Development of a hybrid deep learning model with HHO algorithm for dynamic response prediction of wind-wave integrated floating energy systems
Wind-wave integrated floating energy system (IFES) is recognized for reducing the levelized cost of electricity by sharing the support structures. Developing efficient models to accurately predict dynamic responses is crucial for the performance evaluation and optimization design of wind-wave hybrid...
Saved in:
| Published in | Ocean engineering Vol. 340; p. 122394 |
|---|---|
| Main Authors | , , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
30.11.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0029-8018 |
| DOI | 10.1016/j.oceaneng.2025.122394 |
Cover
| Abstract | Wind-wave integrated floating energy system (IFES) is recognized for reducing the levelized cost of electricity by sharing the support structures. Developing efficient models to accurately predict dynamic responses is crucial for the performance evaluation and optimization design of wind-wave hybrid energy concepts. This study has developed a novel hybrid deep learning model, CLCBA_HHO by incorporating signal processing and Harris Hawk Optimization(HHO) algorithms into the convolutional neural network(CNN) and bi-directional long-short term memory with attention mechanism(Bi-LSTM-AM). The wind-wave IFES concepts, comprising a 10 MW wind turbine and three wave energy converters (WECs) supported by the OO-Star platform, is selected for the case study. The dynamic responses of the wind-wave IFES concept under environmental loadings are calculated using a well-validated numerical tool and used the dataset for training and testing the CLCBA_HHO model. The performance of CLCBA_HHO in predicting wind and wave power, tower loads, and platform motions is demonstrated through a comprehensive comparison with several existing deep learning methods. The accuracy of CLCBA_HHO in predicting wind and wave power can reach over 95 % under various working conditions, significantly outperforming the state-of-the-art similar method. This study verifies the superiority of the proposed method in predicting dynamic responses of wind-wave IFES concepts, offering a reliable and effective performance evaluator for the optimization design of wind-wave hybrid energy systems.
•A hybrid deep learning model is proposed for predicting dynamic response of wind-wave integrated floating energy systems.•Reliable simulation data is used for training and testing the prediction model.•HHO algorithm is used for optimizing the hybrid neural network framework.•The predictive performance of the proposed model is better than existing algorithms. |
|---|---|
| AbstractList | Wind-wave integrated floating energy system (IFES) is recognized for reducing the levelized cost of electricity by sharing the support structures. Developing efficient models to accurately predict dynamic responses is crucial for the performance evaluation and optimization design of wind-wave hybrid energy concepts. This study has developed a novel hybrid deep learning model, CLCBA_HHO by incorporating signal processing and Harris Hawk Optimization(HHO) algorithms into the convolutional neural network(CNN) and bi-directional long-short term memory with attention mechanism(Bi-LSTM-AM). The wind-wave IFES concepts, comprising a 10 MW wind turbine and three wave energy converters (WECs) supported by the OO-Star platform, is selected for the case study. The dynamic responses of the wind-wave IFES concept under environmental loadings are calculated using a well-validated numerical tool and used the dataset for training and testing the CLCBA_HHO model. The performance of CLCBA_HHO in predicting wind and wave power, tower loads, and platform motions is demonstrated through a comprehensive comparison with several existing deep learning methods. The accuracy of CLCBA_HHO in predicting wind and wave power can reach over 95 % under various working conditions, significantly outperforming the state-of-the-art similar method. This study verifies the superiority of the proposed method in predicting dynamic responses of wind-wave IFES concepts, offering a reliable and effective performance evaluator for the optimization design of wind-wave hybrid energy systems.
•A hybrid deep learning model is proposed for predicting dynamic response of wind-wave integrated floating energy systems.•Reliable simulation data is used for training and testing the prediction model.•HHO algorithm is used for optimizing the hybrid neural network framework.•The predictive performance of the proposed model is better than existing algorithms. |
| ArticleNumber | 122394 |
| Author | Fan, Yihong Li, Chun Ding, Jieyi Nie, Debang Bashir, Musa Lai, Yongqing Yu, Jie Yin, Jiaqing Yang, Yang |
| Author_xml | – sequence: 1 givenname: Jiaqing surname: Yin fullname: Yin, Jiaqing organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China – sequence: 2 givenname: Yihong surname: Fan fullname: Fan, Yihong organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China – sequence: 3 givenname: Musa surname: Bashir fullname: Bashir, Musa organization: Department of Civil and Environmental Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom – sequence: 4 givenname: Debang surname: Nie fullname: Nie, Debang organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China – sequence: 5 givenname: Yongqing surname: Lai fullname: Lai, Yongqing organization: Power China Huadong Engineering Limited Corporation, Hangzhou, 310058, PR China – sequence: 6 givenname: Jieyi surname: Ding fullname: Ding, Jieyi organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China – sequence: 7 givenname: Jie surname: Yu fullname: Yu, Jie organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China – sequence: 8 givenname: Chun surname: Li fullname: Li, Chun organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China – sequence: 9 givenname: Yang orcidid: 0000-0002-6251-0837 surname: Yang fullname: Yang, Yang email: yangyang1@nbu.edu.cn organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China |
| BookMark | eNqFkEtOwzAURT0oEm1hC8gbSLCd1klmoPIpUqVOYGw59nPqKrEj22qVTbBmUhXGjK7e4B69exZo5rwDhB4oySmh_PGYewXSgWtzRtg6p4wV9WqG5oSwOqsIrW7RIsYjIYRzUszR9wucoPNDDy5hb7DEh7EJVmMNMOAOZHDWtbj3Gjp8tumAt9s9ll3rw3T02PiA9ehkbxUOEAfvIuAhgLYqWe8uyLN1OjvLE2DrErRBJtDYdF6mCxkchHbEcYwJ-niHbozsItz_5hJ9vb1-brbZbv_-sXneZYpxmrKSNnKlacHWVFaSQK2AcU5NqVmjlG5Y0_AVlLrglWH1ei1XpiihbCooFDclL5aIX7kq-BgDGDEE28swCkrExaQ4ij-T4mJSXE1OxadrEabvThaCiMqCU9PgACoJ7e1_iB-YI4f_ |
| Cites_doi | 10.1016/j.oceaneng.2022.110578 10.3390/fractalfract8030149 10.1016/j.oceaneng.2024.119453 10.1016/j.renene.2012.05.025 10.32604/iasc.2021.014962 10.1016/j.renene.2020.09.141 10.1016/j.egyr.2022.02.206 10.1016/j.oceaneng.2022.112105 10.1049/rpg2.12157 10.1016/j.oceaneng.2013.03.002 10.1016/j.renene.2019.11.095 10.1016/j.energy.2023.128789 10.1016/j.oceaneng.2020.107909 10.1145/3005348 10.1016/j.ijepes.2024.110353 10.1016/j.asoc.2014.06.027 10.1162/neco.1997.9.8.1735 10.1016/j.oceaneng.2021.108835 10.1371/journal.pone.0300496 10.3390/app112110335 10.1109/TSTE.2014.2365580 10.1016/j.enbuild.2022.112666 10.1016/j.marstruc.2016.06.005 10.1016/j.renene.2023.119111 10.1016/j.future.2019.02.028 10.1016/j.oceaneng.2024.117316 10.1016/j.eswa.2023.122316 10.28991/CEJ-2023-09-01-012 10.1016/j.renene.2023.119357 10.1016/j.renene.2017.02.079 10.1007/s00773-020-00759-w 10.1016/j.comnet.2024.110172 10.1016/j.oceaneng.2023.114558 10.1016/j.energy.2020.118371 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.oceaneng.2025.122394 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Oceanography |
| ExternalDocumentID | 10_1016_j_oceaneng_2025_122394 S0029801825020785 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- ~HD 29N 6TJ AAQXK AAYXX ABFNM ABWVN ABXDB ACKIV ACLOT ACNNM ACRPL ADMUD ADNMO AFFNX AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HVGLF HZ~ LY6 LY7 M41 R2- SAC SET WUQ |
| ID | FETCH-LOGICAL-c261t-71ba4d13251a8a0e9ce2661f7d2bccdb2bb64e7d368f2955a4f37e7b8e3c6f763 |
| IEDL.DBID | .~1 |
| ISSN | 0029-8018 |
| IngestDate | Wed Oct 01 05:41:55 EDT 2025 Sat Sep 13 17:01:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Harris Hawk optimization Floating offshore wind turbine Wave energy converter Hybrid neural network Hybrid energy system |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c261t-71ba4d13251a8a0e9ce2661f7d2bccdb2bb64e7d368f2955a4f37e7b8e3c6f763 |
| ORCID | 0000-0002-6251-0837 |
| ParticipantIDs | crossref_primary_10_1016_j_oceaneng_2025_122394 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_122394 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-30 |
| PublicationDateYYYYMMDD | 2025-11-30 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-30 day: 30 |
| PublicationDecade | 2020 |
| PublicationTitle | Ocean engineering |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Peiffer, Roddier, Aubault (bib30) 2011 Muliawan, Karimirad, Moan (bib26) 2012 Deng, Feng, Xu (bib7) 2020; 26 Yu, Müller, Lemmer (bib49) 2018 Adanta, Sari, Syofii (bib1) 2023; 9 Heidari, Mirjalili, Faris (bib14) 2019; 97 Liu, Yu, Wu, Duan, Yan (bib21) 2020; 202 Aubault, Alves, Sarmento (bib3) 2011 Ren, Ma, Shan (bib35) 2020; 151 Fakhfour, Pourfayaz (bib10) 2024 Yang, Fu, Shi (bib48) 2023; 216 Ren, Yu, Gao (bib36) 2022; 8 Tahiri, Chikh, Khafallah (bib40) 2021; 5 Ramadevi, Kasi, Bingi (bib32) 2024; 8 Wang, Zhang, Li, Wang (bib43) 2014; 23 Ni (bib29) 2021; 15 Shi, Hu, Lin (bib37) 2023; 280 Liu, Liu, Guo (bib22) 2022 Muliawan, Karimirad, Moan (bib27) 2013; 50 Treisman, Gelde (bib42) 1980; 12 Ren, Suganthan, Srikanth (bib34) 2014; 6 Zhang, Li, Zhang (bib50) 2020; 213 Luo, Wang, Gao (bib23) 2024; 12 Butterworth (bib5) 1930; 7 Wang, Qiao, Tang (bib45) 2024; 299 Hu, Liu, Huo (bib17) 2024; 240 Choi, Seo, Ha (bib6) 2024 Michailides, Gao, Moan (bib25) 2016; 50 Anwar, Hwang, Sung (bib2) 2017; 13 Qiao, Liu, Xue (bib31) 2024; 241 Hochreiter (bib16) 1997; 9 Karijadi, Chou, Dewabharata (bib18) 2023; 218 Heng, Hao, Nan (bib15) 2024; 19 Gao, Huang, Shi (bib11) 2020; 162 Bak, Bitsche (bib4) 2013 Ding, Yin, Yang (bib9) 2025 Lin, Wang, Chao (bib20) 2021; 11 Muliawan, Karimirad, Gao, Moan (bib28) 2013; 65 Sun, Li, Lin (bib39) 2021; 28 Wang, Qiao, Tang (bib44) 2022; 261 Guchhait, Sarkar (bib12) 2023; 16 Torres, Colominas, Schlotthauer (bib41) 2011 Yang, Bashir, Wang (bib46) 2020; 217 Si, Chen, Zeng (bib38) 2021; 227 Michailides, Luan, Gao, Moan (bib24) 2014 Ding, Yang, Yu (bib8) 2024; 313 Li, Huang, Hu (bib19) 2023; 279 Ransley, Greaves, Raby (bib33) 2017; 109 Yang, Shi, Fu (bib47) 2023; 285 Guo, Zhang, Tian (bib13) 2022; 247 Peiffer (10.1016/j.oceaneng.2025.122394_bib30) 2011 Yu (10.1016/j.oceaneng.2025.122394_bib49) 2018 Ding (10.1016/j.oceaneng.2025.122394_bib9) 2025 Li (10.1016/j.oceaneng.2025.122394_bib19) 2023; 279 Yang (10.1016/j.oceaneng.2025.122394_bib46) 2020; 217 Wang (10.1016/j.oceaneng.2025.122394_bib45) 2024; 299 Liu (10.1016/j.oceaneng.2025.122394_bib21) 2020; 202 Wang (10.1016/j.oceaneng.2025.122394_bib44) 2022; 261 Ramadevi (10.1016/j.oceaneng.2025.122394_bib32) 2024; 8 Ren (10.1016/j.oceaneng.2025.122394_bib35) 2020; 151 Deng (10.1016/j.oceaneng.2025.122394_bib7) 2020; 26 Gao (10.1016/j.oceaneng.2025.122394_bib11) 2020; 162 Yang (10.1016/j.oceaneng.2025.122394_bib48) 2023; 216 Liu (10.1016/j.oceaneng.2025.122394_bib22) 2022 Anwar (10.1016/j.oceaneng.2025.122394_bib2) 2017; 13 Wang (10.1016/j.oceaneng.2025.122394_bib43) 2014; 23 Ding (10.1016/j.oceaneng.2025.122394_bib8) 2024; 313 Butterworth (10.1016/j.oceaneng.2025.122394_bib5) 1930; 7 Qiao (10.1016/j.oceaneng.2025.122394_bib31) 2024; 241 Ni (10.1016/j.oceaneng.2025.122394_bib29) 2021; 15 Michailides (10.1016/j.oceaneng.2025.122394_bib25) 2016; 50 Ren (10.1016/j.oceaneng.2025.122394_bib36) 2022; 8 Muliawan (10.1016/j.oceaneng.2025.122394_bib26) 2012 Sun (10.1016/j.oceaneng.2025.122394_bib39) 2021; 28 Heng (10.1016/j.oceaneng.2025.122394_bib15) 2024; 19 Michailides (10.1016/j.oceaneng.2025.122394_bib24) 2014 Fakhfour (10.1016/j.oceaneng.2025.122394_bib10) 2024 Aubault (10.1016/j.oceaneng.2025.122394_bib3) 2011 Hu (10.1016/j.oceaneng.2025.122394_bib17) 2024; 240 Yang (10.1016/j.oceaneng.2025.122394_bib47) 2023; 285 Lin (10.1016/j.oceaneng.2025.122394_bib20) 2021; 11 Zhang (10.1016/j.oceaneng.2025.122394_bib50) 2020; 213 Ransley (10.1016/j.oceaneng.2025.122394_bib33) 2017; 109 Tahiri (10.1016/j.oceaneng.2025.122394_bib40) 2021; 5 Guo (10.1016/j.oceaneng.2025.122394_bib13) 2022; 247 Muliawan (10.1016/j.oceaneng.2025.122394_bib27) 2013; 50 Ren (10.1016/j.oceaneng.2025.122394_bib34) 2014; 6 Choi (10.1016/j.oceaneng.2025.122394_bib6) 2024 Guchhait (10.1016/j.oceaneng.2025.122394_bib12) 2023; 16 Muliawan (10.1016/j.oceaneng.2025.122394_bib28) 2013; 65 Bak (10.1016/j.oceaneng.2025.122394_bib4) 2013 Treisman (10.1016/j.oceaneng.2025.122394_bib42) 1980; 12 Heidari (10.1016/j.oceaneng.2025.122394_bib14) 2019; 97 Adanta (10.1016/j.oceaneng.2025.122394_bib1) 2023; 9 Torres (10.1016/j.oceaneng.2025.122394_bib41) 2011 Luo (10.1016/j.oceaneng.2025.122394_bib23) 2024; 12 Si (10.1016/j.oceaneng.2025.122394_bib38) 2021; 227 Hochreiter (10.1016/j.oceaneng.2025.122394_bib16) 1997; 9 Karijadi (10.1016/j.oceaneng.2025.122394_bib18) 2023; 218 Shi (10.1016/j.oceaneng.2025.122394_bib37) 2023; 280 |
| References_xml | – volume: 5 start-page: 111 year: 2021 end-page: 124 ident: bib40 article-title: Optimal management energy system and control strategies for isolated hybrid solar-wind-battery-diesel power system – volume: 7 start-page: 536 year: 1930 end-page: 541 ident: bib5 article-title: On the theory of filter amplifiers publication-title: Wireless Eng. – volume: 279 year: 2023 ident: bib19 article-title: Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network publication-title: Energy Build. – volume: 12 start-page: 2689 year: 2024 ident: bib23 article-title: Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting publication-title: Energy Rep. – start-page: 14 year: 2024 end-page: 17 ident: bib6 article-title: Prediction of motion responses for a semi-submersible FOWT platform using a grey-box model integrated with a GRU-based deep learning approach publication-title: The 39th International Workshop on Water Waves and Floating Bodies – volume: 216 year: 2023 ident: bib48 article-title: Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects publication-title: Renew. Energy – volume: 13 start-page: 1 year: 2017 end-page: 18 ident: bib2 article-title: Structured pruning of deep convolutional neural networks publication-title: ACM J. Emerg. Technol. Comput. Syst. – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: bib16 article-title: Long short-term memory publication-title: Neural Comput. – volume: 16 start-page: 2665 year: 2023 ident: bib12 article-title: Increasing growth of renewable energy: a State of art – volume: 26 start-page: 883 year: 2020 end-page: 895 ident: bib7 article-title: A novel approach for motion predictions of a semi-submersible platform with neural network publication-title: J. Mar. Sci. Technol. – volume: 19 year: 2024 ident: bib15 article-title: Load forecasting method based on CEEMDAN and TCN-LSTM publication-title: PLoS One – volume: 313 year: 2024 ident: bib8 article-title: Fully coupled dynamic responses of barge-type integrated floating wind-wave energy systems with different WEC layouts publication-title: Ocean Eng. – year: 2011 ident: bib3 article-title: Modeling of an oscillating water column on the floating foundation WindFloat publication-title: Int. Conf. Offshore Mech. Arctic Eng. – volume: 23 start-page: 452 year: 2014 end-page: 459 ident: bib43 article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network publication-title: Appl. Soft Comput. – year: 2011 ident: bib30 article-title: Design of a point absorber inside the WindFloat structure publication-title: Int. Conf. Offshore Mech. Arctic Eng. – volume: 11 year: 2021 ident: bib20 article-title: Wind power forecasting with deep learning networks: time-series forecasting publication-title: Appl. Sci. – volume: 6 start-page: 236 year: 2014 end-page: 244 ident: bib34 article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods publication-title: IEEE Trans. Sustain. Energy – volume: 280 year: 2023 ident: bib37 article-title: Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network publication-title: Ocean Eng. – volume: 162 start-page: 1665 year: 2020 end-page: 1683 ident: bib11 article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks publication-title: Renew. Energy – volume: 261 year: 2022 ident: bib44 article-title: An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system publication-title: Ocean Eng. – volume: 15 start-page: 2228 year: 2021 end-page: 2236 ident: bib29 article-title: Data‐driven models for short‐term ocean wave power forecasting publication-title: IET Renew. Power Gener. – volume: 240 year: 2024 ident: bib17 article-title: An intelligent network traffic prediction method based on butterworth filter and CNN–LSTM publication-title: Comput. Netw. – year: 2012 ident: bib26 article-title: STC (Spar-Torus Combination): a combined spar-type floating wind turbine and large point absorber floating wave energy converter—promising and challenging publication-title: International Conference on Offshore Mechanics and Arctic Engineering – start-page: 1 year: 2025 end-page: 14 ident: bib9 article-title: Effects of WEC design parameters on fully coupled responses of a Barge-type wind-wave-integrated floating energy system publication-title: J. Marin. Eng. Technol. – volume: 218 year: 2023 ident: bib18 article-title: Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method publication-title: Renew. Energy – volume: 50 start-page: 35 year: 2016 end-page: 54 ident: bib25 article-title: Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions publication-title: Mar. Struct. – volume: 50 start-page: 47 year: 2013 end-page: 57 ident: bib27 article-title: Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter publication-title: Renew. Energy – volume: 8 start-page: 437 year: 2022 end-page: 443 ident: bib36 article-title: A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism publication-title: Energy Rep. – volume: 8 start-page: 149 year: 2024 ident: bib32 article-title: Hybrid LSTM-based fractional-order neural network for Jeju Island's wind farm power forecasting publication-title: Fract. Fraction. – volume: 202 year: 2020 ident: bib21 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting – volume: 65 start-page: 71 year: 2013 end-page: 82 ident: bib28 article-title: Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes publication-title: Ocean Eng. – year: 2013 ident: bib4 article-title: Deliverable D1-21 Reference Wind Turbine report_INNWIND-EU – volume: 217 year: 2020 ident: bib46 article-title: Wind-wave coupling effects on the fatigue damage of tendons for a 10 MW multi-body floating wind turbine publication-title: Ocean Eng. – volume: 109 start-page: 49 year: 2017 end-page: 65 ident: bib33 article-title: RANS-VOF modelling of the wavestar point absorber publication-title: Renew. Energy – volume: 28 start-page: 369 year: 2021 end-page: 378 ident: bib39 article-title: Short-term stock price forecasting based on an SVD-LSTM model publication-title: Intellig. Automat. Soft Comput. – year: 2024 ident: bib10 article-title: Size optimization of standalone wind-photovoltaics-diesel-battery systems by Harris hawks optimization (HHO): case study of a wharf located in Bushehr, Iran publication-title: Int. J. Electr. Power Energy Syst. – volume: 12 start-page: 97 year: 1980 end-page: 136 ident: bib42 article-title: A feature-integrations theory of attention cognitive psychology – volume: 299 year: 2024 ident: bib45 article-title: Monitoring system framework design for floating wind turbine using the deep learning technology and tower response identification considering sensor optimization publication-title: Ocean Eng. – year: 2022 ident: bib22 article-title: Intelligence visualization for wave energy power generation publication-title: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) – year: 2014 ident: bib24 article-title: Effect of flap type wave energy converters on the response of a semi-submersible wind turbine in operational conditions publication-title: International Conference on Offshore Mechanics and Arctic Engineering – volume: 9 start-page: 154 year: 2023 end-page: 165 ident: bib1 article-title: Performance comparison of crossflow turbine configuration upper blade convex and curvature by computational method publication-title: Civ. Eng. J. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: bib14 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Gener. Comput. Syst. – volume: 241 year: 2024 ident: bib31 article-title: A multi-level thresholding image segmentation method using hybrid arithmetic optimization and Harris Hawks optimizer algorithms publication-title: Expert Syst. Appl. – volume: 227 year: 2021 ident: bib38 article-title: The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters publication-title: Ocean Eng. – year: 2018 ident: bib49 article-title: D4.2 Public Definition of the Two LIFES50+ 10MW Floater Concepts – volume: 247 year: 2022 ident: bib13 article-title: Probabilistic prediction of the heave motions of a semi-submersible by a deep learning model publication-title: Ocean Eng. – volume: 285 year: 2023 ident: bib47 article-title: Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system publication-title: Energy – volume: 213 year: 2020 ident: bib50 article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data publication-title: Energy – volume: 151 start-page: 966 year: 2020 end-page: 974 ident: bib35 article-title: Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions publication-title: Renew. Energy – year: 2011 ident: bib41 article-title: A complete ensemble empirical mode decomposition with adaptive noise publication-title: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) – volume: 247 year: 2022 ident: 10.1016/j.oceaneng.2025.122394_bib13 article-title: Probabilistic prediction of the heave motions of a semi-submersible by a deep learning model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.110578 – volume: 8 start-page: 149 issue: 3 year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib32 article-title: Hybrid LSTM-based fractional-order neural network for Jeju Island's wind farm power forecasting publication-title: Fract. Fraction. doi: 10.3390/fractalfract8030149 – volume: 313 year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib8 article-title: Fully coupled dynamic responses of barge-type integrated floating wind-wave energy systems with different WEC layouts publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.119453 – volume: 50 start-page: 47 year: 2013 ident: 10.1016/j.oceaneng.2025.122394_bib27 article-title: Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter publication-title: Renew. Energy doi: 10.1016/j.renene.2012.05.025 – volume: 28 start-page: 369 year: 2021 ident: 10.1016/j.oceaneng.2025.122394_bib39 article-title: Short-term stock price forecasting based on an SVD-LSTM model publication-title: Intellig. Automat. Soft Comput. doi: 10.32604/iasc.2021.014962 – volume: 5 start-page: 111 issue: 2 year: 2021 ident: 10.1016/j.oceaneng.2025.122394_bib40 article-title: Optimal management energy system and control strategies for isolated hybrid solar-wind-battery-diesel power system – volume: 162 start-page: 1665 year: 2020 ident: 10.1016/j.oceaneng.2025.122394_bib11 article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks publication-title: Renew. Energy doi: 10.1016/j.renene.2020.09.141 – volume: 12 start-page: 97 issue: 1 year: 1980 ident: 10.1016/j.oceaneng.2025.122394_bib42 article-title: A feature-integrations theory of attention cognitive psychology – year: 2012 ident: 10.1016/j.oceaneng.2025.122394_bib26 article-title: STC (Spar-Torus Combination): a combined spar-type floating wind turbine and large point absorber floating wave energy converter—promising and challenging – year: 2011 ident: 10.1016/j.oceaneng.2025.122394_bib30 article-title: Design of a point absorber inside the WindFloat structure publication-title: Int. Conf. Offshore Mech. Arctic Eng. – volume: 8 start-page: 437 year: 2022 ident: 10.1016/j.oceaneng.2025.122394_bib36 article-title: A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism publication-title: Energy Rep. doi: 10.1016/j.egyr.2022.02.206 – volume: 261 year: 2022 ident: 10.1016/j.oceaneng.2025.122394_bib44 article-title: An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.112105 – volume: 15 start-page: 2228 issue: 10 year: 2021 ident: 10.1016/j.oceaneng.2025.122394_bib29 article-title: Data‐driven models for short‐term ocean wave power forecasting publication-title: IET Renew. Power Gener. doi: 10.1049/rpg2.12157 – year: 2014 ident: 10.1016/j.oceaneng.2025.122394_bib24 article-title: Effect of flap type wave energy converters on the response of a semi-submersible wind turbine in operational conditions – volume: 65 start-page: 71 year: 2013 ident: 10.1016/j.oceaneng.2025.122394_bib28 article-title: Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2013.03.002 – volume: 151 start-page: 966 year: 2020 ident: 10.1016/j.oceaneng.2025.122394_bib35 article-title: Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions publication-title: Renew. Energy doi: 10.1016/j.renene.2019.11.095 – start-page: 1 year: 2025 ident: 10.1016/j.oceaneng.2025.122394_bib9 article-title: Effects of WEC design parameters on fully coupled responses of a Barge-type wind-wave-integrated floating energy system publication-title: J. Marin. Eng. Technol. – volume: 285 year: 2023 ident: 10.1016/j.oceaneng.2025.122394_bib47 article-title: Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system publication-title: Energy doi: 10.1016/j.energy.2023.128789 – volume: 217 year: 2020 ident: 10.1016/j.oceaneng.2025.122394_bib46 article-title: Wind-wave coupling effects on the fatigue damage of tendons for a 10 MW multi-body floating wind turbine publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.107909 – volume: 13 start-page: 1 issue: 3 year: 2017 ident: 10.1016/j.oceaneng.2025.122394_bib2 article-title: Structured pruning of deep convolutional neural networks publication-title: ACM J. Emerg. Technol. Comput. Syst. doi: 10.1145/3005348 – year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib10 article-title: Size optimization of standalone wind-photovoltaics-diesel-battery systems by Harris hawks optimization (HHO): case study of a wharf located in Bushehr, Iran publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2024.110353 – start-page: 14 year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib6 article-title: Prediction of motion responses for a semi-submersible FOWT platform using a grey-box model integrated with a GRU-based deep learning approach – volume: 23 start-page: 452 year: 2014 ident: 10.1016/j.oceaneng.2025.122394_bib43 article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.06.027 – volume: 9 start-page: 1735 issue: 8 year: 1997 ident: 10.1016/j.oceaneng.2025.122394_bib16 article-title: Long short-term memory publication-title: Neural Comput. doi: 10.1162/neco.1997.9.8.1735 – volume: 7 start-page: 536 issue: 6 year: 1930 ident: 10.1016/j.oceaneng.2025.122394_bib5 article-title: On the theory of filter amplifiers publication-title: Wireless Eng. – volume: 202 year: 2020 ident: 10.1016/j.oceaneng.2025.122394_bib21 article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting – volume: 227 year: 2021 ident: 10.1016/j.oceaneng.2025.122394_bib38 article-title: The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108835 – year: 2013 ident: 10.1016/j.oceaneng.2025.122394_bib4 – volume: 19 issue: 7 year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib15 article-title: Load forecasting method based on CEEMDAN and TCN-LSTM publication-title: PLoS One doi: 10.1371/journal.pone.0300496 – year: 2022 ident: 10.1016/j.oceaneng.2025.122394_bib22 article-title: Intelligence visualization for wave energy power generation – volume: 11 issue: 21 year: 2021 ident: 10.1016/j.oceaneng.2025.122394_bib20 article-title: Wind power forecasting with deep learning networks: time-series forecasting publication-title: Appl. Sci. doi: 10.3390/app112110335 – volume: 6 start-page: 236 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2025.122394_bib34 article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods publication-title: IEEE Trans. Sustain. Energy doi: 10.1109/TSTE.2014.2365580 – year: 2018 ident: 10.1016/j.oceaneng.2025.122394_bib49 – volume: 279 year: 2023 ident: 10.1016/j.oceaneng.2025.122394_bib19 article-title: Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network publication-title: Energy Build. doi: 10.1016/j.enbuild.2022.112666 – volume: 50 start-page: 35 year: 2016 ident: 10.1016/j.oceaneng.2025.122394_bib25 article-title: Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions publication-title: Mar. Struct. doi: 10.1016/j.marstruc.2016.06.005 – volume: 216 year: 2023 ident: 10.1016/j.oceaneng.2025.122394_bib48 article-title: Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119111 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.oceaneng.2025.122394_bib14 article-title: Harris hawks optimization: algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – volume: 16 start-page: 2665 issue: 6 year: 2023 ident: 10.1016/j.oceaneng.2025.122394_bib12 article-title: Increasing growth of renewable energy: a State of art – volume: 299 year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib45 article-title: Monitoring system framework design for floating wind turbine using the deep learning technology and tower response identification considering sensor optimization publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.117316 – volume: 241 year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib31 article-title: A multi-level thresholding image segmentation method using hybrid arithmetic optimization and Harris Hawks optimizer algorithms publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.122316 – year: 2011 ident: 10.1016/j.oceaneng.2025.122394_bib3 article-title: Modeling of an oscillating water column on the floating foundation WindFloat publication-title: Int. Conf. Offshore Mech. Arctic Eng. – volume: 9 start-page: 154 issue: 1 year: 2023 ident: 10.1016/j.oceaneng.2025.122394_bib1 article-title: Performance comparison of crossflow turbine configuration upper blade convex and curvature by computational method publication-title: Civ. Eng. J. doi: 10.28991/CEJ-2023-09-01-012 – volume: 218 year: 2023 ident: 10.1016/j.oceaneng.2025.122394_bib18 article-title: Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method publication-title: Renew. Energy doi: 10.1016/j.renene.2023.119357 – volume: 109 start-page: 49 year: 2017 ident: 10.1016/j.oceaneng.2025.122394_bib33 article-title: RANS-VOF modelling of the wavestar point absorber publication-title: Renew. Energy doi: 10.1016/j.renene.2017.02.079 – volume: 26 start-page: 883 issue: 3 year: 2020 ident: 10.1016/j.oceaneng.2025.122394_bib7 article-title: A novel approach for motion predictions of a semi-submersible platform with neural network publication-title: J. Mar. Sci. Technol. doi: 10.1007/s00773-020-00759-w – volume: 240 year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib17 article-title: An intelligent network traffic prediction method based on butterworth filter and CNN–LSTM publication-title: Comput. Netw. doi: 10.1016/j.comnet.2024.110172 – volume: 280 year: 2023 ident: 10.1016/j.oceaneng.2025.122394_bib37 article-title: Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2023.114558 – year: 2011 ident: 10.1016/j.oceaneng.2025.122394_bib41 article-title: A complete ensemble empirical mode decomposition with adaptive noise – volume: 213 year: 2020 ident: 10.1016/j.oceaneng.2025.122394_bib50 article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data publication-title: Energy doi: 10.1016/j.energy.2020.118371 – volume: 12 start-page: 2689 issue: 2676 year: 2024 ident: 10.1016/j.oceaneng.2025.122394_bib23 article-title: Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting publication-title: Energy Rep. |
| SSID | ssj0006603 |
| Score | 2.43521 |
| Snippet | Wind-wave integrated floating energy system (IFES) is recognized for reducing the levelized cost of electricity by sharing the support structures. Developing... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 122394 |
| SubjectTerms | Floating offshore wind turbine Harris Hawk optimization Hybrid energy system Hybrid neural network Wave energy converter |
| Title | Development of a hybrid deep learning model with HHO algorithm for dynamic response prediction of wind-wave integrated floating energy systems |
| URI | https://dx.doi.org/10.1016/j.oceaneng.2025.122394 |
| Volume | 340 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0029-8018 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0029-8018 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect (LUT) issn: 0029-8018 databaseCode: ACRLP dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals issn: 0029-8018 databaseCode: AIKHN dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0006603 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0029-8018 databaseCode: AKRWK dateStart: 19700101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006603 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0QvaiJUdSIH2QOXgulH9v2SIikaoSLJNya3e4sQrAQRIkXf4K_2R3aKiYmHjzuprtpdjYz89r3Zhi7coUbGYyGliu1bXmOaFlCYWhxriMMKIf1STt83-PxwLsd-sMK65RaGKJVFr4_9-lrb13MNIvTbM7HY9L4OpHxrwbimJQnCElo7nkBdTFovH_TPDi33ZLmQU9vqIQnDRMiRIbZyOBEx2-0HOoT_nuA2gg63QO2X2SL0M5f6JBVMKuy3Y0aglW216fdi8LTR-xjgwUEMw0CHt9IlAUKcQ5Fj4gRrBvgAH2EhTjug5iOZgszeAKTw4LKu9TDIufPIswX9DuHTEhbrgyMt1biFeGr1oQCPZ0JYlADrsWEkFeIfj5mg-71Qye2ip4LVmqw1NIKWlJ4ykBUvyVCYWOUIoVwHShHpqmSjpTcw0C5PNRO5PvC026AgQzRTbk2zuqEbWWzDE8ZyNSlhMI2s8qkPVwoW6fa9gUnWOx4NdYsDzqZ56U1kpJzNklK0yRkmiQ3TY1FpT2SH5ckMf7_j7Vn_1h7znZolFd8vGBby8ULXppcZCnr68tWZ9vtm7u49wmhpeIE |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROFCQKp7iUWAOXLObdWInOSIECu8LSNwiOx4viyC7WpaiXvoT-pvxbJJ2kZB66DFObEUea-b7km9mAA4jHWWeo1EQGRcGsdC9QFtKA6VcRgljWMm5w1fXKr-Lz-_l_Rwct7kwLKtsfH_t06feuhnpNrvZHQ0GnOMrMu9fPcXxkCdJ5RdYiKVImIF1fv3VeSgVRq3Ogx-fSRN-7PgYoSuq-p4oCtnpCW4U_nmEmok6pyvwrYGLeFS_0SrMUbUGSzNFBNdg-YZXbypPr8PvGRkQDh1qfPjJWVloiUbYNIno47QDDvJXWMzzG9RP_eHYXzyjB7Fo6zb1OK4FtISjMf_PYRvykm-exwdv-gfhn2ITFt3TULOEGmmaTYh1ieiXDbg7Pbk9zoOm6UJQejI1CZKe0bH1HFX2dKpDykriGO4SK0xZWiOMUTElNlKpE5mUOnZRQolJKSqV895qE-arYUVbgKaMGFGEftR63KO0DV3pQqkV82IRb0O33ehiVNfWKFrR2WPRmqZg0xS1abYha-1RfDglhQ8A_5i78x9zD2Axv726LC7Pri924Svfqcs_fof5yfiV9jwwmZj96cF7B_IU45k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+hybrid+deep+learning+model+with+HHO+algorithm+for+dynamic+response+prediction+of+wind-wave+integrated+floating+energy+systems&rft.jtitle=Ocean+engineering&rft.au=Yin%2C+Jiaqing&rft.au=Fan%2C+Yihong&rft.au=Bashir%2C+Musa&rft.au=Nie%2C+Debang&rft.date=2025-11-30&rft.issn=0029-8018&rft.volume=340&rft.spage=122394&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.122394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2025_122394 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |