An integrated machine learning framework for the early diagnosis of hypertension disease
Hypertension is a type of disease that occurs after a serious increase in blood pressure. Due to the rapid increase in the disease, efforts for its early diagnosis are increasing day by day. The use of artificial intelligence (AI) and machine learning (ML) methods in disease detection is of great im...
Saved in:
| Published in | Engineering applications of artificial intelligence Vol. 162; p. 112564 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
22.12.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0952-1976 |
| DOI | 10.1016/j.engappai.2025.112564 |
Cover
| Abstract | Hypertension is a type of disease that occurs after a serious increase in blood pressure. Due to the rapid increase in the disease, efforts for its early diagnosis are increasing day by day. The use of artificial intelligence (AI) and machine learning (ML) methods in disease detection is of great importance, especially in early diagnosis. In this study, a framework for the diagnosis of hypertension is developed. Behavioral Risk Factor Surveillance System (BRFSS) and Hypertension Risk Prediction (HRP) datasets with clinical and demographic information were used to diagnose hypertension. The problem of class imbalance in the datasets was solved by Random OverSampling method. In particular, the relationship between the attributes and the target variable was analyzed with Consistency-Based Filter, Recursive Feature Elimination with Cross-Validation (RFECV), Least Absolute Shrinkage and Selection Operator (LASSO), Information gain, Relief and Correlation-based feature selection methods and the features selected for the diagnosis of hypertension disease were taken into consideration. In the experiments, Extremely Randomized Trees (Extra Trees), Adaptive Boosting (Adaboost) and Extreme Gradient Boosting (XGBoost) machine learning methods were used in five fold cross-validation. In both datasets, the most successful results were obtained with the XGBoost algorithm. Then, for this algorithm, Random Search, Grid Search, Bayes Search and Genetic Algorithm were used for model hypertuning. For the BRFSS dataset with 87.96 % accuracy and for the HRP dataset with 97.67 % accuracy were obtained. The results are obtained with evaluation metrics that the medical world considers in evaluations, and the proposed framework for hypertension disease detection provides valuable insights for healthcare applications.
•Proposes MLHyDD, a framework to diagnose hypertension disease.•Alleviates the imbalanced classification problem and uses different feature selection methods.•Applies hyper-tuning by selecting the most successful machine learning technique with a self-supervised comparative strategy.•Extensive experiments demonstrate both the effectiveness and interpretability of the framework. |
|---|---|
| AbstractList | Hypertension is a type of disease that occurs after a serious increase in blood pressure. Due to the rapid increase in the disease, efforts for its early diagnosis are increasing day by day. The use of artificial intelligence (AI) and machine learning (ML) methods in disease detection is of great importance, especially in early diagnosis. In this study, a framework for the diagnosis of hypertension is developed. Behavioral Risk Factor Surveillance System (BRFSS) and Hypertension Risk Prediction (HRP) datasets with clinical and demographic information were used to diagnose hypertension. The problem of class imbalance in the datasets was solved by Random OverSampling method. In particular, the relationship between the attributes and the target variable was analyzed with Consistency-Based Filter, Recursive Feature Elimination with Cross-Validation (RFECV), Least Absolute Shrinkage and Selection Operator (LASSO), Information gain, Relief and Correlation-based feature selection methods and the features selected for the diagnosis of hypertension disease were taken into consideration. In the experiments, Extremely Randomized Trees (Extra Trees), Adaptive Boosting (Adaboost) and Extreme Gradient Boosting (XGBoost) machine learning methods were used in five fold cross-validation. In both datasets, the most successful results were obtained with the XGBoost algorithm. Then, for this algorithm, Random Search, Grid Search, Bayes Search and Genetic Algorithm were used for model hypertuning. For the BRFSS dataset with 87.96 % accuracy and for the HRP dataset with 97.67 % accuracy were obtained. The results are obtained with evaluation metrics that the medical world considers in evaluations, and the proposed framework for hypertension disease detection provides valuable insights for healthcare applications.
•Proposes MLHyDD, a framework to diagnose hypertension disease.•Alleviates the imbalanced classification problem and uses different feature selection methods.•Applies hyper-tuning by selecting the most successful machine learning technique with a self-supervised comparative strategy.•Extensive experiments demonstrate both the effectiveness and interpretability of the framework. |
| ArticleNumber | 112564 |
| Author | Eldem, Ayşe |
| Author_xml | – sequence: 1 givenname: Ayşe orcidid: 0000-0002-5561-1568 surname: Eldem fullname: Eldem, Ayşe email: ayseeldem@kmu.edu.tr organization: Department of Computer Engineering, Karamanoğlu Mehmetbey University, Karaman, Turkey |
| BookMark | eNqFkM1KAzEUhbOoYFt9BckLzHiTzGRmdpbiHwhuFNyFNLmZprbJkAxK394p1bWrszicj8O3ILMQAxJyw6BkwOTtrsTQ62HQvuTA65IxXstqRubQ1bxgXSMvySLnHQCItpJz8rEK1IcR-6RHtPSgzdYHpHvUKfjQU5f0Ab9j-qQuJjpukU7N_kit132I2WcaHd0eB0wjhuxjmJqMOuMVuXB6n_H6N5fk_eH-bf1UvLw-Pq9XL4Xhko2FrDbOWqYrbDtTgzCCtcI0NW9AOoEogAPWnRRWbCS0Gwa8YqIRrrFMdJKJJZFnrkkx54RODckfdDoqBurkRO3UnxN1cqLOTqbh3XmI07svj0ll4zEYtD6hGZWN_j_ED7Qqcj8 |
| Cites_doi | 10.1097/MD.0000000000027600 10.1007/s00521-024-10724-y 10.3390/technologies13030088 10.1161/HYPERTENSIONAHA.123.22347 10.4258/hir.2025.31.1.16 10.7326/0003-4819-148-2-200801150-00005 10.1016/j.medengphy.2011.11.010 10.1109/ACCESS.2021.3053759 10.3906/elk-2104-183 10.3389/fcvm.2024.1434418 10.3389/fgene.2021.768747 10.1155/ijhy/4011397 10.3390/app9061215 10.1007/s41976-024-00172-6 10.3390/diagnostics11050792 10.1038/s41598-023-33525-0 10.3389/fcvm.2022.928948 10.1097/MD.0000000000004143 10.1016/j.jpba.2025.116761 10.1016/j.asoc.2007.06.001 10.1161/HYPERTENSIONAHA.113.01539 10.1016/j.engappai.2024.108306 10.1142/S0219519421400285 10.1111/jch.13759 10.1038/s41440-021-00738-7 10.1016/j.bbadis.2010.01.005 10.1016/j.ejrad.2025.111998 10.5888/pcd15.170332 10.1016/S0004-3702(03)00079-1 10.2147/RMHP.S472398 10.1265/ehpm.24-00270 10.1186/s40537-025-01081-1 10.1007/s11517-013-1096-8 10.1016/j.ijcard.2024.132757 10.1016/j.jbi.2018.07.014 10.1155/2018/2964816 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.engappai.2025.112564 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Computer Science |
| ExternalDocumentID | 10_1016_j_engappai_2025_112564 S0952197625025953 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SST SSV SSZ T5K TN5 ~G- ~HD 29G AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ LG9 LY7 M41 R2- SBC SET UHS WUQ ZMT |
| ID | FETCH-LOGICAL-c261t-64bfdd1a4e89c503c3183c752706f3ee3020e5963d3b608b10241373f7d139613 |
| IEDL.DBID | .~1 |
| ISSN | 0952-1976 |
| IngestDate | Thu Oct 16 04:42:37 EDT 2025 Sat Oct 25 17:31:07 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hypertension disease Feature selection Extreme gradient boosting Framework Machine learning |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c261t-64bfdd1a4e89c503c3183c752706f3ee3020e5963d3b608b10241373f7d139613 |
| ORCID | 0000-0002-5561-1568 |
| ParticipantIDs | crossref_primary_10_1016_j_engappai_2025_112564 elsevier_sciencedirect_doi_10_1016_j_engappai_2025_112564 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-22 |
| PublicationDateYYYYMMDD | 2025-12-22 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-22 day: 22 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering applications of artificial intelligence |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dogan, Barua, Tuncer, Acharya (bib17) 2024; 133 Chang, Liu, Xiao, Xu, Zhou, Lu, Cheng (bib11) 2019; 9 Srikanth, Nimma, Lalitha, Jangir, Kumari (bib48) 2025; 8 Mallick, Panda (bib33) 2024 Azhagusundari, Thanamani (bib2) 2013; 2 Cereser, Borghesi, De Martino, Nadarevic, Cicciò, Agati, Ciolli, Collini, Patruno, Isola (bib9) 2025; 185 Xie, Xu, Guo, Tian (bib53) 2021 Xu, Liu, Wang, Fan, Luo, Zhan, Tao, You (bib54) 2021; 100 Ji, Zhang, Cheng, Wang, Zhou (bib28) 2022; 9 Yılmaz, Sümer (bib57) 2021 Baby, Devaraj, Hemanth (bib3) 2021; 29 Wu, Li, Dong, Deng, Zhao, Zhou, Xian, Yang, Yi, Yang, Hu, Li, Chen, Liu (bib52) 2025; 259 Wu, Li, Dong, Deng, Zhao, Zhou, Xian, Yang, Yi, Yang (bib51) 2025 Ramezankhani, Kabir, Pournik, Azizi, Hadaegh (bib43) 2016; 95 Martínez-García, Gutiérrez-Esparza, Márquez, Amezcua-Guerra, Hernández-Lemus (bib35) 2025; 11 Polak, Mendyk (bib41) 2008; 8 Raihan, Khan, Kee, Nahid (bib42) 2023; 13 Sharma, Kumar, Jain (bib46) 2022; 24 Urbanowicz, Meeker, La Cava, Olson, Moore (bib49) 2018; 85 Chang, Ji, Xiao, Zhang, Chen, Liu, Zhou (bib10) 2021; 11 Fonti, Belitser (bib20) 2017; 30 Hall (bib22) 1999 Yang, Bao, Wang (bib56) 2021; 12 Carson, Lewis, Jacobs, Peralta, Steffen, Bower, Person, Muntner (bib8) 2013; 62 Zhang, Xia, Wang, Pan, Zhang, Wang (bib59) 2025; 30 Dash, Liu, Motoda (bib15) 2000 Niu, Wang, Zhang, Tu, Liu, Hou, Huo, Mao, Wang, Bie (bib38) 2021; 44 Başçiftçi, Eldem (bib4) 2013; 51 Lei (bib30) 2012 Peng, Xu, Ma, Wang (bib40) 2021; 21 Muflikhah, Fatyanosa, Widodo, Perdana, Ratnawati (bib36) 2025; 31 (bib5) 2024 Kanegae, Suzuki, Fukatani, Ito, Harada, Kario (bib29) 2020; 22 Smith, McAuliffe, Hall, McDonough, Gurka, Robinson, Sacco, Pepine, Shenkman, Cooper-DeHoff (bib47) 2018; 15 Hamrahian, Falkner (bib23) 2017 Akyol, Atila (bib1) 2019; 7 Imran, Aslam, Ahmad, Mazhar, Bhatti, Abid (bib27) 2024; 6 Luo, Cui, Hu, Tu, Liu, Jiao, Zeng, Jing, Qiao, Ma (bib32) 2018; 2018 Lundberg, Lee (bib31) 2017; 30 Ren, Isleem, Almoghaye, Hamed, Jangir, Arpita, Tejani, Ezugwu, Soliman (bib44) 2025; 12 Wang, An, Xia, Li, Chen (bib50) 2014 Donmez, Kutlu, Mansour, Yildiz (bib18) 2025; 37 Zan, Dong, Yang, Yan, He, Tian, Zhang (bib58) 2024 Martínez-García, Gutiérrez-Esparza, Márquez, Amezcua-Guerra, Hernández-Lemus (bib34) 2024; 11 Brinks, Eckhart (bib6) 2010; 1802 Dash, Liu (bib14) 2003; 151 Dhanka, Maini (bib16) 2025; 420 Parikh, Pencina, Wang, Benjamin, Lanier, Levy, D'Agostino Sr, Kannel, Vasan (bib39) 2008; 148 Chikhi, Benhammada (bib13) 2009; 4 Imani, Beikmohammadi, Arabnia (bib26) 2025; 13 Budak (bib7) 2018; 22 Yağmurcu, Arslan (bib55) 2024 Haq, Li, Memon, Nazir, Sun (bib24) 2018; 2018 Dunn, Ali, Patel, Banerjee (bib19) 2025; 82 Cheraghi, Doosti-Irani, Sohrabi, Doosti-Irani (bib12) 2025; 2025 (bib25) 2024 Scalzo, Hamilton, Asgari, Kim, Hu (bib45) 2012; 34 Ghosh, Azam, Jonkman, Karim, Shamrat, Ignatious, Shultana, Beeravolu, Boer (bib21) 2021; 9 Muthukrishnan, Rohini (bib37) 2016 Akyol (10.1016/j.engappai.2025.112564_bib1) 2019; 7 Luo (10.1016/j.engappai.2025.112564_bib32) 2018; 2018 Haq (10.1016/j.engappai.2025.112564_bib24) 2018; 2018 Chikhi (10.1016/j.engappai.2025.112564_bib13) 2009; 4 Hamrahian (10.1016/j.engappai.2025.112564_bib23) 2017 Chang (10.1016/j.engappai.2025.112564_bib10) 2021; 11 Martínez-García (10.1016/j.engappai.2025.112564_bib35) 2025; 11 Parikh (10.1016/j.engappai.2025.112564_bib39) 2008; 148 Baby (10.1016/j.engappai.2025.112564_bib3) 2021; 29 Peng (10.1016/j.engappai.2025.112564_bib40) 2021; 21 Dogan (10.1016/j.engappai.2025.112564_bib17) 2024; 133 Dunn (10.1016/j.engappai.2025.112564_bib19) 2025; 82 Cheraghi (10.1016/j.engappai.2025.112564_bib12) 2025; 2025 Niu (10.1016/j.engappai.2025.112564_bib38) 2021; 44 Lundberg (10.1016/j.engappai.2025.112564_bib31) 2017; 30 Zan (10.1016/j.engappai.2025.112564_bib58) 2024 Wu (10.1016/j.engappai.2025.112564_bib52) 2025; 259 Ramezankhani (10.1016/j.engappai.2025.112564_bib43) 2016; 95 Chang (10.1016/j.engappai.2025.112564_bib11) 2019; 9 Mallick (10.1016/j.engappai.2025.112564_bib33) 2024 Ren (10.1016/j.engappai.2025.112564_bib44) 2025; 12 Carson (10.1016/j.engappai.2025.112564_bib8) 2013; 62 Donmez (10.1016/j.engappai.2025.112564_bib18) 2025; 37 Ghosh (10.1016/j.engappai.2025.112564_bib21) 2021; 9 Lei (10.1016/j.engappai.2025.112564_bib30) 2012 Sharma (10.1016/j.engappai.2025.112564_bib46) 2022; 24 Smith (10.1016/j.engappai.2025.112564_bib47) 2018; 15 Azhagusundari (10.1016/j.engappai.2025.112564_bib2) 2013; 2 Dhanka (10.1016/j.engappai.2025.112564_bib16) 2025; 420 Dash (10.1016/j.engappai.2025.112564_bib14) 2003; 151 Ji (10.1016/j.engappai.2025.112564_bib28) 2022; 9 Budak (10.1016/j.engappai.2025.112564_bib7) 2018; 22 Imran (10.1016/j.engappai.2025.112564_bib27) 2024; 6 Srikanth (10.1016/j.engappai.2025.112564_bib48) 2025; 8 Cereser (10.1016/j.engappai.2025.112564_bib9) 2025; 185 Fonti (10.1016/j.engappai.2025.112564_bib20) 2017; 30 Zhang (10.1016/j.engappai.2025.112564_bib59) 2025; 30 Başçiftçi (10.1016/j.engappai.2025.112564_bib4) 2013; 51 Yağmurcu (10.1016/j.engappai.2025.112564_bib55) 2024 Muflikhah (10.1016/j.engappai.2025.112564_bib36) 2025; 31 Hall (10.1016/j.engappai.2025.112564_bib22) 1999 Yılmaz (10.1016/j.engappai.2025.112564_bib57) 2021 Yang (10.1016/j.engappai.2025.112564_bib56) 2021; 12 Brinks (10.1016/j.engappai.2025.112564_bib6) 2010; 1802 Martínez-García (10.1016/j.engappai.2025.112564_bib34) 2024; 11 Kanegae (10.1016/j.engappai.2025.112564_bib29) 2020; 22 Xie (10.1016/j.engappai.2025.112564_bib53) 2021 Raihan (10.1016/j.engappai.2025.112564_bib42) 2023; 13 Wang (10.1016/j.engappai.2025.112564_bib50) 2014 Imani (10.1016/j.engappai.2025.112564_bib26) 2025; 13 Xu (10.1016/j.engappai.2025.112564_bib54) 2021; 100 Polak (10.1016/j.engappai.2025.112564_bib41) 2008; 8 Muthukrishnan (10.1016/j.engappai.2025.112564_bib37) 2016 Dash (10.1016/j.engappai.2025.112564_bib15) 2000 Wu (10.1016/j.engappai.2025.112564_bib51) 2025 Urbanowicz (10.1016/j.engappai.2025.112564_bib49) 2018; 85 Scalzo (10.1016/j.engappai.2025.112564_bib45) 2012; 34 |
| References_xml | – year: 2024 ident: bib25 article-title: HRP_Dataset – volume: 1802 start-page: 1268 year: 2010 end-page: 1275 ident: bib6 article-title: Regulation of GPCR signaling in hypertension publication-title: Biochim. Biophys. Acta, Mol. Basis Dis. – volume: 6 start-page: 261 year: 2024 end-page: 271 ident: bib27 article-title: Predictive modeling of chronic kidney disease using extra tree classifier: a comparative analysis with traditional methods publication-title: J. Comp. Biomed. Inform. – volume: 29 start-page: 2742 year: 2021 end-page: 2757 ident: bib3 article-title: Leukocyte classification based on feature selection using extra trees classifier: atransfer learning approach publication-title: Turk. J. Electr. Eng. Comput. Sci. – volume: 9 start-page: 1215 year: 2019 ident: bib11 article-title: Probability analysis of hypertension-related symptoms based on XGBoost and clustering algorithm publication-title: Appl. Sci. – volume: 9 year: 2022 ident: bib28 article-title: Development and validation of prediction models for hypertension risks: a cross-sectional study based on 4,287,407 participants publication-title: Front. Cardiovasc. Med. – start-page: 1921 year: 2024 end-page: 1936 ident: bib58 article-title: Application of the unbalanced ensemble algorithm for prognostic prediction outcomes of all-cause mortality in coronary heart disease patients comorbid with hypertension publication-title: Risk Manag. Healthc. Policy – volume: 37 start-page: 4053 year: 2025 end-page: 4074 ident: bib18 article-title: Explainable AI in action: a comparative analysis of hypertension risk factors using SHAP and LIME publication-title: Neural Comput. Appl. – start-page: 307 year: 2017 end-page: 325 ident: bib23 article-title: Hypertension in chronic kidney disease publication-title: Hypertension: from Basic Research to Clinical Practice – year: 1999 ident: bib22 article-title: Correlation-Based Feature Selection for Machine Learning – volume: 22 start-page: 21 year: 2018 end-page: 31 ident: bib7 article-title: Feature selection methods and a new approach Süleyman Demirel University publication-title: J. Nat. Appl. Sci. – volume: 7 start-page: 174 year: 2019 end-page: 179 ident: bib1 article-title: A study on performance improvement of heart disease prediction by attribute selection methods publication-title: Academic Platform J. Eng. Sci. – volume: 185 year: 2025 ident: bib9 article-title: Machine-learning tool for classifying pulmonary hypertension via expert reader-provided CT features: an educational resource for non-dedicated radiologists publication-title: Eur. J. Radiol. – volume: 420 year: 2025 ident: bib16 article-title: A hybridization of XGBoost machine learning model by Optuna hyperparameter tuning suite for cardiovascular disease classification with significant effect of outliers and heterogeneous training datasets publication-title: Int. J. Cardiol. – volume: 12 year: 2021 ident: bib56 article-title: Hypertension-related drug activity identification based on novel ensemble method publication-title: Front. Genet. – volume: 2018 year: 2018 ident: bib24 article-title: A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms publication-title: Mob. Inf. Syst. – volume: 13 start-page: 88 year: 2025 ident: bib26 article-title: Comprehensive analysis of random forest and XGBoost performance with SMOTE, ADASYN, and GNUS under varying imbalance levels publication-title: Technologies – year: 2025 ident: bib51 article-title: Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers publication-title: J. Pharmaceut. Biomed. Anal. – start-page: 18 year: 2016 end-page: 20 ident: bib37 article-title: LASSO: a feature selection technique in predictive modeling for machine learning publication-title: 2016 IEEE International Conference on Advances in Computer Applications (ICACA) – volume: 8 start-page: 65 year: 2025 end-page: 73 ident: bib48 article-title: Food security based marine life ecosystem for polar region conditioning: remote sensing analysis with machine learning model publication-title: Remote Sensing Earth Sys. Sci. – start-page: 1 year: 2024 end-page: 6 ident: bib55 article-title: Feature selection using automatic programming methods in hypertension risk prediction publication-title: 2024 8th International Artificial Intelligence and Data Processing Symposium (IDAP) – volume: 4 start-page: 375 year: 2009 end-page: 390 ident: bib13 article-title: ReliefMSS: a variation on a feature ranking ReliefF algorithm publication-title: Int. J. Bus. Intell. Data Min. – volume: 30 start-page: 1 year: 2017 end-page: 25 ident: bib20 article-title: Feature selection using lasso publication-title: VU Amsterdam Res. Paper Business Anal. – volume: 12 start-page: 50 year: 2025 ident: bib44 article-title: Machine learning-based prediction of elliptical double steel columns under compression loading publication-title: J. Big Data – volume: 151 start-page: 155 year: 2003 end-page: 176 ident: bib14 article-title: Consistency-based search in feature selection publication-title: Artif. Intell. – volume: 21 year: 2021 ident: bib40 article-title: Prediction of hypertension risks with feature selection and XGBoost publication-title: J. Mech. Med. Biol. – volume: 30 year: 2025 ident: bib59 article-title: Application of machine learning algorithms in predicting new onset hypertension: a study based on the China health and nutrition survey publication-title: Environ. Health Prev. Med. – volume: 9 start-page: 19304 year: 2021 end-page: 19326 ident: bib21 article-title: Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques publication-title: IEEE Access – volume: 2 start-page: 18 year: 2013 end-page: 21 ident: bib2 article-title: Feature selection based on information gain publication-title: Int. J. Innovative Technol. Explor. Eng. – volume: 85 start-page: 189 year: 2018 end-page: 203 ident: bib49 article-title: Relief-based feature selection: introduction and review publication-title: J. Biomed. Inf. – start-page: 98 year: 2000 end-page: 109 ident: bib15 article-title: Consistency based feature selection publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining – volume: 95 year: 2016 ident: bib43 article-title: Classification-based data mining for identification of risk patterns associated with hypertension in Middle Eastern population: a 12-year longitudinal study publication-title: Medicine – year: 2024 ident: bib5 article-title: BRFSS_Dataset – volume: 31 start-page: 16 year: 2025 end-page: 22 ident: bib36 article-title: Feature selection for hypertension risk prediction using XGBoost on single nucleotide polymorphism data publication-title: Healthcare Inform. Res. – volume: 2025 year: 2025 ident: bib12 article-title: Predicting factors associated with uncontrolled hypertension using machine learning methods: a cross‐sectional study in Western Iran publication-title: Int. J. Hypertens. – volume: 148 start-page: 102 year: 2008 end-page: 110 ident: bib39 article-title: A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study publication-title: Ann. Intern. Med. – volume: 8 start-page: 734 year: 2008 end-page: 739 ident: bib41 article-title: Artificial neural networks based internet hypertension prediction tool development and validation publication-title: Appl. Soft Comput. – volume: 2018 year: 2018 ident: bib32 article-title: A study of machine‐learning classifiers for hypertension based on radial pulse wave publication-title: BioMed Res. Int. – volume: 51 start-page: 1287 year: 2013 end-page: 1293 ident: bib4 article-title: Using reduced rule base with expert system for the diagnosis of disease in hypertension publication-title: Med. Biol. Eng. Comput. – volume: 100 year: 2021 ident: bib54 article-title: Establishment and verification of a nomogram prediction model of hypertension risk in Xinjiang Kazakhs publication-title: Medicine – volume: 82 start-page: 26 year: 2025 end-page: 35 ident: bib19 article-title: Brief review and primer of key terminology for artificial intelligence and machine learning in hypertension publication-title: Hypertension – volume: 44 start-page: 1483 year: 2021 end-page: 1491 ident: bib38 article-title: Identifying the predictive effectiveness of a genetic risk score for incident hypertension using machine learning methods among populations in rural China publication-title: Hypertens. Res. – start-page: 45 year: 2014 end-page: 52 ident: bib50 article-title: A logistic regression and artificial neural network-based approach for chronic disease prediction: a case study of hypertension publication-title: 2014 IEEE International Conference on Internet of Things (Ithings), and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (Cpscom) – volume: 259 year: 2025 ident: bib52 article-title: Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers publication-title: J. Pharmaceut. Biomed. Anal. – volume: 24 year: 2022 ident: bib46 article-title: Breast cancer prediction based on neural networks and extra tree classifier using feature ensemble learning. Measurement publication-title: Sensors – volume: 34 start-page: 1058 year: 2012 end-page: 1065 ident: bib45 article-title: Intracranial hypertension prediction using extremely randomized decision trees publication-title: Med. Eng. Phys. – start-page: 355 year: 2012 end-page: 358 ident: bib30 article-title: A feature selection method based on information gain and genetic Algorithm publication-title: 2012 International Conference on Computer Science and Electronics Engineering – start-page: 1 year: 2024 end-page: 7 ident: bib33 article-title: Predictive modeling of mental illness in technical workplace: a feature selection and classification approach publication-title: 2024 OPJU Int. Technol. Confer. (OTCON) Smart Comput Innov Adv Industry 4.0 – volume: 13 start-page: 6263 year: 2023 ident: bib42 article-title: Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP publication-title: Sci. Rep. – volume: 15 start-page: E27 year: 2018 ident: bib47 article-title: Hypertension in Florida: data from the OneFlorida clinical data research network publication-title: Prev. Chronic Dis. – volume: 30 year: 2017 ident: bib31 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 62 start-page: 1015 year: 2013 end-page: 1020 ident: bib8 article-title: Evaluating the Framingham hypertension risk prediction model in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study publication-title: Hypertension – start-page: 609 year: 2021 end-page: 615 ident: bib57 article-title: Diagnosis of heart disease with proposed hybrid model based on relief feature selection European publication-title: J. Sci. Technol. – volume: 22 start-page: 445 year: 2020 end-page: 450 ident: bib29 article-title: Highly precise risk prediction model for new‐onset hypertension using artificial intelligence techniques publication-title: J. Clin. Hypertens. – volume: 11 start-page: 792 year: 2021 ident: bib10 article-title: Prediction of hypertension outcomes based on gain sequence forward tabu search feature selection and xgboost publication-title: Diagnostics – volume: 11 year: 2024 ident: bib34 article-title: Machine learning analysis of emerging risk factors for early-onset hypertension in the Tlalpan 2020 cohort publication-title: Front. Cardiovasc. Med. – volume: 133 year: 2024 ident: bib17 article-title: An accurate hypertension detection model based on a new odd-even pattern using ballistocardiograph signals publication-title: Eng. Appl. Artif. Intell. – volume: 11 year: 2025 ident: bib35 article-title: Machine learning analysis of emerging risk factors for early-onset hypertension in the Tlalpan 2020 cohort publication-title: Front. Cardiovasc. Med. – start-page: 82 year: 2021 end-page: 88 ident: bib53 article-title: Segmentation-based retinal image fusion for hypertension prediction publication-title: Proceedings of the 7th International Conference on Communication and Information Processing – volume: 100 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib54 article-title: Establishment and verification of a nomogram prediction model of hypertension risk in Xinjiang Kazakhs publication-title: Medicine doi: 10.1097/MD.0000000000027600 – volume: 37 start-page: 4053 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib18 article-title: Explainable AI in action: a comparative analysis of hypertension risk factors using SHAP and LIME publication-title: Neural Comput. Appl. doi: 10.1007/s00521-024-10724-y – volume: 13 start-page: 88 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib26 article-title: Comprehensive analysis of random forest and XGBoost performance with SMOTE, ADASYN, and GNUS under varying imbalance levels publication-title: Technologies doi: 10.3390/technologies13030088 – volume: 82 start-page: 26 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib19 article-title: Brief review and primer of key terminology for artificial intelligence and machine learning in hypertension publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.123.22347 – volume: 31 start-page: 16 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib36 article-title: Feature selection for hypertension risk prediction using XGBoost on single nucleotide polymorphism data publication-title: Healthcare Inform. Res. doi: 10.4258/hir.2025.31.1.16 – start-page: 1 year: 2024 ident: 10.1016/j.engappai.2025.112564_bib33 article-title: Predictive modeling of mental illness in technical workplace: a feature selection and classification approach publication-title: 2024 OPJU Int. Technol. Confer. (OTCON) Smart Comput Innov Adv Industry 4.0 – volume: 148 start-page: 102 year: 2008 ident: 10.1016/j.engappai.2025.112564_bib39 article-title: A risk score for predicting near-term incidence of hypertension: the Framingham Heart Study publication-title: Ann. Intern. Med. doi: 10.7326/0003-4819-148-2-200801150-00005 – volume: 30 start-page: 1 year: 2017 ident: 10.1016/j.engappai.2025.112564_bib20 article-title: Feature selection using lasso publication-title: VU Amsterdam Res. Paper Business Anal. – volume: 22 start-page: 21 year: 2018 ident: 10.1016/j.engappai.2025.112564_bib7 article-title: Feature selection methods and a new approach Süleyman Demirel University publication-title: J. Nat. Appl. Sci. – start-page: 307 year: 2017 ident: 10.1016/j.engappai.2025.112564_bib23 article-title: Hypertension in chronic kidney disease – volume: 34 start-page: 1058 year: 2012 ident: 10.1016/j.engappai.2025.112564_bib45 article-title: Intracranial hypertension prediction using extremely randomized decision trees publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.11.010 – volume: 9 start-page: 19304 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib21 article-title: Efficient prediction of cardiovascular disease using machine learning algorithms with relief and LASSO feature selection techniques publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053759 – volume: 29 start-page: 2742 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib3 article-title: Leukocyte classification based on feature selection using extra trees classifier: atransfer learning approach publication-title: Turk. J. Electr. Eng. Comput. Sci. doi: 10.3906/elk-2104-183 – volume: 11 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib35 article-title: Machine learning analysis of emerging risk factors for early-onset hypertension in the Tlalpan 2020 cohort publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2024.1434418 – volume: 12 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib56 article-title: Hypertension-related drug activity identification based on novel ensemble method publication-title: Front. Genet. doi: 10.3389/fgene.2021.768747 – volume: 2025 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib12 article-title: Predicting factors associated with uncontrolled hypertension using machine learning methods: a cross‐sectional study in Western Iran publication-title: Int. J. Hypertens. doi: 10.1155/ijhy/4011397 – volume: 9 start-page: 1215 year: 2019 ident: 10.1016/j.engappai.2025.112564_bib11 article-title: Probability analysis of hypertension-related symptoms based on XGBoost and clustering algorithm publication-title: Appl. Sci. doi: 10.3390/app9061215 – volume: 8 start-page: 65 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib48 article-title: Food security based marine life ecosystem for polar region conditioning: remote sensing analysis with machine learning model publication-title: Remote Sensing Earth Sys. Sci. doi: 10.1007/s41976-024-00172-6 – volume: 11 start-page: 792 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib10 article-title: Prediction of hypertension outcomes based on gain sequence forward tabu search feature selection and xgboost publication-title: Diagnostics doi: 10.3390/diagnostics11050792 – start-page: 1 year: 2024 ident: 10.1016/j.engappai.2025.112564_bib55 article-title: Feature selection using automatic programming methods in hypertension risk prediction – volume: 13 start-page: 6263 year: 2023 ident: 10.1016/j.engappai.2025.112564_bib42 article-title: Detection of the chronic kidney disease using XGBoost classifier and explaining the influence of the attributes on the model using SHAP publication-title: Sci. Rep. doi: 10.1038/s41598-023-33525-0 – volume: 9 year: 2022 ident: 10.1016/j.engappai.2025.112564_bib28 article-title: Development and validation of prediction models for hypertension risks: a cross-sectional study based on 4,287,407 participants publication-title: Front. Cardiovasc. Med. doi: 10.3389/fcvm.2022.928948 – volume: 95 year: 2016 ident: 10.1016/j.engappai.2025.112564_bib43 article-title: Classification-based data mining for identification of risk patterns associated with hypertension in Middle Eastern population: a 12-year longitudinal study publication-title: Medicine doi: 10.1097/MD.0000000000004143 – year: 2025 ident: 10.1016/j.engappai.2025.112564_bib51 article-title: Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers publication-title: J. Pharmaceut. Biomed. Anal. doi: 10.1016/j.jpba.2025.116761 – start-page: 609 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib57 article-title: Diagnosis of heart disease with proposed hybrid model based on relief feature selection European publication-title: J. Sci. Technol. – year: 1999 ident: 10.1016/j.engappai.2025.112564_bib22 – volume: 8 start-page: 734 year: 2008 ident: 10.1016/j.engappai.2025.112564_bib41 article-title: Artificial neural networks based internet hypertension prediction tool development and validation publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.06.001 – volume: 2018 year: 2018 ident: 10.1016/j.engappai.2025.112564_bib24 article-title: A hybrid intelligent system framework for the prediction of heart disease using machine learning algorithms publication-title: Mob. Inf. Syst. – volume: 62 start-page: 1015 year: 2013 ident: 10.1016/j.engappai.2025.112564_bib8 article-title: Evaluating the Framingham hypertension risk prediction model in young adults: the Coronary Artery Risk Development in Young Adults (CARDIA) study publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.113.01539 – volume: 133 year: 2024 ident: 10.1016/j.engappai.2025.112564_bib17 article-title: An accurate hypertension detection model based on a new odd-even pattern using ballistocardiograph signals publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2024.108306 – volume: 21 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib40 article-title: Prediction of hypertension risks with feature selection and XGBoost publication-title: J. Mech. Med. Biol. doi: 10.1142/S0219519421400285 – volume: 2 start-page: 18 year: 2013 ident: 10.1016/j.engappai.2025.112564_bib2 article-title: Feature selection based on information gain publication-title: Int. J. Innovative Technol. Explor. Eng. – volume: 22 start-page: 445 year: 2020 ident: 10.1016/j.engappai.2025.112564_bib29 article-title: Highly precise risk prediction model for new‐onset hypertension using artificial intelligence techniques publication-title: J. Clin. Hypertens. doi: 10.1111/jch.13759 – volume: 44 start-page: 1483 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib38 article-title: Identifying the predictive effectiveness of a genetic risk score for incident hypertension using machine learning methods among populations in rural China publication-title: Hypertens. Res. doi: 10.1038/s41440-021-00738-7 – volume: 1802 start-page: 1268 year: 2010 ident: 10.1016/j.engappai.2025.112564_bib6 article-title: Regulation of GPCR signaling in hypertension publication-title: Biochim. Biophys. Acta, Mol. Basis Dis. doi: 10.1016/j.bbadis.2010.01.005 – volume: 185 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib9 article-title: Machine-learning tool for classifying pulmonary hypertension via expert reader-provided CT features: an educational resource for non-dedicated radiologists publication-title: Eur. J. Radiol. doi: 10.1016/j.ejrad.2025.111998 – volume: 4 start-page: 375 year: 2009 ident: 10.1016/j.engappai.2025.112564_bib13 article-title: ReliefMSS: a variation on a feature ranking ReliefF algorithm publication-title: Int. J. Bus. Intell. Data Min. – start-page: 355 year: 2012 ident: 10.1016/j.engappai.2025.112564_bib30 article-title: A feature selection method based on information gain and genetic Algorithm – volume: 15 start-page: E27 year: 2018 ident: 10.1016/j.engappai.2025.112564_bib47 article-title: Hypertension in Florida: data from the OneFlorida clinical data research network publication-title: Prev. Chronic Dis. doi: 10.5888/pcd15.170332 – volume: 151 start-page: 155 year: 2003 ident: 10.1016/j.engappai.2025.112564_bib14 article-title: Consistency-based search in feature selection publication-title: Artif. Intell. doi: 10.1016/S0004-3702(03)00079-1 – start-page: 18 year: 2016 ident: 10.1016/j.engappai.2025.112564_bib37 article-title: LASSO: a feature selection technique in predictive modeling for machine learning – start-page: 1921 year: 2024 ident: 10.1016/j.engappai.2025.112564_bib58 article-title: Application of the unbalanced ensemble algorithm for prognostic prediction outcomes of all-cause mortality in coronary heart disease patients comorbid with hypertension publication-title: Risk Manag. Healthc. Policy doi: 10.2147/RMHP.S472398 – volume: 7 start-page: 174 year: 2019 ident: 10.1016/j.engappai.2025.112564_bib1 article-title: A study on performance improvement of heart disease prediction by attribute selection methods publication-title: Academic Platform J. Eng. Sci. – volume: 30 year: 2017 ident: 10.1016/j.engappai.2025.112564_bib31 article-title: A unified approach to interpreting model predictions publication-title: Adv. Neural Inf. Process. Syst. – volume: 30 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib59 article-title: Application of machine learning algorithms in predicting new onset hypertension: a study based on the China health and nutrition survey publication-title: Environ. Health Prev. Med. doi: 10.1265/ehpm.24-00270 – volume: 12 start-page: 50 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib44 article-title: Machine learning-based prediction of elliptical double steel columns under compression loading publication-title: J. Big Data doi: 10.1186/s40537-025-01081-1 – volume: 51 start-page: 1287 year: 2013 ident: 10.1016/j.engappai.2025.112564_bib4 article-title: Using reduced rule base with expert system for the diagnosis of disease in hypertension publication-title: Med. Biol. Eng. Comput. doi: 10.1007/s11517-013-1096-8 – volume: 11 year: 2024 ident: 10.1016/j.engappai.2025.112564_bib34 article-title: Machine learning analysis of emerging risk factors for early-onset hypertension in the Tlalpan 2020 cohort publication-title: Front. Cardiovasc. Med. – start-page: 98 year: 2000 ident: 10.1016/j.engappai.2025.112564_bib15 article-title: Consistency based feature selection – volume: 420 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib16 article-title: A hybridization of XGBoost machine learning model by Optuna hyperparameter tuning suite for cardiovascular disease classification with significant effect of outliers and heterogeneous training datasets publication-title: Int. J. Cardiol. doi: 10.1016/j.ijcard.2024.132757 – volume: 85 start-page: 189 year: 2018 ident: 10.1016/j.engappai.2025.112564_bib49 article-title: Relief-based feature selection: introduction and review publication-title: J. Biomed. Inf. doi: 10.1016/j.jbi.2018.07.014 – start-page: 82 year: 2021 ident: 10.1016/j.engappai.2025.112564_bib53 article-title: Segmentation-based retinal image fusion for hypertension prediction – volume: 24 year: 2022 ident: 10.1016/j.engappai.2025.112564_bib46 article-title: Breast cancer prediction based on neural networks and extra tree classifier using feature ensemble learning. Measurement publication-title: Sensors – volume: 259 year: 2025 ident: 10.1016/j.engappai.2025.112564_bib52 article-title: Metabolomic machine learning predictor for arsenic-associated hypertension risk in male workers publication-title: J. Pharmaceut. Biomed. Anal. doi: 10.1016/j.jpba.2025.116761 – volume: 2018 year: 2018 ident: 10.1016/j.engappai.2025.112564_bib32 article-title: A study of machine‐learning classifiers for hypertension based on radial pulse wave publication-title: BioMed Res. Int. doi: 10.1155/2018/2964816 – start-page: 45 year: 2014 ident: 10.1016/j.engappai.2025.112564_bib50 article-title: A logistic regression and artificial neural network-based approach for chronic disease prediction: a case study of hypertension – volume: 6 start-page: 261 year: 2024 ident: 10.1016/j.engappai.2025.112564_bib27 article-title: Predictive modeling of chronic kidney disease using extra tree classifier: a comparative analysis with traditional methods publication-title: J. Comp. Biomed. Inform. |
| SSID | ssj0003846 |
| Score | 2.4457946 |
| Snippet | Hypertension is a type of disease that occurs after a serious increase in blood pressure. Due to the rapid increase in the disease, efforts for its early... |
| SourceID | crossref elsevier |
| SourceType | Index Database Publisher |
| StartPage | 112564 |
| SubjectTerms | Extreme gradient boosting Feature selection Framework Hypertension disease Machine learning |
| Title | An integrated machine learning framework for the early diagnosis of hypertension disease |
| URI | https://dx.doi.org/10.1016/j.engappai.2025.112564 |
| Volume | 162 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 0952-1976 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0952-1976 databaseCode: AIKHN dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0952-1976 databaseCode: ACRLP dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 0952-1976 databaseCode: .~1 dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0003846 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 0952-1976 databaseCode: AKRWK dateStart: 19880301 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003846 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED1VZWHhG_FZeWB1k8Z2ko5VRVWo6ABUdIuS2C6tRBq1ZeW3c05sKBISA1MUy5ai59zds_zuDuBG5LEpu6UpSzuCcoy4NFU6pqFk2oS3LK-y-B_G4XDC76di2oC-y4Uxskrr-2ufXnlrO-JZNL1yPveekByguaExC4zbXWEqfnIemS4G7Y9vmQeL62QdnEzN7K0s4UVbFbO0LNM5nhMDYbJpRMh_D1BbQWdwAHuWLZJe_UGH0FDFEexb5kisXa5xyDVncGPHMO0V5KsWhCRvlWhSEdslYka0U2URpK0EaSBRptYxkbX2br4mS01e8ZS6qjTuy4LYu5wTmAxun_tDatso0ByPRxsa8kxL2Um5iru58FluzDiPRBD5oWZKMWSMSqAhSpaFfpwh5cDIFjEdSaSHGO5PoVksC3UGBMkfwqm1CHykUb5MmeJhbG5HOyyTfnQOnsMuKetqGYmTkS0Sh3Zi0E5qtM-h6yBOfux7gi79j7UX_1h7CbvmzQhTguAKmpvVu7pGerHJWtX_04Kd3t1oODbP0ePL6BPB-c_W |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV09T8MwED2VMsDCN6J8emBNk8Zxko5VRVWg7UIrdbOS2C6tRBq1ZeW3c05sKBISA6tjS9FL7u6d_O4O4J5lsW67pRyatJgTYMR1EqliJxRU6fCWZmUV_3AU9ifB05RNa9C1tTBaVml8f-XTS29tVlyDplvM5-4LkgM0NzRmhnG7zegO7AbMj3QG1vz41nnQuKrWwd2O3r5VJrxoynyWFEUyx0TRZ7qchoXB7xFqK-r0juDA0EXSqd7oGGoyP4FDQx2JMcw1LtnpDHbtFKadnHw1gxDkrVRNSmLGRMyIsrIsgryVIA8kUjc7JqIS383XZKnIK6apq1LkvsyJucw5g0nvYdztO2aOgpNhfrRxwiBVQrSSQMbtjHk003acRYiVFyoqJUXKKBlaoqBp6MUpcg4MbRFVkUB-iPH-HOr5MpcXQJD9IZxKMd9DHuWJhMogjPX1aIumwosa4FrseFG1y-BWR7bgFm2u0eYV2g1oW4j5jw_P0af_cfbyH2fvYK8_Hg744HH0fAX7-olWqfj-NdQ3q3d5g1xjk96W_9InQSXPyA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+machine+learning+framework+for+the+early+diagnosis+of+hypertension+disease&rft.jtitle=Engineering+applications+of+artificial+intelligence&rft.au=Eldem%2C+Ay%C5%9Fe&rft.date=2025-12-22&rft.pub=Elsevier+Ltd&rft.issn=0952-1976&rft.volume=162&rft_id=info:doi/10.1016%2Fj.engappai.2025.112564&rft.externalDocID=S0952197625025953 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0952-1976&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0952-1976&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0952-1976&client=summon |