Development of a hybrid deep learning model with HHO algorithm for dynamic response prediction of wind-wave integrated floating energy systems

Wind-wave integrated floating energy system (IFES) is recognized for reducing the levelized cost of electricity by sharing the support structures. Developing efficient models to accurately predict dynamic responses is crucial for the performance evaluation and optimization design of wind-wave hybrid...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 340; p. 122394
Main Authors Yin, Jiaqing, Fan, Yihong, Bashir, Musa, Nie, Debang, Lai, Yongqing, Ding, Jieyi, Yu, Jie, Li, Chun, Yang, Yang
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 30.11.2025
Subjects
Online AccessGet full text
ISSN0029-8018
DOI10.1016/j.oceaneng.2025.122394

Cover

Abstract Wind-wave integrated floating energy system (IFES) is recognized for reducing the levelized cost of electricity by sharing the support structures. Developing efficient models to accurately predict dynamic responses is crucial for the performance evaluation and optimization design of wind-wave hybrid energy concepts. This study has developed a novel hybrid deep learning model, CLCBA_HHO by incorporating signal processing and Harris Hawk Optimization(HHO) algorithms into the convolutional neural network(CNN) and bi-directional long-short term memory with attention mechanism(Bi-LSTM-AM). The wind-wave IFES concepts, comprising a 10 MW wind turbine and three wave energy converters (WECs) supported by the OO-Star platform, is selected for the case study. The dynamic responses of the wind-wave IFES concept under environmental loadings are calculated using a well-validated numerical tool and used the dataset for training and testing the CLCBA_HHO model. The performance of CLCBA_HHO in predicting wind and wave power, tower loads, and platform motions is demonstrated through a comprehensive comparison with several existing deep learning methods. The accuracy of CLCBA_HHO in predicting wind and wave power can reach over 95 % under various working conditions, significantly outperforming the state-of-the-art similar method. This study verifies the superiority of the proposed method in predicting dynamic responses of wind-wave IFES concepts, offering a reliable and effective performance evaluator for the optimization design of wind-wave hybrid energy systems. •A hybrid deep learning model is proposed for predicting dynamic response of wind-wave integrated floating energy systems.•Reliable simulation data is used for training and testing the prediction model.•HHO algorithm is used for optimizing the hybrid neural network framework.•The predictive performance of the proposed model is better than existing algorithms.
AbstractList Wind-wave integrated floating energy system (IFES) is recognized for reducing the levelized cost of electricity by sharing the support structures. Developing efficient models to accurately predict dynamic responses is crucial for the performance evaluation and optimization design of wind-wave hybrid energy concepts. This study has developed a novel hybrid deep learning model, CLCBA_HHO by incorporating signal processing and Harris Hawk Optimization(HHO) algorithms into the convolutional neural network(CNN) and bi-directional long-short term memory with attention mechanism(Bi-LSTM-AM). The wind-wave IFES concepts, comprising a 10 MW wind turbine and three wave energy converters (WECs) supported by the OO-Star platform, is selected for the case study. The dynamic responses of the wind-wave IFES concept under environmental loadings are calculated using a well-validated numerical tool and used the dataset for training and testing the CLCBA_HHO model. The performance of CLCBA_HHO in predicting wind and wave power, tower loads, and platform motions is demonstrated through a comprehensive comparison with several existing deep learning methods. The accuracy of CLCBA_HHO in predicting wind and wave power can reach over 95 % under various working conditions, significantly outperforming the state-of-the-art similar method. This study verifies the superiority of the proposed method in predicting dynamic responses of wind-wave IFES concepts, offering a reliable and effective performance evaluator for the optimization design of wind-wave hybrid energy systems. •A hybrid deep learning model is proposed for predicting dynamic response of wind-wave integrated floating energy systems.•Reliable simulation data is used for training and testing the prediction model.•HHO algorithm is used for optimizing the hybrid neural network framework.•The predictive performance of the proposed model is better than existing algorithms.
ArticleNumber 122394
Author Fan, Yihong
Li, Chun
Ding, Jieyi
Nie, Debang
Bashir, Musa
Lai, Yongqing
Yu, Jie
Yin, Jiaqing
Yang, Yang
Author_xml – sequence: 1
  givenname: Jiaqing
  surname: Yin
  fullname: Yin, Jiaqing
  organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China
– sequence: 2
  givenname: Yihong
  surname: Fan
  fullname: Fan, Yihong
  organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China
– sequence: 3
  givenname: Musa
  surname: Bashir
  fullname: Bashir, Musa
  organization: Department of Civil and Environmental Engineering, University of Liverpool, Brownlow Hill, Liverpool, L69 7ZX, United Kingdom
– sequence: 4
  givenname: Debang
  surname: Nie
  fullname: Nie, Debang
  organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China
– sequence: 5
  givenname: Yongqing
  surname: Lai
  fullname: Lai, Yongqing
  organization: Power China Huadong Engineering Limited Corporation, Hangzhou, 310058, PR China
– sequence: 6
  givenname: Jieyi
  surname: Ding
  fullname: Ding, Jieyi
  organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China
– sequence: 7
  givenname: Jie
  surname: Yu
  fullname: Yu, Jie
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
– sequence: 8
  givenname: Chun
  surname: Li
  fullname: Li, Chun
  organization: School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
– sequence: 9
  givenname: Yang
  orcidid: 0000-0002-6251-0837
  surname: Yang
  fullname: Yang, Yang
  email: yangyang1@nbu.edu.cn
  organization: Faculty of Maritime and Transportation, Ningbo University, Zhejiang, 315211, PR China
BookMark eNqFkEtOwzAURT0oEm1hC8gbSLCd1klmoPIpUqVOYGw59nPqKrEj22qVTbBmUhXGjK7e4B69exZo5rwDhB4oySmh_PGYewXSgWtzRtg6p4wV9WqG5oSwOqsIrW7RIsYjIYRzUszR9wucoPNDDy5hb7DEh7EJVmMNMOAOZHDWtbj3Gjp8tumAt9s9ll3rw3T02PiA9ehkbxUOEAfvIuAhgLYqWe8uyLN1OjvLE2DrErRBJtDYdF6mCxkchHbEcYwJ-niHbozsItz_5hJ9vb1-brbZbv_-sXneZYpxmrKSNnKlacHWVFaSQK2AcU5NqVmjlG5Y0_AVlLrglWH1ei1XpiihbCooFDclL5aIX7kq-BgDGDEE28swCkrExaQ4ij-T4mJSXE1OxadrEabvThaCiMqCU9PgACoJ7e1_iB-YI4f_
Cites_doi 10.1016/j.oceaneng.2022.110578
10.3390/fractalfract8030149
10.1016/j.oceaneng.2024.119453
10.1016/j.renene.2012.05.025
10.32604/iasc.2021.014962
10.1016/j.renene.2020.09.141
10.1016/j.egyr.2022.02.206
10.1016/j.oceaneng.2022.112105
10.1049/rpg2.12157
10.1016/j.oceaneng.2013.03.002
10.1016/j.renene.2019.11.095
10.1016/j.energy.2023.128789
10.1016/j.oceaneng.2020.107909
10.1145/3005348
10.1016/j.ijepes.2024.110353
10.1016/j.asoc.2014.06.027
10.1162/neco.1997.9.8.1735
10.1016/j.oceaneng.2021.108835
10.1371/journal.pone.0300496
10.3390/app112110335
10.1109/TSTE.2014.2365580
10.1016/j.enbuild.2022.112666
10.1016/j.marstruc.2016.06.005
10.1016/j.renene.2023.119111
10.1016/j.future.2019.02.028
10.1016/j.oceaneng.2024.117316
10.1016/j.eswa.2023.122316
10.28991/CEJ-2023-09-01-012
10.1016/j.renene.2023.119357
10.1016/j.renene.2017.02.079
10.1007/s00773-020-00759-w
10.1016/j.comnet.2024.110172
10.1016/j.oceaneng.2023.114558
10.1016/j.energy.2020.118371
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.oceaneng.2025.122394
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
ExternalDocumentID 10_1016_j_oceaneng_2025_122394
S0029801825020785
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
~HD
29N
6TJ
AAQXK
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AFFNX
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
LY6
LY7
M41
R2-
SAC
SET
WUQ
ID FETCH-LOGICAL-c261t-71ba4d13251a8a0e9ce2661f7d2bccdb2bb64e7d368f2955a4f37e7b8e3c6f763
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Wed Oct 01 05:41:55 EDT 2025
Sat Sep 13 17:01:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Harris Hawk optimization
Floating offshore wind turbine
Wave energy converter
Hybrid neural network
Hybrid energy system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-71ba4d13251a8a0e9ce2661f7d2bccdb2bb64e7d368f2955a4f37e7b8e3c6f763
ORCID 0000-0002-6251-0837
ParticipantIDs crossref_primary_10_1016_j_oceaneng_2025_122394
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2025_122394
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-11-30
PublicationDateYYYYMMDD 2025-11-30
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-30
  day: 30
PublicationDecade 2020
PublicationTitle Ocean engineering
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Peiffer, Roddier, Aubault (bib30) 2011
Muliawan, Karimirad, Moan (bib26) 2012
Deng, Feng, Xu (bib7) 2020; 26
Yu, Müller, Lemmer (bib49) 2018
Adanta, Sari, Syofii (bib1) 2023; 9
Heidari, Mirjalili, Faris (bib14) 2019; 97
Liu, Yu, Wu, Duan, Yan (bib21) 2020; 202
Aubault, Alves, Sarmento (bib3) 2011
Ren, Ma, Shan (bib35) 2020; 151
Fakhfour, Pourfayaz (bib10) 2024
Yang, Fu, Shi (bib48) 2023; 216
Ren, Yu, Gao (bib36) 2022; 8
Tahiri, Chikh, Khafallah (bib40) 2021; 5
Ramadevi, Kasi, Bingi (bib32) 2024; 8
Wang, Zhang, Li, Wang (bib43) 2014; 23
Ni (bib29) 2021; 15
Shi, Hu, Lin (bib37) 2023; 280
Liu, Liu, Guo (bib22) 2022
Muliawan, Karimirad, Moan (bib27) 2013; 50
Treisman, Gelde (bib42) 1980; 12
Ren, Suganthan, Srikanth (bib34) 2014; 6
Zhang, Li, Zhang (bib50) 2020; 213
Luo, Wang, Gao (bib23) 2024; 12
Butterworth (bib5) 1930; 7
Wang, Qiao, Tang (bib45) 2024; 299
Hu, Liu, Huo (bib17) 2024; 240
Choi, Seo, Ha (bib6) 2024
Michailides, Gao, Moan (bib25) 2016; 50
Anwar, Hwang, Sung (bib2) 2017; 13
Qiao, Liu, Xue (bib31) 2024; 241
Hochreiter (bib16) 1997; 9
Karijadi, Chou, Dewabharata (bib18) 2023; 218
Heng, Hao, Nan (bib15) 2024; 19
Gao, Huang, Shi (bib11) 2020; 162
Bak, Bitsche (bib4) 2013
Ding, Yin, Yang (bib9) 2025
Lin, Wang, Chao (bib20) 2021; 11
Muliawan, Karimirad, Gao, Moan (bib28) 2013; 65
Sun, Li, Lin (bib39) 2021; 28
Wang, Qiao, Tang (bib44) 2022; 261
Guchhait, Sarkar (bib12) 2023; 16
Torres, Colominas, Schlotthauer (bib41) 2011
Yang, Bashir, Wang (bib46) 2020; 217
Si, Chen, Zeng (bib38) 2021; 227
Michailides, Luan, Gao, Moan (bib24) 2014
Ding, Yang, Yu (bib8) 2024; 313
Li, Huang, Hu (bib19) 2023; 279
Ransley, Greaves, Raby (bib33) 2017; 109
Yang, Shi, Fu (bib47) 2023; 285
Guo, Zhang, Tian (bib13) 2022; 247
Peiffer (10.1016/j.oceaneng.2025.122394_bib30) 2011
Yu (10.1016/j.oceaneng.2025.122394_bib49) 2018
Ding (10.1016/j.oceaneng.2025.122394_bib9) 2025
Li (10.1016/j.oceaneng.2025.122394_bib19) 2023; 279
Yang (10.1016/j.oceaneng.2025.122394_bib46) 2020; 217
Wang (10.1016/j.oceaneng.2025.122394_bib45) 2024; 299
Liu (10.1016/j.oceaneng.2025.122394_bib21) 2020; 202
Wang (10.1016/j.oceaneng.2025.122394_bib44) 2022; 261
Ramadevi (10.1016/j.oceaneng.2025.122394_bib32) 2024; 8
Ren (10.1016/j.oceaneng.2025.122394_bib35) 2020; 151
Deng (10.1016/j.oceaneng.2025.122394_bib7) 2020; 26
Gao (10.1016/j.oceaneng.2025.122394_bib11) 2020; 162
Yang (10.1016/j.oceaneng.2025.122394_bib48) 2023; 216
Liu (10.1016/j.oceaneng.2025.122394_bib22) 2022
Anwar (10.1016/j.oceaneng.2025.122394_bib2) 2017; 13
Wang (10.1016/j.oceaneng.2025.122394_bib43) 2014; 23
Ding (10.1016/j.oceaneng.2025.122394_bib8) 2024; 313
Butterworth (10.1016/j.oceaneng.2025.122394_bib5) 1930; 7
Qiao (10.1016/j.oceaneng.2025.122394_bib31) 2024; 241
Ni (10.1016/j.oceaneng.2025.122394_bib29) 2021; 15
Michailides (10.1016/j.oceaneng.2025.122394_bib25) 2016; 50
Ren (10.1016/j.oceaneng.2025.122394_bib36) 2022; 8
Muliawan (10.1016/j.oceaneng.2025.122394_bib26) 2012
Sun (10.1016/j.oceaneng.2025.122394_bib39) 2021; 28
Heng (10.1016/j.oceaneng.2025.122394_bib15) 2024; 19
Michailides (10.1016/j.oceaneng.2025.122394_bib24) 2014
Fakhfour (10.1016/j.oceaneng.2025.122394_bib10) 2024
Aubault (10.1016/j.oceaneng.2025.122394_bib3) 2011
Hu (10.1016/j.oceaneng.2025.122394_bib17) 2024; 240
Yang (10.1016/j.oceaneng.2025.122394_bib47) 2023; 285
Lin (10.1016/j.oceaneng.2025.122394_bib20) 2021; 11
Zhang (10.1016/j.oceaneng.2025.122394_bib50) 2020; 213
Ransley (10.1016/j.oceaneng.2025.122394_bib33) 2017; 109
Tahiri (10.1016/j.oceaneng.2025.122394_bib40) 2021; 5
Guo (10.1016/j.oceaneng.2025.122394_bib13) 2022; 247
Muliawan (10.1016/j.oceaneng.2025.122394_bib27) 2013; 50
Ren (10.1016/j.oceaneng.2025.122394_bib34) 2014; 6
Choi (10.1016/j.oceaneng.2025.122394_bib6) 2024
Guchhait (10.1016/j.oceaneng.2025.122394_bib12) 2023; 16
Muliawan (10.1016/j.oceaneng.2025.122394_bib28) 2013; 65
Bak (10.1016/j.oceaneng.2025.122394_bib4) 2013
Treisman (10.1016/j.oceaneng.2025.122394_bib42) 1980; 12
Heidari (10.1016/j.oceaneng.2025.122394_bib14) 2019; 97
Adanta (10.1016/j.oceaneng.2025.122394_bib1) 2023; 9
Torres (10.1016/j.oceaneng.2025.122394_bib41) 2011
Luo (10.1016/j.oceaneng.2025.122394_bib23) 2024; 12
Si (10.1016/j.oceaneng.2025.122394_bib38) 2021; 227
Hochreiter (10.1016/j.oceaneng.2025.122394_bib16) 1997; 9
Karijadi (10.1016/j.oceaneng.2025.122394_bib18) 2023; 218
Shi (10.1016/j.oceaneng.2025.122394_bib37) 2023; 280
References_xml – volume: 5
  start-page: 111
  year: 2021
  end-page: 124
  ident: bib40
  article-title: Optimal management energy system and control strategies for isolated hybrid solar-wind-battery-diesel power system
– volume: 7
  start-page: 536
  year: 1930
  end-page: 541
  ident: bib5
  article-title: On the theory of filter amplifiers
  publication-title: Wireless Eng.
– volume: 279
  year: 2023
  ident: bib19
  article-title: Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network
  publication-title: Energy Build.
– volume: 12
  start-page: 2689
  year: 2024
  ident: bib23
  article-title: Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting
  publication-title: Energy Rep.
– start-page: 14
  year: 2024
  end-page: 17
  ident: bib6
  article-title: Prediction of motion responses for a semi-submersible FOWT platform using a grey-box model integrated with a GRU-based deep learning approach
  publication-title: The 39th International Workshop on Water Waves and Floating Bodies
– volume: 216
  year: 2023
  ident: bib48
  article-title: Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects
  publication-title: Renew. Energy
– volume: 13
  start-page: 1
  year: 2017
  end-page: 18
  ident: bib2
  article-title: Structured pruning of deep convolutional neural networks
  publication-title: ACM J. Emerg. Technol. Comput. Syst.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: bib16
  article-title: Long short-term memory
  publication-title: Neural Comput.
– volume: 16
  start-page: 2665
  year: 2023
  ident: bib12
  article-title: Increasing growth of renewable energy: a State of art
– volume: 26
  start-page: 883
  year: 2020
  end-page: 895
  ident: bib7
  article-title: A novel approach for motion predictions of a semi-submersible platform with neural network
  publication-title: J. Mar. Sci. Technol.
– volume: 19
  year: 2024
  ident: bib15
  article-title: Load forecasting method based on CEEMDAN and TCN-LSTM
  publication-title: PLoS One
– volume: 313
  year: 2024
  ident: bib8
  article-title: Fully coupled dynamic responses of barge-type integrated floating wind-wave energy systems with different WEC layouts
  publication-title: Ocean Eng.
– year: 2011
  ident: bib3
  article-title: Modeling of an oscillating water column on the floating foundation WindFloat
  publication-title: Int. Conf. Offshore Mech. Arctic Eng.
– volume: 23
  start-page: 452
  year: 2014
  end-page: 459
  ident: bib43
  article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network
  publication-title: Appl. Soft Comput.
– year: 2011
  ident: bib30
  article-title: Design of a point absorber inside the WindFloat structure
  publication-title: Int. Conf. Offshore Mech. Arctic Eng.
– volume: 11
  year: 2021
  ident: bib20
  article-title: Wind power forecasting with deep learning networks: time-series forecasting
  publication-title: Appl. Sci.
– volume: 6
  start-page: 236
  year: 2014
  end-page: 244
  ident: bib34
  article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
  publication-title: IEEE Trans. Sustain. Energy
– volume: 280
  year: 2023
  ident: bib37
  article-title: Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network
  publication-title: Ocean Eng.
– volume: 162
  start-page: 1665
  year: 2020
  end-page: 1683
  ident: bib11
  article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks
  publication-title: Renew. Energy
– volume: 261
  year: 2022
  ident: bib44
  article-title: An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system
  publication-title: Ocean Eng.
– volume: 15
  start-page: 2228
  year: 2021
  end-page: 2236
  ident: bib29
  article-title: Data‐driven models for short‐term ocean wave power forecasting
  publication-title: IET Renew. Power Gener.
– volume: 240
  year: 2024
  ident: bib17
  article-title: An intelligent network traffic prediction method based on butterworth filter and CNN–LSTM
  publication-title: Comput. Netw.
– year: 2012
  ident: bib26
  article-title: STC (Spar-Torus Combination): a combined spar-type floating wind turbine and large point absorber floating wave energy converter—promising and challenging
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– start-page: 1
  year: 2025
  end-page: 14
  ident: bib9
  article-title: Effects of WEC design parameters on fully coupled responses of a Barge-type wind-wave-integrated floating energy system
  publication-title: J. Marin. Eng. Technol.
– volume: 218
  year: 2023
  ident: bib18
  article-title: Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method
  publication-title: Renew. Energy
– volume: 50
  start-page: 35
  year: 2016
  end-page: 54
  ident: bib25
  article-title: Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions
  publication-title: Mar. Struct.
– volume: 50
  start-page: 47
  year: 2013
  end-page: 57
  ident: bib27
  article-title: Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter
  publication-title: Renew. Energy
– volume: 8
  start-page: 437
  year: 2022
  end-page: 443
  ident: bib36
  article-title: A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism
  publication-title: Energy Rep.
– volume: 8
  start-page: 149
  year: 2024
  ident: bib32
  article-title: Hybrid LSTM-based fractional-order neural network for Jeju Island's wind farm power forecasting
  publication-title: Fract. Fraction.
– volume: 202
  year: 2020
  ident: bib21
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
– volume: 65
  start-page: 71
  year: 2013
  end-page: 82
  ident: bib28
  article-title: Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes
  publication-title: Ocean Eng.
– year: 2013
  ident: bib4
  article-title: Deliverable D1-21 Reference Wind Turbine report_INNWIND-EU
– volume: 217
  year: 2020
  ident: bib46
  article-title: Wind-wave coupling effects on the fatigue damage of tendons for a 10 MW multi-body floating wind turbine
  publication-title: Ocean Eng.
– volume: 109
  start-page: 49
  year: 2017
  end-page: 65
  ident: bib33
  article-title: RANS-VOF modelling of the wavestar point absorber
  publication-title: Renew. Energy
– volume: 28
  start-page: 369
  year: 2021
  end-page: 378
  ident: bib39
  article-title: Short-term stock price forecasting based on an SVD-LSTM model
  publication-title: Intellig. Automat. Soft Comput.
– year: 2024
  ident: bib10
  article-title: Size optimization of standalone wind-photovoltaics-diesel-battery systems by Harris hawks optimization (HHO): case study of a wharf located in Bushehr, Iran
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 12
  start-page: 97
  year: 1980
  end-page: 136
  ident: bib42
  article-title: A feature-integrations theory of attention cognitive psychology
– volume: 299
  year: 2024
  ident: bib45
  article-title: Monitoring system framework design for floating wind turbine using the deep learning technology and tower response identification considering sensor optimization
  publication-title: Ocean Eng.
– year: 2022
  ident: bib22
  article-title: Intelligence visualization for wave energy power generation
  publication-title: 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW)
– year: 2014
  ident: bib24
  article-title: Effect of flap type wave energy converters on the response of a semi-submersible wind turbine in operational conditions
  publication-title: International Conference on Offshore Mechanics and Arctic Engineering
– volume: 9
  start-page: 154
  year: 2023
  end-page: 165
  ident: bib1
  article-title: Performance comparison of crossflow turbine configuration upper blade convex and curvature by computational method
  publication-title: Civ. Eng. J.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: bib14
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– volume: 241
  year: 2024
  ident: bib31
  article-title: A multi-level thresholding image segmentation method using hybrid arithmetic optimization and Harris Hawks optimizer algorithms
  publication-title: Expert Syst. Appl.
– volume: 227
  year: 2021
  ident: bib38
  article-title: The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters
  publication-title: Ocean Eng.
– year: 2018
  ident: bib49
  article-title: D4.2 Public Definition of the Two LIFES50+ 10MW Floater Concepts
– volume: 247
  year: 2022
  ident: bib13
  article-title: Probabilistic prediction of the heave motions of a semi-submersible by a deep learning model
  publication-title: Ocean Eng.
– volume: 285
  year: 2023
  ident: bib47
  article-title: Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system
  publication-title: Energy
– volume: 213
  year: 2020
  ident: bib50
  article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data
  publication-title: Energy
– volume: 151
  start-page: 966
  year: 2020
  end-page: 974
  ident: bib35
  article-title: Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions
  publication-title: Renew. Energy
– year: 2011
  ident: bib41
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
  publication-title: 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– volume: 247
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122394_bib13
  article-title: Probabilistic prediction of the heave motions of a semi-submersible by a deep learning model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.110578
– volume: 8
  start-page: 149
  issue: 3
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib32
  article-title: Hybrid LSTM-based fractional-order neural network for Jeju Island's wind farm power forecasting
  publication-title: Fract. Fraction.
  doi: 10.3390/fractalfract8030149
– volume: 313
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib8
  article-title: Fully coupled dynamic responses of barge-type integrated floating wind-wave energy systems with different WEC layouts
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.119453
– volume: 50
  start-page: 47
  year: 2013
  ident: 10.1016/j.oceaneng.2025.122394_bib27
  article-title: Dynamic response and power performance of a combined spar-type floating wind turbine and coaxial floating wave energy converter
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2012.05.025
– volume: 28
  start-page: 369
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122394_bib39
  article-title: Short-term stock price forecasting based on an SVD-LSTM model
  publication-title: Intellig. Automat. Soft Comput.
  doi: 10.32604/iasc.2021.014962
– volume: 5
  start-page: 111
  issue: 2
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122394_bib40
  article-title: Optimal management energy system and control strategies for isolated hybrid solar-wind-battery-diesel power system
– volume: 162
  start-page: 1665
  year: 2020
  ident: 10.1016/j.oceaneng.2025.122394_bib11
  article-title: Hourly forecasting of solar irradiance based on CEEMDAN and multi-strategy CNN-LSTM neural networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2020.09.141
– volume: 12
  start-page: 97
  issue: 1
  year: 1980
  ident: 10.1016/j.oceaneng.2025.122394_bib42
  article-title: A feature-integrations theory of attention cognitive psychology
– year: 2012
  ident: 10.1016/j.oceaneng.2025.122394_bib26
  article-title: STC (Spar-Torus Combination): a combined spar-type floating wind turbine and large point absorber floating wave energy converter—promising and challenging
– year: 2011
  ident: 10.1016/j.oceaneng.2025.122394_bib30
  article-title: Design of a point absorber inside the WindFloat structure
  publication-title: Int. Conf. Offshore Mech. Arctic Eng.
– volume: 8
  start-page: 437
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122394_bib36
  article-title: A CNN-LSTM-LightGBM based short-term wind power prediction method based on attention mechanism
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2022.02.206
– volume: 261
  year: 2022
  ident: 10.1016/j.oceaneng.2025.122394_bib44
  article-title: An identification method of floating wind turbine tower responses using deep learning technology in the monitoring system
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.112105
– volume: 15
  start-page: 2228
  issue: 10
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122394_bib29
  article-title: Data‐driven models for short‐term ocean wave power forecasting
  publication-title: IET Renew. Power Gener.
  doi: 10.1049/rpg2.12157
– year: 2014
  ident: 10.1016/j.oceaneng.2025.122394_bib24
  article-title: Effect of flap type wave energy converters on the response of a semi-submersible wind turbine in operational conditions
– volume: 65
  start-page: 71
  year: 2013
  ident: 10.1016/j.oceaneng.2025.122394_bib28
  article-title: Extreme responses of a combined spar-type floating wind turbine and floating wave energy converter (STC) system with survival modes
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2013.03.002
– volume: 151
  start-page: 966
  year: 2020
  ident: 10.1016/j.oceaneng.2025.122394_bib35
  article-title: Experimental and numerical study of dynamic responses of a new combined TLP type floating wind turbine and a wave energy converter under operational conditions
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2019.11.095
– start-page: 1
  year: 2025
  ident: 10.1016/j.oceaneng.2025.122394_bib9
  article-title: Effects of WEC design parameters on fully coupled responses of a Barge-type wind-wave-integrated floating energy system
  publication-title: J. Marin. Eng. Technol.
– volume: 285
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122394_bib47
  article-title: Effects of tidal turbine number on the performance of a 10 MW-class semi-submersible integrated floating wind-current system
  publication-title: Energy
  doi: 10.1016/j.energy.2023.128789
– volume: 217
  year: 2020
  ident: 10.1016/j.oceaneng.2025.122394_bib46
  article-title: Wind-wave coupling effects on the fatigue damage of tendons for a 10 MW multi-body floating wind turbine
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.107909
– volume: 13
  start-page: 1
  issue: 3
  year: 2017
  ident: 10.1016/j.oceaneng.2025.122394_bib2
  article-title: Structured pruning of deep convolutional neural networks
  publication-title: ACM J. Emerg. Technol. Comput. Syst.
  doi: 10.1145/3005348
– year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib10
  article-title: Size optimization of standalone wind-photovoltaics-diesel-battery systems by Harris hawks optimization (HHO): case study of a wharf located in Bushehr, Iran
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2024.110353
– start-page: 14
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib6
  article-title: Prediction of motion responses for a semi-submersible FOWT platform using a grey-box model integrated with a GRU-based deep learning approach
– volume: 23
  start-page: 452
  year: 2014
  ident: 10.1016/j.oceaneng.2025.122394_bib43
  article-title: Forecasting wind speed using empirical mode decomposition and Elman neural network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.06.027
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.oceaneng.2025.122394_bib16
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– volume: 7
  start-page: 536
  issue: 6
  year: 1930
  ident: 10.1016/j.oceaneng.2025.122394_bib5
  article-title: On the theory of filter amplifiers
  publication-title: Wireless Eng.
– volume: 202
  year: 2020
  ident: 10.1016/j.oceaneng.2025.122394_bib21
  article-title: A new hybrid ensemble deep reinforcement learning model for wind speed short term forecasting
– volume: 227
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122394_bib38
  article-title: The influence of power-take-off control on the dynamic response and power output of combined semi-submersible floating wind turbine and point-absorber wave energy converters
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108835
– year: 2013
  ident: 10.1016/j.oceaneng.2025.122394_bib4
– volume: 19
  issue: 7
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib15
  article-title: Load forecasting method based on CEEMDAN and TCN-LSTM
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0300496
– year: 2022
  ident: 10.1016/j.oceaneng.2025.122394_bib22
  article-title: Intelligence visualization for wave energy power generation
– volume: 11
  issue: 21
  year: 2021
  ident: 10.1016/j.oceaneng.2025.122394_bib20
  article-title: Wind power forecasting with deep learning networks: time-series forecasting
  publication-title: Appl. Sci.
  doi: 10.3390/app112110335
– volume: 6
  start-page: 236
  issue: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2025.122394_bib34
  article-title: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods
  publication-title: IEEE Trans. Sustain. Energy
  doi: 10.1109/TSTE.2014.2365580
– year: 2018
  ident: 10.1016/j.oceaneng.2025.122394_bib49
– volume: 279
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122394_bib19
  article-title: Ultra-short term power load forecasting based on CEEMDAN-SE and LSTM neural network
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2022.112666
– volume: 50
  start-page: 35
  year: 2016
  ident: 10.1016/j.oceaneng.2025.122394_bib25
  article-title: Experimental and numerical study of the response of the offshore combined wind/wave energy concept SFC in extreme environmental conditions
  publication-title: Mar. Struct.
  doi: 10.1016/j.marstruc.2016.06.005
– volume: 216
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122394_bib48
  article-title: Performance and fatigue analysis of an integrated floating wind-current energy system considering the aero-hydro-servo-elastic coupling effects
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.119111
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.oceaneng.2025.122394_bib14
  article-title: Harris hawks optimization: algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– volume: 16
  start-page: 2665
  issue: 6
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122394_bib12
  article-title: Increasing growth of renewable energy: a State of art
– volume: 299
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib45
  article-title: Monitoring system framework design for floating wind turbine using the deep learning technology and tower response identification considering sensor optimization
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.117316
– volume: 241
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib31
  article-title: A multi-level thresholding image segmentation method using hybrid arithmetic optimization and Harris Hawks optimizer algorithms
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.122316
– year: 2011
  ident: 10.1016/j.oceaneng.2025.122394_bib3
  article-title: Modeling of an oscillating water column on the floating foundation WindFloat
  publication-title: Int. Conf. Offshore Mech. Arctic Eng.
– volume: 9
  start-page: 154
  issue: 1
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122394_bib1
  article-title: Performance comparison of crossflow turbine configuration upper blade convex and curvature by computational method
  publication-title: Civ. Eng. J.
  doi: 10.28991/CEJ-2023-09-01-012
– volume: 218
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122394_bib18
  article-title: Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.119357
– volume: 109
  start-page: 49
  year: 2017
  ident: 10.1016/j.oceaneng.2025.122394_bib33
  article-title: RANS-VOF modelling of the wavestar point absorber
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.02.079
– volume: 26
  start-page: 883
  issue: 3
  year: 2020
  ident: 10.1016/j.oceaneng.2025.122394_bib7
  article-title: A novel approach for motion predictions of a semi-submersible platform with neural network
  publication-title: J. Mar. Sci. Technol.
  doi: 10.1007/s00773-020-00759-w
– volume: 240
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib17
  article-title: An intelligent network traffic prediction method based on butterworth filter and CNN–LSTM
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2024.110172
– volume: 280
  year: 2023
  ident: 10.1016/j.oceaneng.2025.122394_bib37
  article-title: Short-term motion prediction of floating offshore wind turbine based on muti-input LSTM neural network
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2023.114558
– year: 2011
  ident: 10.1016/j.oceaneng.2025.122394_bib41
  article-title: A complete ensemble empirical mode decomposition with adaptive noise
– volume: 213
  year: 2020
  ident: 10.1016/j.oceaneng.2025.122394_bib50
  article-title: Short-term wind power forecasting approach based on Seq2Seq model using NWP data
  publication-title: Energy
  doi: 10.1016/j.energy.2020.118371
– volume: 12
  start-page: 2689
  issue: 2676
  year: 2024
  ident: 10.1016/j.oceaneng.2025.122394_bib23
  article-title: Stacking integration algorithm based on CNN-BiLSTM-Attention with XGBoost for short-term electricity load forecasting
  publication-title: Energy Rep.
SSID ssj0006603
Score 2.43521
Snippet Wind-wave integrated floating energy system (IFES) is recognized for reducing the levelized cost of electricity by sharing the support structures. Developing...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 122394
SubjectTerms Floating offshore wind turbine
Harris Hawk optimization
Hybrid energy system
Hybrid neural network
Wave energy converter
Title Development of a hybrid deep learning model with HHO algorithm for dynamic response prediction of wind-wave integrated floating energy systems
URI https://dx.doi.org/10.1016/j.oceaneng.2025.122394
Volume 340
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0029-8018
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0029-8018
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect (LUT)
  issn: 0029-8018
  databaseCode: ACRLP
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  issn: 0029-8018
  databaseCode: AIKHN
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0029-8018
  databaseCode: AKRWK
  dateStart: 19700101
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0006603
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT8JAEN0QvaiJUdSIH2QOXgulH9v2SIikaoSLJNya3e4sQrAQRIkXf4K_2R3aKiYmHjzuprtpdjYz89r3Zhi7coUbGYyGliu1bXmOaFlCYWhxriMMKIf1STt83-PxwLsd-sMK65RaGKJVFr4_9-lrb13MNIvTbM7HY9L4OpHxrwbimJQnCElo7nkBdTFovH_TPDi33ZLmQU9vqIQnDRMiRIbZyOBEx2-0HOoT_nuA2gg63QO2X2SL0M5f6JBVMKuy3Y0aglW216fdi8LTR-xjgwUEMw0CHt9IlAUKcQ5Fj4gRrBvgAH2EhTjug5iOZgszeAKTw4LKu9TDIufPIswX9DuHTEhbrgyMt1biFeGr1oQCPZ0JYlADrsWEkFeIfj5mg-71Qye2ip4LVmqw1NIKWlJ4ykBUvyVCYWOUIoVwHShHpqmSjpTcw0C5PNRO5PvC026AgQzRTbk2zuqEbWWzDE8ZyNSlhMI2s8qkPVwoW6fa9gUnWOx4NdYsDzqZ56U1kpJzNklK0yRkmiQ3TY1FpT2SH5ckMf7_j7Vn_1h7znZolFd8vGBby8ULXppcZCnr68tWZ9vtm7u49wmhpeIE
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB5ROFCQKp7iUWAOXLObdWInOSIECu8LSNwiOx4viyC7WpaiXvoT-pvxbJJ2kZB66DFObEUea-b7km9mAA4jHWWeo1EQGRcGsdC9QFtKA6VcRgljWMm5w1fXKr-Lz-_l_Rwct7kwLKtsfH_t06feuhnpNrvZHQ0GnOMrMu9fPcXxkCdJ5RdYiKVImIF1fv3VeSgVRq3Ogx-fSRN-7PgYoSuq-p4oCtnpCW4U_nmEmok6pyvwrYGLeFS_0SrMUbUGSzNFBNdg-YZXbypPr8PvGRkQDh1qfPjJWVloiUbYNIno47QDDvJXWMzzG9RP_eHYXzyjB7Fo6zb1OK4FtISjMf_PYRvykm-exwdv-gfhn2ITFt3TULOEGmmaTYh1ieiXDbg7Pbk9zoOm6UJQejI1CZKe0bH1HFX2dKpDykriGO4SK0xZWiOMUTElNlKpE5mUOnZRQolJKSqV895qE-arYUVbgKaMGFGEftR63KO0DV3pQqkV82IRb0O33ehiVNfWKFrR2WPRmqZg0xS1abYha-1RfDglhQ8A_5i78x9zD2Axv726LC7Pri924Svfqcs_fof5yfiV9jwwmZj96cF7B_IU45k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+of+a+hybrid+deep+learning+model+with+HHO+algorithm+for+dynamic+response+prediction+of+wind-wave+integrated+floating+energy+systems&rft.jtitle=Ocean+engineering&rft.au=Yin%2C+Jiaqing&rft.au=Fan%2C+Yihong&rft.au=Bashir%2C+Musa&rft.au=Nie%2C+Debang&rft.date=2025-11-30&rft.issn=0029-8018&rft.volume=340&rft.spage=122394&rft_id=info:doi/10.1016%2Fj.oceaneng.2025.122394&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2025_122394
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon