. Maintenance, Testing, Surveillance and Inspection in Nuclear Power Plants.
Motta, Capolungo, Chen, Cinbiz, Daymond, Koss, Lacroix, Pastore, Simon, Tonks, Wirth, Zikry (b0100) 2019; 518
Bang, S., Kim, H. a., Noh, J. soo, Kim, D., Keum, K., Lee, Y., 2022. Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations. Nucl. Eng. Technol. 54, 1579–1587.
Udagawa, Mihara, Sugiyama, Suzuki, Amaya (b0155) 2014; 51
Wang, J.-A., 2019. Fracture Toughness Evaluation for Spent Nuclear Fuel Clad Systems Using Spiral Notch Torsion Fracture Toughness Test. Oak Ridge, TN (United States). https://doi.org/10.2172/1530074.
Stoll (10.1016/j.nucengdes.2024.113661_b0140) 2023; 60
Motta (10.1016/j.nucengdes.2024.113661_b0100) 2019; 518
Xin (10.1016/j.nucengdes.2024.113661_b0180) 2020; 52
Ge (10.1016/j.nucengdes.2024.113661_b0040) 2021; 70
10.1016/j.nucengdes.2024.113661_bib186
10.1016/j.nucengdes.2024.113661_b0050
Dijkstra (10.1016/j.nucengdes.2024.113661_b0025) 1959; 1
Kim (10.1016/j.nucengdes.2024.113661_b0055) 2013; 26
Kim (10.1016/j.nucengdes.2024.113661_b0065) 2022; 564
Simon (10.1016/j.nucengdes.2024.113661_b0135) 2021; 547
Otsu (10.1016/j.nucengdes.2024.113661_b0110) 1979; 9
Raynaud (10.1016/j.nucengdes.2024.113661_b0125) 2008; 5
Raynaud (10.1016/j.nucengdes.2024.113661_b0130) 2012; 420
Park (10.1016/j.nucengdes.2024.113661_b0115) 2018; 16
Kwon (10.1016/j.nucengdes.2024.113661_b0080) 2016; 40
Goll (10.1016/j.nucengdes.2024.113661_b0045) 2001; 289
Lei (10.1016/j.nucengdes.2024.113661_b0095) 2021; 7
Suman (10.1016/j.nucengdes.2024.113661_b0150) 2017; 726
François (10.1016/j.nucengdes.2024.113661_b0035) 2024; 247
Bair (10.1016/j.nucengdes.2024.113661_b0010) 2016; 49
Kim (10.1016/j.nucengdes.2024.113661_b0075) 2024; 56
Yoo (10.1016/j.nucengdes.2024.113661_b0185) 2023; 413
Udagawa (10.1016/j.nucengdes.2024.113661_b0155) 2014; 51
10.1016/j.nucengdes.2024.113661_b0160
Wu (10.1016/j.nucengdes.2024.113661_b0175) 2021; 5
Lehmann (10.1016/j.nucengdes.2024.113661_b0090) 2021; 7
Chu (10.1016/j.nucengdes.2024.113661_b0015) 2008; 373
Desquines (10.1016/j.nucengdes.2024.113661_b0020) 2014; 453
Woo (10.1016/j.nucengdes.2024.113661_b0170) 2023; 584
10.1016/j.nucengdes.2024.113661_b0005
Kim (10.1016/j.nucengdes.2024.113661_b0060) 2015; 456
Qin (10.1016/j.nucengdes.2024.113661_b0120) 2015; 471
Falcinelli (10.1016/j.nucengdes.2024.113661_b0030) 2020; 23
10.1016/j.nucengdes.2024.113661_b0165
Lee (10.1016/j.nucengdes.2024.113661_b0085) 2018; 56
Sui (10.1016/j.nucengdes.2024.113661_b0145) 2015; 6
Kim (10.1016/j.nucengdes.2024.113661_b0070) 2015; 52
Nemade (10.1016/j.nucengdes.2024.113661_b0105) 2020; IOSR-JMCE 17
References_xml – volume: 1
  start-page: 269
  year: 1959
  end-page: 271
  ident: b0025
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
– volume: 584
  year: 2023
  ident: b0170
  article-title: Understanding the mechanical integrity of Zircaloy cladding with various radial and circumferential hydride morphologies via image analysis
  publication-title: J. Nucl. Mater.
– volume: 23
  start-page: 1138
  year: 2020
  end-page: 1161
  ident: b0030
  article-title: Image-based finite-element modeling of the human femur
  publication-title: Comput. Methods Biomech. Biomed. Engin.
– volume: 289
  start-page: 247
  year: 2001
  end-page: 253
  ident: b0045
  article-title: Short-time creep and rupture tests on high burnup fuel rod cladding
  publication-title: J. Nucl. Mater.
– volume: 518
  start-page: 440
  year: 2019
  end-page: 460
  ident: b0100
  article-title: Hydrogen in zirconium alloys: a review
  publication-title: J. Nucl. Mater.
– reference: Andersson, O., Asfaw, K., Bassing, G., Cavellec, R., Depas, V., Lipar, M., Nikolaki, M., 2022. Maintenance, Testing, Surveillance and Inspection in Nuclear Power Plants.
– volume: 420
  start-page: 69
  year: 2012
  end-page: 82
  ident: b0130
  article-title: Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet
  publication-title: J. Nucl. Mater.
– volume: 51
  start-page: 208
  year: 2014
  end-page: 219
  ident: b0155
  article-title: Simulation of the fracture behavior of Zircaloy-4 cladding under reactivity-initiated accident conditions with a damage mechanics model combined with fuel performance codes FEMAXI-7 and RANNS
  publication-title: J. Nucl. Sci. Technol.
– reference: Wang, J.-A., Wang, H., 2018. CIRFT Data Update and Data Analyses for Spent Nuclear Fuel Vibration Reliability Study. Oak Ridge, TN (United States). https://doi.org/10.2172/1415916.
– volume: 456
  start-page: 235
  year: 2015
  end-page: 245
  ident: b0060
  article-title: Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding
  publication-title: J. Nucl. Mater.
– volume: 52
  start-page: 717
  year: 2015
  end-page: 727
  ident: b0070
  article-title: Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation
  publication-title: J. Nucl. Sci. Technol.
– volume: 40
  start-page: 469
  year: 2016
  end-page: 481
  ident: b0080
  article-title: Impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground
  publication-title: Trans. Korean Soc. Mech. Eng. A
– volume: 5
  start-page: 28
  year: 2021
  ident: b0175
  article-title: Development of a numerical model for simulating stress corrosion cracking in spent nuclear fuel canisters. npj Mater
  publication-title: Degrad.
– volume: IOSR-JMCE 17
  start-page: 44
  year: 2020
  end-page: 48
  ident: b0105
  article-title: The mesh quality significance in finite element analysis
  publication-title: IOSR J. Mech Civ. Eng.
– volume: 547
  year: 2021
  ident: b0135
  article-title: Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis
  publication-title: J. Nucl. Mater.
– volume: 16
  start-page: 455
  year: 2018
  end-page: 472
  ident: b0115
  article-title: Review of research on chloride-induced stress corrosion cracking of dry storage canisters in the United States
  publication-title: J. Nucl. Fuel Cycle Waste Technol.
– volume: 7
  start-page: 5922
  year: 2021
  end-page: 5932
  ident: b0095
  article-title: Crack prediction in sheet forming of zirconium alloys used in nuclear fuel assembly by support vector machine method
  publication-title: Energy Rep.
– volume: 5
  year: 2008
  ident: b0125
  article-title: Fracture toughness of hydrided Zircaloy-4 sheet under through-thickness crack growth conditions
  publication-title: J. ASTM Int.
– volume: 6
  start-page: 1
  year: 2015
  end-page: 9
  ident: b0145
  article-title: Multiple-length-scale deformation analysis in a thermoplastic polyurethane
  publication-title: Nat. Commun.
– volume: 9
  start-page: 62
  year: 1979
  end-page: 66
  ident: b0110
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man. Cybern.
– reference: Wang, J.-A., 2019. Fracture Toughness Evaluation for Spent Nuclear Fuel Clad Systems Using Spiral Notch Torsion Fracture Toughness Test. Oak Ridge, TN (United States). https://doi.org/10.2172/1530074.
– reference: Bang, S., Kim, H. a., Noh, J. soo, Kim, D., Keum, K., Lee, Y., 2022. Temperature-dependent axial mechanical properties of Zircaloy-4 with various hydrogen amounts and hydride orientations. Nucl. Eng. Technol. 54, 1579–1587.
– volume: 52
  start-page: 2901
  year: 2020
  end-page: 2909
  ident: b0180
  article-title: Thermal creep behavior of CZ cladding under biaxial stress state
  publication-title: Nucl. Eng. Technol.
– volume: 56
  start-page: 79
  year: 2018
  end-page: 92
  ident: b0085
  article-title: A review of factors influencing the hydride reorientation phenomena in zirconium alloy cladding during long-term dry storage
  publication-title: Korean J. Met. Mater.
– volume: 373
  start-page: 319
  year: 2008
  end-page: 327
  ident: b0015
  article-title: Hydride reorientation in Zircaloy-4 cladding
  publication-title: J. Nucl. Mater.
– reference: .
– reference: Jarmer, R., King, J., Craft, A., O’brien, R., 2020. Quantitative crack analysis using indirect neutron radiography and neutron activation analysis with contrast enhancement agents, in: Materials Research Proceedings. pp. 164–172. https://doi.org/10.21741/9781644900574-26.
– volume: 247
  start-page: 51
  year: 2024
  end-page: 72
  ident: b0035
  article-title: Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking
  publication-title: Int. J. Fract.
– volume: 70
  start-page: 1
  year: 2021
  end-page: 10
  ident: b0040
  article-title: Inspection of pitting corrosions on weld overlay cladding using uniform and rotating eddy current testing
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 26
  start-page: 165
  year: 2013
  end-page: 171
  ident: b0055
  article-title: Transformation of dynamic loads into equivalent static load based on the stress constraint conditions
  publication-title: J. Comput. Struct. Eng. Inst. Korea
– volume: 564
  year: 2022
  ident: b0065
  article-title: Development of an image analysis code for hydrided Zircaloy using Dijkstra’s algorithm and sensitivity analysis of radial hydride continuous path
  publication-title: J. Nucl. Mater.
– volume: 413
  year: 2023
  ident: b0185
  article-title: Development of nuclear fuel assembly finite element model for mechanical integrity evaluation
  publication-title: Nucl. Eng. Des.
– volume: 7
  start-page: 57
  year: 2021
  ident: b0090
  article-title: NEURAP—a dedicated neutron-imaging facility for highly radioactive samples
  publication-title: J. Imaging
– volume: 471
  year: 2015
  ident: b0120
  article-title: Hydride-induced degradation of zirconium alloys: A criterion for complete ductile-to-brittle transition and its dependence on microstructure
  publication-title: Proc. r. Soc. A Math. Phys. Eng. Sci.
– volume: 49
  year: 2016
  ident: b0010
  article-title: A phase-field model to study the effects of temperature change on shape evolution of γ -hydrides in zirconium
  publication-title: J. Phys. d. Appl. Phys.
– volume: 56
  start-page: 1975
  year: 2024
  end-page: 1988
  ident: b0075
  article-title: Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides
  publication-title: Nucl. Eng. Technol.
– volume: 453
  start-page: 131
  year: 2014
  end-page: 150
  ident: b0020
  article-title: Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding
  publication-title: J. Nucl. Mater.
– volume: 60
  start-page: 573
  year: 2023
  end-page: 602
  ident: b0140
  article-title: Corrosion behavior of zirconium alloys in the aqueous environment. Phenomenological aspects overview
  publication-title: J. Nucl. Sci. Technol.
– volume: 726
  start-page: 107
  year: 2017
  end-page: 113
  ident: b0150
  article-title: Investigation of elevated-temperature mechanical properties of δ-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation
  publication-title: J. Alloys Compd.
– volume: 52
  start-page: 2901
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113661_b0180
  article-title: Thermal creep behavior of CZ cladding under biaxial stress state
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2020.05.026
– volume: 16
  start-page: 455
  year: 2018
  ident: 10.1016/j.nucengdes.2024.113661_b0115
  article-title: Review of research on chloride-induced stress corrosion cracking of dry storage canisters in the United States
  publication-title: J. Nucl. Fuel Cycle Waste Technol.
  doi: 10.7733/jnfcwt.2018.16.4.455
– ident: 10.1016/j.nucengdes.2024.113661_bib186
  doi: 10.1016/j.net.2021.11.007
– volume: 51
  start-page: 208
  year: 2014
  ident: 10.1016/j.nucengdes.2024.113661_b0155
  article-title: Simulation of the fracture behavior of Zircaloy-4 cladding under reactivity-initiated accident conditions with a damage mechanics model combined with fuel performance codes FEMAXI-7 and RANNS
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2013.859106
– volume: 453
  start-page: 131
  year: 2014
  ident: 10.1016/j.nucengdes.2024.113661_b0020
  article-title: Influence of temperature and hydrogen content on stress-induced radial hydride precipitation in Zircaloy-4 cladding
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.06.049
– ident: 10.1016/j.nucengdes.2024.113661_b0005
– volume: 60
  start-page: 573
  year: 2023
  ident: 10.1016/j.nucengdes.2024.113661_b0140
  article-title: Corrosion behavior of zirconium alloys in the aqueous environment. Phenomenological aspects overview
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2022.2127954
– volume: 56
  start-page: 1975
  year: 2024
  ident: 10.1016/j.nucengdes.2024.113661_b0075
  article-title: Methodology for numerical evaluation of fracture resistance under pinch loading of spent nuclear fuel cladding containing reoriented hydrides
  publication-title: Nucl. Eng. Technol.
  doi: 10.1016/j.net.2024.01.004
– volume: 1
  start-page: 269
  year: 1959
  ident: 10.1016/j.nucengdes.2024.113661_b0025
  article-title: A note on two problems in connexion with graphs
  publication-title: Numer. Math.
  doi: 10.1007/BF01386390
– volume: 456
  start-page: 235
  year: 2015
  ident: 10.1016/j.nucengdes.2024.113661_b0060
  article-title: Effects of hydride morphology on the embrittlement of Zircaloy-4 cladding
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2014.09.025
– volume: 52
  start-page: 717
  year: 2015
  ident: 10.1016/j.nucengdes.2024.113661_b0070
  article-title: Stress and temperature-dependent hydride reorientation of Zircaloy-4 cladding and its effect on the ductility degradation
  publication-title: J. Nucl. Sci. Technol.
  doi: 10.1080/00223131.2014.978829
– volume: 420
  start-page: 69
  year: 2012
  ident: 10.1016/j.nucengdes.2024.113661_b0130
  article-title: Crack growth in the through-thickness direction of hydrided thin-wall Zircaloy sheet
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2011.09.005
– volume: 5
  start-page: 28
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113661_b0175
  article-title: Development of a numerical model for simulating stress corrosion cracking in spent nuclear fuel canisters. npj Mater
  publication-title: Degrad.
– volume: 26
  start-page: 165
  year: 2013
  ident: 10.1016/j.nucengdes.2024.113661_b0055
  article-title: Transformation of dynamic loads into equivalent static load based on the stress constraint conditions
  publication-title: J. Comput. Struct. Eng. Inst. Korea
  doi: 10.7734/COSEIK.2013.26.2.165
– volume: 726
  start-page: 107
  year: 2017
  ident: 10.1016/j.nucengdes.2024.113661_b0150
  article-title: Investigation of elevated-temperature mechanical properties of δ-hydride precipitate in Zircaloy-4 fuel cladding tubes using nanoindentation
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.07.321
– volume: 5
  year: 2008
  ident: 10.1016/j.nucengdes.2024.113661_b0125
  article-title: Fracture toughness of hydrided Zircaloy-4 sheet under through-thickness crack growth conditions
  publication-title: J. ASTM Int.
  doi: 10.1520/JAI101183
– ident: 10.1016/j.nucengdes.2024.113661_b0160
  doi: 10.2172/1415916
– ident: 10.1016/j.nucengdes.2024.113661_b0165
  doi: 10.2172/1530074
– volume: 413
  year: 2023
  ident: 10.1016/j.nucengdes.2024.113661_b0185
  article-title: Development of nuclear fuel assembly finite element model for mechanical integrity evaluation
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2023.112523
– volume: IOSR-JMCE 17
  start-page: 44
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113661_b0105
  article-title: The mesh quality significance in finite element analysis
  publication-title: IOSR J. Mech Civ. Eng.
– volume: 7
  start-page: 57
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113661_b0090
  article-title: NEURAP—a dedicated neutron-imaging facility for highly radioactive samples
  publication-title: J. Imaging
  doi: 10.3390/jimaging7030057
– volume: 584
  year: 2023
  ident: 10.1016/j.nucengdes.2024.113661_b0170
  article-title: Understanding the mechanical integrity of Zircaloy cladding with various radial and circumferential hydride morphologies via image analysis
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2023.154560
– volume: 547
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113661_b0135
  article-title: Quantifying the effect of hydride microstructure on zirconium alloys embrittlement using image analysis
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2021.152817
– volume: 518
  start-page: 440
  year: 2019
  ident: 10.1016/j.nucengdes.2024.113661_b0100
  article-title: Hydrogen in zirconium alloys: a review
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2019.02.042
– volume: 56
  start-page: 79
  year: 2018
  ident: 10.1016/j.nucengdes.2024.113661_b0085
  article-title: A review of factors influencing the hydride reorientation phenomena in zirconium alloy cladding during long-term dry storage
  publication-title: Korean J. Met. Mater.
– volume: 6
  start-page: 1
  year: 2015
  ident: 10.1016/j.nucengdes.2024.113661_b0145
  article-title: Multiple-length-scale deformation analysis in a thermoplastic polyurethane
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7583
– volume: 471
  year: 2015
  ident: 10.1016/j.nucengdes.2024.113661_b0120
  article-title: Hydride-induced degradation of zirconium alloys: A criterion for complete ductile-to-brittle transition and its dependence on microstructure
  publication-title: Proc. r. Soc. A Math. Phys. Eng. Sci.
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113661_b0040
  article-title: Inspection of pitting corrosions on weld overlay cladding using uniform and rotating eddy current testing
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 247
  start-page: 51
  year: 2024
  ident: 10.1016/j.nucengdes.2024.113661_b0035
  article-title: Assessing the fracture toughness of Zircaloy-4 fuel rod cladding tubes: impact of delayed hydride cracking
  publication-title: Int. J. Fract.
  doi: 10.1007/s10704-024-00781-8
– volume: 373
  start-page: 319
  year: 2008
  ident: 10.1016/j.nucengdes.2024.113661_b0015
  article-title: Hydride reorientation in Zircaloy-4 cladding
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2007.06.012
– volume: 7
  start-page: 5922
  year: 2021
  ident: 10.1016/j.nucengdes.2024.113661_b0095
  article-title: Crack prediction in sheet forming of zirconium alloys used in nuclear fuel assembly by support vector machine method
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.09.013
– ident: 10.1016/j.nucengdes.2024.113661_b0050
  doi: 10.21741/9781644900574-26
– volume: 23
  start-page: 1138
  year: 2020
  ident: 10.1016/j.nucengdes.2024.113661_b0030
  article-title: Image-based finite-element modeling of the human femur
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255842.2020.1789863
– volume: 564
  year: 2022
  ident: 10.1016/j.nucengdes.2024.113661_b0065
  article-title: Development of an image analysis code for hydrided Zircaloy using Dijkstra’s algorithm and sensitivity analysis of radial hydride continuous path
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2022.153647
– volume: 289
  start-page: 247
  year: 2001
  ident: 10.1016/j.nucengdes.2024.113661_b0045
  article-title: Short-time creep and rupture tests on high burnup fuel rod cladding
  publication-title: J. Nucl. Mater.
  doi: 10.1016/S0022-3115(01)00438-X
– volume: 40
  start-page: 469
  year: 2016
  ident: 10.1016/j.nucengdes.2024.113661_b0080
  article-title: Impact force applied on the spent nuclear fuel disposal canister that accidentally drops and collides onto the ground
  publication-title: Trans. Korean Soc. Mech. Eng. A
  doi: 10.3795/KSME-A.2016.40.5.469
– volume: 49
  year: 2016
  ident: 10.1016/j.nucengdes.2024.113661_b0010
  article-title: A phase-field model to study the effects of temperature change on shape evolution of γ -hydrides in zirconium
  publication-title: J. Phys. d. Appl. Phys.
  doi: 10.1088/0022-3727/49/40/405302
– volume: 9
  start-page: 62
  year: 1979
  ident: 10.1016/j.nucengdes.2024.113661_b0110
  article-title: A threshold selection method from gray-level histograms
  publication-title: IEEE Trans. Syst. Man. Cybern.
  doi: 10.1109/TSMC.1979.4310076
SSID ssj0000092
Score 2.411966
Snippet [Display omitted] •Proposed method uses strain energy-based Dijkstra algorithm for crack prediction.•Achieves 92.78% accuracy in predicting crack initiation in...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113661
SubjectTerms Crack path
Dijkstra algorithm
Finite element analysis
Spent nuclear fuel
Strain energy
Title Crack path analysis of spent nuclear fuel cladding using the strain energy-based Dijkstra algorithm
URI https://dx.doi.org/10.1016/j.nucengdes.2024.113661
Volume 429
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0029-5493
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000092
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  issn: 0029-5493
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000092
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  issn: 0029-5493
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000092
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Science Direct
  issn: 0029-5493
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0000092
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0029-5493
  databaseCode: AKRWK
  dateStart: 19660101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELaqssCAeIpn5YE1NC87CVtVqAqITlTqFvkcO6QtadWmK78dXx6olZAYGHOKJetzcg_5u-8IuQPXk1L55k_jTFm-Am0BsNDSWjJwkyTUCvud30Z8OPZfJmzSIv2mFwZplbXvr3x66a1rS7dGs7vMMuzxLe-oUFEOi_Gyg90PcIrB_ZezlQJHbkPzwLd3OF65gS9PE4W63a5fzjfhzu8RaivqDI7IYZ0u0l61o2PSUvkJOdgSETwlsr8SckZxtDAVtcQIXWi6Xpp4QnPUKxYrqjdqTuUc6UN5SpHtnlKT-9F1OSOCqrIF0MKYltDHbDpDOxXzdLHKio_PMzIePL33h1Y9OsGSpiQqLAh8xsBLtHRsHQbGKBmXIBhIGUpzBMLVScQDX_vKC0RoB9oFRyLpSbkctHdO2vkiVxeEahsiFzRPQgAUXxNYT2vNI5NK2A7AJbEbuOJlpZARN9SxafyDcIwIxxXCl-ShgTXeOezY-PG_Fl_9Z_E12cenio9yQ9rFaqNuTVZRQKf8bDpkr_f8Ohx9A76e0Hk
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwELUqOAAHxCrK6gPX0MSJs3BDhapA21Mr9RZlHDt0Ia3S9Mq348mCWgmJA9dxLFnPySzKmzeE3AOzhZCO_tJcLg1HgjIAuG8oJTiwOPaVxH7n_sDtjpy3MR83SLvuhUFaZeX7S59eeOvK0qrQbC0nE-zxLf5RoaIcFuO6BNp1OPOwAnv4sjZy4IDVPA98fIvklWr80iSWKNzNnGLAiWv9HqI2wk7niBxW-SJ9Ko90TBoyPSEHGyqCp0S0s0jMKM4WplGlMUIXiq6WOqDQFAWLo4yqtZxTMUf-UJpQpLsnVCd_dFUMiaCy6AE0MKjF9HkynaGdRvNkkU3yj88zMuq8DNtdo5qdYAhdE-UGeA7nYMdKWKbyPW0U3BUQcRDCF_oOIqbiwPUc5Ujbi3zTUwwsgawnyVxQ9jnZSRepvCBUmRAwUG7sA6D6WoQFtVJuoHMJ0wJoErOGK1yWEhlhzR2bhj8Ih4hwWCLcJI81rOHWbYfakf-1-fI_m-_IXnfY74W918H7FdnHlZKcck128mwtb3SKkcNt8Qp9A74S0g4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Crack+path+analysis+of+spent+nuclear+fuel+cladding+using+the+strain+energy-based+Dijkstra+algorithm&rft.jtitle=Nuclear+engineering+and+design&rft.au=Baik%2C+Jee+A&rft.au=Kim%2C+Jung+Jin&rft.date=2024-12-01&rft.issn=0029-5493&rft.volume=429&rft.spage=113661&rft_id=info:doi/10.1016%2Fj.nucengdes.2024.113661&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_nucengdes_2024_113661
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon