An integrated machine learning framework for the early diagnosis of hypertension disease

Hypertension is a type of disease that occurs after a serious increase in blood pressure. Due to the rapid increase in the disease, efforts for its early diagnosis are increasing day by day. The use of artificial intelligence (AI) and machine learning (ML) methods in disease detection is of great im...

Full description

Saved in:
Bibliographic Details
Published inEngineering applications of artificial intelligence Vol. 162; p. 112564
Main Author Eldem, Ayşe
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 22.12.2025
Subjects
Online AccessGet full text
ISSN0952-1976
DOI10.1016/j.engappai.2025.112564

Cover

Abstract Hypertension is a type of disease that occurs after a serious increase in blood pressure. Due to the rapid increase in the disease, efforts for its early diagnosis are increasing day by day. The use of artificial intelligence (AI) and machine learning (ML) methods in disease detection is of great importance, especially in early diagnosis. In this study, a framework for the diagnosis of hypertension is developed. Behavioral Risk Factor Surveillance System (BRFSS) and Hypertension Risk Prediction (HRP) datasets with clinical and demographic information were used to diagnose hypertension. The problem of class imbalance in the datasets was solved by Random OverSampling method. In particular, the relationship between the attributes and the target variable was analyzed with Consistency-Based Filter, Recursive Feature Elimination with Cross-Validation (RFECV), Least Absolute Shrinkage and Selection Operator (LASSO), Information gain, Relief and Correlation-based feature selection methods and the features selected for the diagnosis of hypertension disease were taken into consideration. In the experiments, Extremely Randomized Trees (Extra Trees), Adaptive Boosting (Adaboost) and Extreme Gradient Boosting (XGBoost) machine learning methods were used in five fold cross-validation. In both datasets, the most successful results were obtained with the XGBoost algorithm. Then, for this algorithm, Random Search, Grid Search, Bayes Search and Genetic Algorithm were used for model hypertuning. For the BRFSS dataset with 87.96 % accuracy and for the HRP dataset with 97.67 % accuracy were obtained. The results are obtained with evaluation metrics that the medical world considers in evaluations, and the proposed framework for hypertension disease detection provides valuable insights for healthcare applications. •Proposes MLHyDD, a framework to diagnose hypertension disease.•Alleviates the imbalanced classification problem and uses different feature selection methods.•Applies hyper-tuning by selecting the most successful machine learning technique with a self-supervised comparative strategy.•Extensive experiments demonstrate both the effectiveness and interpretability of the framework.
AbstractList Hypertension is a type of disease that occurs after a serious increase in blood pressure. Due to the rapid increase in the disease, efforts for its early diagnosis are increasing day by day. The use of artificial intelligence (AI) and machine learning (ML) methods in disease detection is of great importance, especially in early diagnosis. In this study, a framework for the diagnosis of hypertension is developed. Behavioral Risk Factor Surveillance System (BRFSS) and Hypertension Risk Prediction (HRP) datasets with clinical and demographic information were used to diagnose hypertension. The problem of class imbalance in the datasets was solved by Random OverSampling method. In particular, the relationship between the attributes and the target variable was analyzed with Consistency-Based Filter, Recursive Feature Elimination with Cross-Validation (RFECV), Least Absolute Shrinkage and Selection Operator (LASSO), Information gain, Relief and Correlation-based feature selection methods and the features selected for the diagnosis of hypertension disease were taken into consideration. In the experiments, Extremely Randomized Trees (Extra Trees), Adaptive Boosting (Adaboost) and Extreme Gradient Boosting (XGBoost) machine learning methods were used in five fold cross-validation. In both datasets, the most successful results were obtained with the XGBoost algorithm. Then, for this algorithm, Random Search, Grid Search, Bayes Search and Genetic Algorithm were used for model hypertuning. For the BRFSS dataset with 87.96 % accuracy and for the HRP dataset with 97.67 % accuracy were obtained. The results are obtained with evaluation metrics that the medical world considers in evaluations, and the proposed framework for hypertension disease detection provides valuable insights for healthcare applications. •Proposes MLHyDD, a framework to diagnose hypertension disease.•Alleviates the imbalanced classification problem and uses different feature selection methods.•Applies hyper-tuning by selecting the most successful machine learning technique with a self-supervised comparative strategy.•Extensive experiments demonstrate both the effectiveness and interpretability of the framework.
ArticleNumber 112564
Author Eldem, Ayşe
Author_xml – sequence: 1
  givenname: Ayşe
  orcidid: 0000-0002-5561-1568
  surname: Eldem
  fullname: Eldem, Ayşe
  email: ayseeldem@kmu.edu.tr
  organization: Department of Computer Engineering, Karamanoğlu Mehmetbey University, Karaman, Turkey
BookMark eNqFkM1KAzEUhbOoYFt9BckLzHiTzGRmdpbiHwhuFNyFNLmZprbJkAxK394p1bWrszicj8O3ILMQAxJyw6BkwOTtrsTQ62HQvuTA65IxXstqRubQ1bxgXSMvySLnHQCItpJz8rEK1IcR-6RHtPSgzdYHpHvUKfjQU5f0Ab9j-qQuJjpukU7N_kit132I2WcaHd0eB0wjhuxjmJqMOuMVuXB6n_H6N5fk_eH-bf1UvLw-Pq9XL4Xhko2FrDbOWqYrbDtTgzCCtcI0NW9AOoEogAPWnRRWbCS0Gwa8YqIRrrFMdJKJJZFnrkkx54RODckfdDoqBurkRO3UnxN1cqLOTqbh3XmI07svj0ll4zEYtD6hGZWN_j_ED7Qqcj8
Cites_doi 10.1097/MD.0000000000027600
10.1007/s00521-024-10724-y
10.3390/technologies13030088
10.1161/HYPERTENSIONAHA.123.22347
10.4258/hir.2025.31.1.16
10.7326/0003-4819-148-2-200801150-00005
10.1016/j.medengphy.2011.11.010
10.1109/ACCESS.2021.3053759
10.3906/elk-2104-183
10.3389/fcvm.2024.1434418
10.3389/fgene.2021.768747
10.1155/ijhy/4011397
10.3390/app9061215
10.1007/s41976-024-00172-6
10.3390/diagnostics11050792
10.1038/s41598-023-33525-0
10.3389/fcvm.2022.928948
10.1097/MD.0000000000004143
10.1016/j.jpba.2025.116761
10.1016/j.asoc.2007.06.001
10.1161/HYPERTENSIONAHA.113.01539
10.1016/j.engappai.2024.108306
10.1142/S0219519421400285
10.1111/jch.13759
10.1038/s41440-021-00738-7
10.1016/j.bbadis.2010.01.005
10.1016/j.ejrad.2025.111998
10.5888/pcd15.170332
10.1016/S0004-3702(03)00079-1
10.2147/RMHP.S472398
10.1265/ehpm.24-00270
10.1186/s40537-025-01081-1
10.1007/s11517-013-1096-8
10.1016/j.ijcard.2024.132757
10.1016/j.jbi.2018.07.014
10.1155/2018/2964816
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.engappai.2025.112564
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Computer Science
ExternalDocumentID 10_1016_j_engappai_2025_112564
S0952197625025953
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
LG9
LY7
M41
R2-
SBC
SET
UHS
WUQ
ZMT
ID FETCH-LOGICAL-c261t-64bfdd1a4e89c503c3183c752706f3ee3020e5963d3b608b10241373f7d139613
IEDL.DBID .~1
ISSN 0952-1976
IngestDate Thu Oct 16 04:42:37 EDT 2025
Sat Oct 25 17:31:07 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hypertension disease
Feature selection
Extreme gradient boosting
Framework
Machine learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-64bfdd1a4e89c503c3183c752706f3ee3020e5963d3b608b10241373f7d139613
ORCID 0000-0002-5561-1568
ParticipantIDs crossref_primary_10_1016_j_engappai_2025_112564
elsevier_sciencedirect_doi_10_1016_j_engappai_2025_112564
PublicationCentury 2000
PublicationDate 2025-12-22
PublicationDateYYYYMMDD 2025-12-22
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-22
  day: 22
PublicationDecade 2020
PublicationTitle Engineering applications of artificial intelligence
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dogan, Barua, Tuncer, Acharya (bib17) 2024; 133
Chang, Liu, Xiao, Xu, Zhou, Lu, Cheng (bib11) 2019; 9
Srikanth, Nimma, Lalitha, Jangir, Kumari (bib48) 2025; 8
Mallick, Panda (bib33) 2024
Azhagusundari, Thanamani (bib2) 2013; 2
Cereser, Borghesi, De Martino, Nadarevic, Cicciò, Agati, Ciolli, Collini, Patruno, Isola (bib9) 2025; 185
Xie, Xu, Guo, Tian (bib53) 2021
Xu, Liu, Wang, Fan, Luo, Zhan, Tao, You (bib54) 2021; 100
Ji, Zhang, Cheng, Wang, Zhou (bib28) 2022; 9
Yılmaz, Sümer (bib57) 2021
Baby, Devaraj, Hemanth (bib3) 2021; 29
Wu, Li, Dong, Deng, Zhao, Zhou, Xian, Yang, Yi, Yang, Hu, Li, Chen, Liu (bib52) 2025; 259
Wu, Li, Dong, Deng, Zhao, Zhou, Xian, Yang, Yi, Yang (bib51) 2025
Ramezankhani, Kabir, Pournik, Azizi, Hadaegh (bib43) 2016; 95
Martínez-García, Gutiérrez-Esparza, Márquez, Amezcua-Guerra, Hernández-Lemus (bib35) 2025; 11
Polak, Mendyk (bib41) 2008; 8
Raihan, Khan, Kee, Nahid (bib42) 2023; 13
Sharma, Kumar, Jain (bib46) 2022; 24
Urbanowicz, Meeker, La Cava, Olson, Moore (bib49) 2018; 85
Chang, Ji, Xiao, Zhang, Chen, Liu, Zhou (bib10) 2021; 11
Fonti, Belitser (bib20) 2017; 30
Hall (bib22) 1999
Yang, Bao, Wang (bib56) 2021; 12
Carson, Lewis, Jacobs, Peralta, Steffen, Bower, Person, Muntner (bib8) 2013; 62
Zhang, Xia, Wang, Pan, Zhang, Wang (bib59) 2025; 30
Dash, Liu, Motoda (bib15) 2000
Niu, Wang, Zhang, Tu, Liu, Hou, Huo, Mao, Wang, Bie (bib38) 2021; 44
Başçiftçi, Eldem (bib4) 2013; 51
Lei (bib30) 2012
Peng, Xu, Ma, Wang (bib40) 2021; 21
Muflikhah, Fatyanosa, Widodo, Perdana, Ratnawati (bib36) 2025; 31
(bib5) 2024
Kanegae, Suzuki, Fukatani, Ito, Harada, Kario (bib29) 2020; 22
Smith, McAuliffe, Hall, McDonough, Gurka, Robinson, Sacco, Pepine, Shenkman, Cooper-DeHoff (bib47) 2018; 15
Hamrahian, Falkner (bib23) 2017
Akyol, Atila (bib1) 2019; 7
Imran, Aslam, Ahmad, Mazhar, Bhatti, Abid (bib27) 2024; 6
Luo, Cui, Hu, Tu, Liu, Jiao, Zeng, Jing, Qiao, Ma (bib32) 2018; 2018
Lundberg, Lee (bib31) 2017; 30
Ren, Isleem, Almoghaye, Hamed, Jangir, Arpita, Tejani, Ezugwu, Soliman (bib44) 2025; 12
Wang, An, Xia, Li, Chen (bib50) 2014
Donmez, Kutlu, Mansour, Yildiz (bib18) 2025; 37
Zan, Dong, Yang, Yan, He, Tian, Zhang (bib58) 2024
Martínez-García, Gutiérrez-Esparza, Márquez, Amezcua-Guerra, Hernández-Lemus (bib34) 2024; 11
Brinks, Eckhart (bib6) 2010; 1802
Dash, Liu (bib14) 2003; 151
Dhanka, Maini (bib16) 2025; 420
Parikh, Pencina, Wang, Benjamin, Lanier, Levy, D'Agostino Sr, Kannel, Vasan (bib39) 2008; 148
Chikhi, Benhammada (bib13) 2009; 4
Imani, Beikmohammadi, Arabnia (bib26) 2025; 13
Budak (bib7) 2018; 22
Yağmurcu, Arslan (bib55) 2024
Haq, Li, Memon, Nazir, Sun (bib24) 2018; 2018
Dunn, Ali, Patel, Banerjee (bib19) 2025; 82
Cheraghi, Doosti-Irani, Sohrabi, Doosti-Irani (bib12) 2025; 2025
(bib25) 2024
Scalzo, Hamilton, Asgari, Kim, Hu (bib45) 2012; 34
Ghosh, Azam, Jonkman, Karim, Shamrat, Ignatious, Shultana, Beeravolu, Boer (bib21) 2021; 9
Muthukrishnan, Rohini (bib37) 2016
Akyol (10.1016/j.engappai.2025.112564_bib1) 2019; 7
Luo (10.1016/j.engappai.2025.112564_bib32) 2018; 2018
Haq (10.1016/j.engappai.2025.112564_bib24) 2018; 2018
Chikhi (10.1016/j.engappai.2025.112564_bib13) 2009; 4
Hamrahian (10.1016/j.engappai.2025.112564_bib23) 2017
Chang (10.1016/j.engappai.2025.112564_bib10) 2021; 11
Martínez-García (10.1016/j.engappai.2025.112564_bib35) 2025; 11
Parikh (10.1016/j.engappai.2025.112564_bib39) 2008; 148
Baby (10.1016/j.engappai.2025.112564_bib3) 2021; 29
Peng (10.1016/j.engappai.2025.112564_bib40) 2021; 21
Dogan (10.1016/j.engappai.2025.112564_bib17) 2024; 133
Dunn (10.1016/j.engappai.2025.112564_bib19) 2025; 82
Cheraghi (10.1016/j.engappai.2025.112564_bib12) 2025; 2025
Niu (10.1016/j.engappai.2025.112564_bib38) 2021; 44
Lundberg (10.1016/j.engappai.2025.112564_bib31) 2017; 30
Zan (10.1016/j.engappai.2025.112564_bib58) 2024
Wu (10.1016/j.engappai.2025.112564_bib52) 2025; 259
Ramezankhani (10.1016/j.engappai.2025.112564_bib43) 2016; 95
Chang (10.1016/j.engappai.2025.112564_bib11) 2019; 9
Mallick (10.1016/j.engappai.2025.112564_bib33) 2024
Ren (10.1016/j.engappai.2025.112564_bib44) 2025; 12
Carson (10.1016/j.engappai.2025.112564_bib8) 2013; 62
Donmez (10.1016/j.engappai.2025.112564_bib18) 2025; 37
Ghosh (10.1016/j.engappai.2025.112564_bib21) 2021; 9
Lei (10.1016/j.engappai.2025.112564_bib30) 2012
Sharma (10.1016/j.engappai.2025.112564_bib46) 2022; 24
Smith (10.1016/j.engappai.2025.112564_bib47) 2018; 15
Azhagusundari (10.1016/j.engappai.2025.112564_bib2) 2013; 2
Dhanka (10.1016/j.engappai.2025.112564_bib16) 2025; 420
Dash (10.1016/j.engappai.2025.112564_bib14) 2003; 151
Ji (10.1016/j.engappai.2025.112564_bib28) 2022; 9
Budak (10.1016/j.engappai.2025.112564_bib7) 2018; 22
Imran (10.1016/j.engappai.2025.112564_bib27) 2024; 6
Srikanth (10.1016/j.engappai.2025.112564_bib48) 2025; 8
Cereser (10.1016/j.engappai.2025.112564_bib9) 2025; 185
Fonti (10.1016/j.engappai.2025.112564_bib20) 2017; 30
Zhang (10.1016/j.engappai.2025.112564_bib59) 2025; 30
Başçiftçi (10.1016/j.engappai.2025.112564_bib4) 2013; 51
Yağmurcu (10.1016/j.engappai.2025.112564_bib55) 2024
Muflikhah (10.1016/j.engappai.2025.112564_bib36) 2025; 31
Hall (10.1016/j.engappai.2025.112564_bib22) 1999
Yılmaz (10.1016/j.engappai.2025.112564_bib57) 2021
Yang (10.1016/j.engappai.2025.112564_bib56) 2021; 12
Brinks (10.1016/j.engappai.2025.112564_bib6) 2010; 1802
Martínez-García (10.1016/j.engappai.2025.112564_bib34) 2024; 11
Kanegae (10.1016/j.engappai.2025.112564_bib29) 2020; 22
Xie (10.1016/j.engappai.2025.112564_bib53) 2021
Raihan (10.1016/j.engappai.2025.112564_bib42) 2023; 13
Wang (10.1016/j.engappai.2025.112564_bib50) 2014
Imani (10.1016/j.engappai.2025.112564_bib26) 2025; 13
Xu (10.1016/j.engappai.2025.112564_bib54) 2021; 100
Polak (10.1016/j.engappai.2025.112564_bib41) 2008; 8
Muthukrishnan (10.1016/j.engappai.2025.112564_bib37) 2016
Dash (10.1016/j.engappai.2025.112564_bib15) 2000
Wu (10.1016/j.engappai.2025.112564_bib51) 2025
Urbanowicz (10.1016/j.engappai.2025.112564_bib49) 2018; 85
Scalzo (10.1016/j.engappai.2025.112564_bib45) 2012; 34
References_xml – year: 2024
  ident: bib25
  article-title: HRP_Dataset
– volume: 1802
  start-page: 1268
  year: 2010
  end-page: 1275
  ident: bib6
  article-title: Regulation of GPCR signaling in hypertension
  publication-title: Biochim. Biophys. Acta, Mol. Basis Dis.
– volume: 6
  start-page: 261
  year: 2024
  end-page: 271
  ident: bib27
  article-title: Predictive modeling of chronic kidney disease using extra tree classifier: a comparative analysis with traditional methods
  publication-title: J. Comp. Biomed. Inform.
– volume: 29
  start-page: 2742
  year: 2021
  end-page: 2757
  ident: bib3
  article-title: Leukocyte classification based on feature selection using extra trees classifier: atransfer learning approach
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
– volume: 9
  start-page: 1215
  year: 2019
  ident: bib11
  article-title: Probability analysis of hypertension-related symptoms based on XGBoost and clustering algorithm
  publication-title: Appl. Sci.
– volume: 9
  year: 2022
  ident: bib28
  article-title: Development and validation of prediction models for hypertension risks: a cross-sectional study based on 4,287,407 participants
  publication-title: Front. Cardiovasc. Med.
– start-page: 1921
  year: 2024
  end-page: 1936
  ident: bib58
  article-title: Application of the unbalanced ensemble algorithm for prognostic prediction outcomes of all-cause mortality in coronary heart disease patients comorbid with hypertension
  publication-title: Risk Manag. Healthc. Policy
– volume: 37
  start-page: 4053
  year: 2025
  end-page: 4074
  ident: bib18
  article-title: Explainable AI in action: a comparative analysis of hypertension risk factors using SHAP and LIME
  publication-title: Neural Comput. Appl.
– start-page: 307
  year: 2017
  end-page: 325
  ident: bib23
  article-title: Hypertension in chronic kidney disease
  publication-title: Hypertension: from Basic Research to Clinical Practice
– year: 1999
  ident: bib22
  article-title: Correlation-Based Feature Selection for Machine Learning
– volume: 22
  start-page: 21
  year: 2018
  end-page: 31
  ident: bib7
  article-title: Feature selection methods and a new approach Süleyman Demirel University
  publication-title: J. Nat. Appl. Sci.
– volume: 7
  start-page: 174
  year: 2019
  end-page: 179
  ident: bib1
  article-title: A study on performance improvement of heart disease prediction by attribute selection methods
  publication-title: Academic Platform J. Eng. Sci.
– volume: 185
  year: 2025
  ident: bib9
  article-title: Machine-learning tool for classifying pulmonary hypertension via expert reader-provided CT features: an educational resource for non-dedicated radiologists
  publication-title: Eur. J. Radiol.
– volume: 420
  year: 2025
  ident: bib16
  article-title: A hybridization of XGBoost machine learning model by Optuna hyperparameter tuning suite for cardiovascular disease classification with significant effect of outliers and heterogeneous training datasets
  publication-title: Int. J. Cardiol.
– volume: 12
  year: 2021
  ident: bib56
  article-title: Hypertension-related drug activity identification based on novel ensemble method
  publication-title: Front. Genet.
– volume: 2018
  year: 2018
  ident: bib24
  article-title: A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms
  publication-title: Mob. Inf. Syst.
– volume: 13
  start-page: 88
  year: 2025
  ident: bib26
  article-title: Comprehensive analysis of random forest and XGBoost performance with SMOTE, ADASYN, and GNUS under varying imbalance levels
  publication-title: Technologies
– year: 2025
  ident: bib51
  article-title: Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers
  publication-title: J. Pharmaceut. Biomed. Anal.
– start-page: 18
  year: 2016
  end-page: 20
  ident: bib37
  article-title: LASSO: a feature selection technique in predictive modeling for machine learning
  publication-title: 2016 IEEE International Conference on Advances in Computer Applications (ICACA)
– volume: 8
  start-page: 65
  year: 2025
  end-page: 73
  ident: bib48
  article-title: Food security based marine life ecosystem for polar region conditioning: remote sensing analysis with machine learning model
  publication-title: Remote Sensing Earth Sys. Sci.
– start-page: 1
  year: 2024
  end-page: 6
  ident: bib55
  article-title: Feature selection using automatic programming methods in hypertension risk prediction
  publication-title: 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP)
– volume: 4
  start-page: 375
  year: 2009
  end-page: 390
  ident: bib13
  article-title: ReliefMSS: a variation on a feature ranking ReliefF algorithm
  publication-title: Int. J. Bus. Intell. Data Min.
– volume: 30
  start-page: 1
  year: 2017
  end-page: 25
  ident: bib20
  article-title: Feature selection using lasso
  publication-title: VU Amsterdam Res. Paper Business Anal.
– volume: 12
  start-page: 50
  year: 2025
  ident: bib44
  article-title: Machine learning-based prediction of elliptical double steel columns under compression loading
  publication-title: J. Big Data
– volume: 151
  start-page: 155
  year: 2003
  end-page: 176
  ident: bib14
  article-title: Consistency-based search in feature selection
  publication-title: Artif. Intell.
– volume: 21
  year: 2021
  ident: bib40
  article-title: Prediction of hypertension risks with feature selection and XGBoost
  publication-title: J. Mech. Med. Biol.
– volume: 30
  year: 2025
  ident: bib59
  article-title: Application of machine learning algorithms in predicting new onset hypertension: a study based on the China health and nutrition survey
  publication-title: Environ. Health Prev. Med.
– volume: 9
  start-page: 19304
  year: 2021
  end-page: 19326
  ident: bib21
  article-title: Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques
  publication-title: IEEE Access
– volume: 2
  start-page: 18
  year: 2013
  end-page: 21
  ident: bib2
  article-title: Feature selection based on information gain
  publication-title: Int. J. Innovative Technol. Explor. Eng.
– volume: 85
  start-page: 189
  year: 2018
  end-page: 203
  ident: bib49
  article-title: Relief-based feature selection: introduction and review
  publication-title: J. Biomed. Inf.
– start-page: 98
  year: 2000
  end-page: 109
  ident: bib15
  article-title: Consistency based feature selection
  publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining
– volume: 95
  year: 2016
  ident: bib43
  article-title: Classification-based data mining for identification of risk patterns associated with hypertension in Middle Eastern population: a 12-year longitudinal study
  publication-title: Medicine
– year: 2024
  ident: bib5
  article-title: BRFSS_Dataset
– volume: 31
  start-page: 16
  year: 2025
  end-page: 22
  ident: bib36
  article-title: Feature selection for hypertension risk prediction using XGBoost on single nucleotide polymorphism data
  publication-title: Healthcare Inform. Res.
– volume: 2025
  year: 2025
  ident: bib12
  article-title: Predicting factors associated with uncontrolled hypertension using machine learning methods: a cross‐sectional study in Western Iran
  publication-title: Int. J. Hypertens.
– volume: 148
  start-page: 102
  year: 2008
  end-page: 110
  ident: bib39
  article-title: A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study
  publication-title: Ann. Intern. Med.
– volume: 8
  start-page: 734
  year: 2008
  end-page: 739
  ident: bib41
  article-title: Artificial neural networks based internet hypertension prediction tool development and validation
  publication-title: Appl. Soft Comput.
– volume: 2018
  year: 2018
  ident: bib32
  article-title: A study of machine‐learning classifiers for hypertension based on radial pulse wave
  publication-title: BioMed Res. Int.
– volume: 51
  start-page: 1287
  year: 2013
  end-page: 1293
  ident: bib4
  article-title: Using reduced rule base with expert system for the diagnosis of disease in hypertension
  publication-title: Med. Biol. Eng. Comput.
– volume: 100
  year: 2021
  ident: bib54
  article-title: Establishment and verification of a nomogram prediction model of hypertension risk in Xinjiang Kazakhs
  publication-title: Medicine
– volume: 82
  start-page: 26
  year: 2025
  end-page: 35
  ident: bib19
  article-title: Brief review and primer of key terminology for artificial intelligence and machine learning in hypertension
  publication-title: Hypertension
– volume: 44
  start-page: 1483
  year: 2021
  end-page: 1491
  ident: bib38
  article-title: Identifying the predictive effectiveness of a genetic risk score for incident hypertension using machine learning methods among populations in rural China
  publication-title: Hypertens. Res.
– start-page: 45
  year: 2014
  end-page: 52
  ident: bib50
  article-title: A logistic regression and artificial neural network-based approach for chronic disease prediction: a case study of hypertension
  publication-title: 2014 IEEE International Conference on Internet of Things (Ithings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (Cpscom)
– volume: 259
  year: 2025
  ident: bib52
  article-title: Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers
  publication-title: J. Pharmaceut. Biomed. Anal.
– volume: 24
  year: 2022
  ident: bib46
  article-title: Breast cancer prediction based on neural networks and extra tree classifier using feature ensemble learning. Measurement
  publication-title: Sensors
– volume: 34
  start-page: 1058
  year: 2012
  end-page: 1065
  ident: bib45
  article-title: Intracranial hypertension prediction using extremely randomized decision trees
  publication-title: Med. Eng. Phys.
– start-page: 355
  year: 2012
  end-page: 358
  ident: bib30
  article-title: A feature selection method based on information gain and genetic Algorithm
  publication-title: 2012 International Conference on Computer Science and Electronics Engineering
– start-page: 1
  year: 2024
  end-page: 7
  ident: bib33
  article-title: Predictive modeling of mental illness in technical workplace: a feature selection and classification approach
  publication-title: 2024 OPJU Int. Technol. Confer. (OTCON) Smart Comput Innov Adv Industry 4.0
– volume: 13
  start-page: 6263
  year: 2023
  ident: bib42
  article-title: Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP
  publication-title: Sci. Rep.
– volume: 15
  start-page: E27
  year: 2018
  ident: bib47
  article-title: Hypertension in Florida: data from the OneFlorida clinical data research network
  publication-title: Prev. Chronic Dis.
– volume: 30
  year: 2017
  ident: bib31
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 62
  start-page: 1015
  year: 2013
  end-page: 1020
  ident: bib8
  article-title: Evaluating the Framingham hypertension risk prediction model in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study
  publication-title: Hypertension
– start-page: 609
  year: 2021
  end-page: 615
  ident: bib57
  article-title: Diagnosis of heart disease with proposed hybrid model based on relief feature selection European
  publication-title: J. Sci. Technol.
– volume: 22
  start-page: 445
  year: 2020
  end-page: 450
  ident: bib29
  article-title: Highly precise risk prediction model for new‐onset hypertension using artificial intelligence techniques
  publication-title: J. Clin. Hypertens.
– volume: 11
  start-page: 792
  year: 2021
  ident: bib10
  article-title: Prediction of hypertension outcomes based on gain sequence forward tabu search feature selection and xgboost
  publication-title: Diagnostics
– volume: 11
  year: 2024
  ident: bib34
  article-title: Machine learning analysis of emerging risk factors for early-onset hypertension in the Tlalpan 2020 cohort
  publication-title: Front. Cardiovasc. Med.
– volume: 133
  year: 2024
  ident: bib17
  article-title: An accurate hypertension detection model based on a new odd-even pattern using ballistocardiograph signals
  publication-title: Eng. Appl. Artif. Intell.
– volume: 11
  year: 2025
  ident: bib35
  article-title: Machine learning analysis of emerging risk factors for early-onset hypertension in the Tlalpan 2020 cohort
  publication-title: Front. Cardiovasc. Med.
– start-page: 82
  year: 2021
  end-page: 88
  ident: bib53
  article-title: Segmentation-based retinal image fusion for hypertension prediction
  publication-title: Proceedings of the 7th International Conference on Communication and Information Processing
– volume: 100
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib54
  article-title: Establishment and verification of a nomogram prediction model of hypertension risk in Xinjiang Kazakhs
  publication-title: Medicine
  doi: 10.1097/MD.0000000000027600
– volume: 37
  start-page: 4053
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib18
  article-title: Explainable AI in action: a comparative analysis of hypertension risk factors using SHAP and LIME
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-024-10724-y
– volume: 13
  start-page: 88
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib26
  article-title: Comprehensive analysis of random forest and XGBoost performance with SMOTE, ADASYN, and GNUS under varying imbalance levels
  publication-title: Technologies
  doi: 10.3390/technologies13030088
– volume: 82
  start-page: 26
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib19
  article-title: Brief review and primer of key terminology for artificial intelligence and machine learning in hypertension
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.123.22347
– volume: 31
  start-page: 16
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib36
  article-title: Feature selection for hypertension risk prediction using XGBoost on single nucleotide polymorphism data
  publication-title: Healthcare Inform. Res.
  doi: 10.4258/hir.2025.31.1.16
– start-page: 1
  year: 2024
  ident: 10.1016/j.engappai.2025.112564_bib33
  article-title: Predictive modeling of mental illness in technical workplace: a feature selection and classification approach
  publication-title: 2024 OPJU Int. Technol. Confer. (OTCON) Smart Comput Innov Adv Industry 4.0
– volume: 148
  start-page: 102
  year: 2008
  ident: 10.1016/j.engappai.2025.112564_bib39
  article-title: A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study
  publication-title: Ann. Intern. Med.
  doi: 10.7326/0003-4819-148-2-200801150-00005
– volume: 30
  start-page: 1
  year: 2017
  ident: 10.1016/j.engappai.2025.112564_bib20
  article-title: Feature selection using lasso
  publication-title: VU Amsterdam Res. Paper Business Anal.
– volume: 22
  start-page: 21
  year: 2018
  ident: 10.1016/j.engappai.2025.112564_bib7
  article-title: Feature selection methods and a new approach Süleyman Demirel University
  publication-title: J. Nat. Appl. Sci.
– start-page: 307
  year: 2017
  ident: 10.1016/j.engappai.2025.112564_bib23
  article-title: Hypertension in chronic kidney disease
– volume: 34
  start-page: 1058
  year: 2012
  ident: 10.1016/j.engappai.2025.112564_bib45
  article-title: Intracranial hypertension prediction using extremely randomized decision trees
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.11.010
– volume: 9
  start-page: 19304
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib21
  article-title: Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053759
– volume: 29
  start-page: 2742
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib3
  article-title: Leukocyte classification based on feature selection using extra trees classifier: atransfer learning approach
  publication-title: Turk. J. Electr. Eng. Comput. Sci.
  doi: 10.3906/elk-2104-183
– volume: 11
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib35
  article-title: Machine learning analysis of emerging risk factors for early-onset hypertension in the Tlalpan 2020 cohort
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2024.1434418
– volume: 12
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib56
  article-title: Hypertension-related drug activity identification based on novel ensemble method
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2021.768747
– volume: 2025
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib12
  article-title: Predicting factors associated with uncontrolled hypertension using machine learning methods: a cross‐sectional study in Western Iran
  publication-title: Int. J. Hypertens.
  doi: 10.1155/ijhy/4011397
– volume: 9
  start-page: 1215
  year: 2019
  ident: 10.1016/j.engappai.2025.112564_bib11
  article-title: Probability analysis of hypertension-related symptoms based on XGBoost and clustering algorithm
  publication-title: Appl. Sci.
  doi: 10.3390/app9061215
– volume: 8
  start-page: 65
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib48
  article-title: Food security based marine life ecosystem for polar region conditioning: remote sensing analysis with machine learning model
  publication-title: Remote Sensing Earth Sys. Sci.
  doi: 10.1007/s41976-024-00172-6
– volume: 11
  start-page: 792
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib10
  article-title: Prediction of hypertension outcomes based on gain sequence forward tabu search feature selection and xgboost
  publication-title: Diagnostics
  doi: 10.3390/diagnostics11050792
– start-page: 1
  year: 2024
  ident: 10.1016/j.engappai.2025.112564_bib55
  article-title: Feature selection using automatic programming methods in hypertension risk prediction
– volume: 13
  start-page: 6263
  year: 2023
  ident: 10.1016/j.engappai.2025.112564_bib42
  article-title: Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-33525-0
– volume: 9
  year: 2022
  ident: 10.1016/j.engappai.2025.112564_bib28
  article-title: Development and validation of prediction models for hypertension risks: a cross-sectional study based on 4,287,407 participants
  publication-title: Front. Cardiovasc. Med.
  doi: 10.3389/fcvm.2022.928948
– volume: 95
  year: 2016
  ident: 10.1016/j.engappai.2025.112564_bib43
  article-title: Classification-based data mining for identification of risk patterns associated with hypertension in Middle Eastern population: a 12-year longitudinal study
  publication-title: Medicine
  doi: 10.1097/MD.0000000000004143
– year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib51
  article-title: Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers
  publication-title: J. Pharmaceut. Biomed. Anal.
  doi: 10.1016/j.jpba.2025.116761
– start-page: 609
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib57
  article-title: Diagnosis of heart disease with proposed hybrid model based on relief feature selection European
  publication-title: J. Sci. Technol.
– year: 1999
  ident: 10.1016/j.engappai.2025.112564_bib22
– volume: 8
  start-page: 734
  year: 2008
  ident: 10.1016/j.engappai.2025.112564_bib41
  article-title: Artificial neural networks based internet hypertension prediction tool development and validation
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.06.001
– volume: 2018
  year: 2018
  ident: 10.1016/j.engappai.2025.112564_bib24
  article-title: A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms
  publication-title: Mob. Inf. Syst.
– volume: 62
  start-page: 1015
  year: 2013
  ident: 10.1016/j.engappai.2025.112564_bib8
  article-title: Evaluating the Framingham hypertension risk prediction model in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study
  publication-title: Hypertension
  doi: 10.1161/HYPERTENSIONAHA.113.01539
– volume: 133
  year: 2024
  ident: 10.1016/j.engappai.2025.112564_bib17
  article-title: An accurate hypertension detection model based on a new odd-even pattern using ballistocardiograph signals
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2024.108306
– volume: 21
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib40
  article-title: Prediction of hypertension risks with feature selection and XGBoost
  publication-title: J. Mech. Med. Biol.
  doi: 10.1142/S0219519421400285
– volume: 2
  start-page: 18
  year: 2013
  ident: 10.1016/j.engappai.2025.112564_bib2
  article-title: Feature selection based on information gain
  publication-title: Int. J. Innovative Technol. Explor. Eng.
– volume: 22
  start-page: 445
  year: 2020
  ident: 10.1016/j.engappai.2025.112564_bib29
  article-title: Highly precise risk prediction model for new‐onset hypertension using artificial intelligence techniques
  publication-title: J. Clin. Hypertens.
  doi: 10.1111/jch.13759
– volume: 44
  start-page: 1483
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib38
  article-title: Identifying the predictive effectiveness of a genetic risk score for incident hypertension using machine learning methods among populations in rural China
  publication-title: Hypertens. Res.
  doi: 10.1038/s41440-021-00738-7
– volume: 1802
  start-page: 1268
  year: 2010
  ident: 10.1016/j.engappai.2025.112564_bib6
  article-title: Regulation of GPCR signaling in hypertension
  publication-title: Biochim. Biophys. Acta, Mol. Basis Dis.
  doi: 10.1016/j.bbadis.2010.01.005
– volume: 185
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib9
  article-title: Machine-learning tool for classifying pulmonary hypertension via expert reader-provided CT features: an educational resource for non-dedicated radiologists
  publication-title: Eur. J. Radiol.
  doi: 10.1016/j.ejrad.2025.111998
– volume: 4
  start-page: 375
  year: 2009
  ident: 10.1016/j.engappai.2025.112564_bib13
  article-title: ReliefMSS: a variation on a feature ranking ReliefF algorithm
  publication-title: Int. J. Bus. Intell. Data Min.
– start-page: 355
  year: 2012
  ident: 10.1016/j.engappai.2025.112564_bib30
  article-title: A feature selection method based on information gain and genetic Algorithm
– volume: 15
  start-page: E27
  year: 2018
  ident: 10.1016/j.engappai.2025.112564_bib47
  article-title: Hypertension in Florida: data from the OneFlorida clinical data research network
  publication-title: Prev. Chronic Dis.
  doi: 10.5888/pcd15.170332
– volume: 151
  start-page: 155
  year: 2003
  ident: 10.1016/j.engappai.2025.112564_bib14
  article-title: Consistency-based search in feature selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(03)00079-1
– start-page: 18
  year: 2016
  ident: 10.1016/j.engappai.2025.112564_bib37
  article-title: LASSO: a feature selection technique in predictive modeling for machine learning
– start-page: 1921
  year: 2024
  ident: 10.1016/j.engappai.2025.112564_bib58
  article-title: Application of the unbalanced ensemble algorithm for prognostic prediction outcomes of all-cause mortality in coronary heart disease patients comorbid with hypertension
  publication-title: Risk Manag. Healthc. Policy
  doi: 10.2147/RMHP.S472398
– volume: 7
  start-page: 174
  year: 2019
  ident: 10.1016/j.engappai.2025.112564_bib1
  article-title: A study on performance improvement of heart disease prediction by attribute selection methods
  publication-title: Academic Platform J. Eng. Sci.
– volume: 30
  year: 2017
  ident: 10.1016/j.engappai.2025.112564_bib31
  article-title: A unified approach to interpreting model predictions
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 30
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib59
  article-title: Application of machine learning algorithms in predicting new onset hypertension: a study based on the China health and nutrition survey
  publication-title: Environ. Health Prev. Med.
  doi: 10.1265/ehpm.24-00270
– volume: 12
  start-page: 50
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib44
  article-title: Machine learning-based prediction of elliptical double steel columns under compression loading
  publication-title: J. Big Data
  doi: 10.1186/s40537-025-01081-1
– volume: 51
  start-page: 1287
  year: 2013
  ident: 10.1016/j.engappai.2025.112564_bib4
  article-title: Using reduced rule base with expert system for the diagnosis of disease in hypertension
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-013-1096-8
– volume: 11
  year: 2024
  ident: 10.1016/j.engappai.2025.112564_bib34
  article-title: Machine learning analysis of emerging risk factors for early-onset hypertension in the Tlalpan 2020 cohort
  publication-title: Front. Cardiovasc. Med.
– start-page: 98
  year: 2000
  ident: 10.1016/j.engappai.2025.112564_bib15
  article-title: Consistency based feature selection
– volume: 420
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib16
  article-title: A hybridization of XGBoost machine learning model by Optuna hyperparameter tuning suite for cardiovascular disease classification with significant effect of outliers and heterogeneous training datasets
  publication-title: Int. J. Cardiol.
  doi: 10.1016/j.ijcard.2024.132757
– volume: 85
  start-page: 189
  year: 2018
  ident: 10.1016/j.engappai.2025.112564_bib49
  article-title: Relief-based feature selection: introduction and review
  publication-title: J. Biomed. Inf.
  doi: 10.1016/j.jbi.2018.07.014
– start-page: 82
  year: 2021
  ident: 10.1016/j.engappai.2025.112564_bib53
  article-title: Segmentation-based retinal image fusion for hypertension prediction
– volume: 24
  year: 2022
  ident: 10.1016/j.engappai.2025.112564_bib46
  article-title: Breast cancer prediction based on neural networks and extra tree classifier using feature ensemble learning. Measurement
  publication-title: Sensors
– volume: 259
  year: 2025
  ident: 10.1016/j.engappai.2025.112564_bib52
  article-title: Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers
  publication-title: J. Pharmaceut. Biomed. Anal.
  doi: 10.1016/j.jpba.2025.116761
– volume: 2018
  year: 2018
  ident: 10.1016/j.engappai.2025.112564_bib32
  article-title: A study of machine‐learning classifiers for hypertension based on radial pulse wave
  publication-title: BioMed Res. Int.
  doi: 10.1155/2018/2964816
– start-page: 45
  year: 2014
  ident: 10.1016/j.engappai.2025.112564_bib50
  article-title: A logistic regression and artificial neural network-based approach for chronic disease prediction: a case study of hypertension
– volume: 6
  start-page: 261
  year: 2024
  ident: 10.1016/j.engappai.2025.112564_bib27
  article-title: Predictive modeling of chronic kidney disease using extra tree classifier: a comparative analysis with traditional methods
  publication-title: J. Comp. Biomed. Inform.
SSID ssj0003846
Score 2.4457946
Snippet Hypertension is a type of disease that occurs after a serious increase in blood pressure. Due to the rapid increase in the disease, efforts for its early...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 112564
SubjectTerms Extreme gradient boosting
Feature selection
Framework
Hypertension disease
Machine learning
Title An integrated machine learning framework for the early diagnosis of hypertension disease
URI https://dx.doi.org/10.1016/j.engappai.2025.112564
Volume 162
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  issn: 0952-1976
  databaseCode: GBLVA
  dateStart: 20110101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0952-1976
  databaseCode: AIKHN
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0952-1976
  databaseCode: ACRLP
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  issn: 0952-1976
  databaseCode: .~1
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  issn: 0952-1976
  databaseCode: AKRWK
  dateStart: 19880301
  customDbUrl:
  isFulltext: true
  mediaType: online
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003846
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1VZWHhG_FZeWB1k8Z2ko5VRVWo6ABUdIuS2C6tRBq1ZeW3c05sKBISA1MUy5ai59zds_zuDuBG5LEpu6UpSzuCcoy4NFU6pqFk2oS3LK-y-B_G4XDC76di2oC-y4Uxskrr-2ufXnlrO-JZNL1yPveekByguaExC4zbXWEqfnIemS4G7Y9vmQeL62QdnEzN7K0s4UVbFbO0LNM5nhMDYbJpRMh_D1BbQWdwAHuWLZJe_UGH0FDFEexb5kisXa5xyDVncGPHMO0V5KsWhCRvlWhSEdslYka0U2URpK0EaSBRptYxkbX2br4mS01e8ZS6qjTuy4LYu5wTmAxun_tDatso0ByPRxsa8kxL2Um5iru58FluzDiPRBD5oWZKMWSMSqAhSpaFfpwh5cDIFjEdSaSHGO5PoVksC3UGBMkfwqm1CHykUb5MmeJhbG5HOyyTfnQOnsMuKetqGYmTkS0Sh3Zi0E5qtM-h6yBOfux7gi79j7UX_1h7CbvmzQhTguAKmpvVu7pGerHJWtX_04Kd3t1oODbP0ePL6BPB-c_W
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2VMsDCN6J8emBNk8Zxko5VRVWg7UIrdbOS2C6tRBq1ZeW3c05sKBISA6tjS9FL7u6d_O4O4J5lsW67pRyatJgTYMR1EqliJxRU6fCWZmUV_3AU9ifB05RNa9C1tTBaVml8f-XTS29tVlyDplvM5-4LkgM0NzRmhnG7zegO7AbMj3QG1vz41nnQuKrWwd2O3r5VJrxoynyWFEUyx0TRZ7qchoXB7xFqK-r0juDA0EXSqd7oGGoyP4FDQx2JMcw1LtnpDHbtFKadnHw1gxDkrVRNSmLGRMyIsrIsgryVIA8kUjc7JqIS383XZKnIK6apq1LkvsyJucw5g0nvYdztO2aOgpNhfrRxwiBVQrSSQMbtjHk003acRYiVFyoqJUXKKBlaoqBp6MUpcg4MbRFVkUB-iPH-HOr5MpcXQJD9IZxKMd9DHuWJhMogjPX1aIumwosa4FrseFG1y-BWR7bgFm2u0eYV2g1oW4j5jw_P0af_cfbyH2fvYK8_Hg744HH0fAX7-olWqfj-NdQ3q3d5g1xjk96W_9InQSXPyA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+machine+learning+framework+for+the+early+diagnosis+of+hypertension+disease&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Eldem%2C+Ay%C5%9Fe&rft.date=2025-12-22&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=162&rft_id=info:doi/10.1016%2Fj.engappai.2025.112564&rft.externalDocID=S0952197625025953
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon