Optimal control-based coordinated operation strategy for fan and air conditioning systems: Balancing individual thermal comfort and energy efficiency

•Developed an automatic coordinated fan–air-conditioner control strategy.•The strategy enables local thermal control based on individual thermal sensations.•Surrogate models were built in a simulated environment for performance evaluation.•The strategy achieved over 20 % energy savings while maintai...

Full description

Saved in:
Bibliographic Details
Published inBuilding and environment Vol. 285; p. 113523
Main Authors Lyu, Junmeng, Yang, Yuxin, Lian, Zhiwei, Du, Heng
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.11.2025
Subjects
Online AccessGet full text
ISSN0360-1323
DOI10.1016/j.buildenv.2025.113523

Cover

Abstract •Developed an automatic coordinated fan–air-conditioner control strategy.•The strategy enables local thermal control based on individual thermal sensations.•Surrogate models were built in a simulated environment for performance evaluation.•The strategy achieved over 20 % energy savings while maintaining neutral sensation.•Key factors affecting the operational performance of the system were analyzed. The local fan and air conditioning coordinated system (FACS) enables individualized thermal environments, which has practical significance for enhancing thermal comfort and energy efficiency. However, few studies have developed control strategies that simultaneously balance individual comfort and energy minimization. This study proposes an optimal control strategy based on individual thermal sensation models to optimize the coordinated settings of shared thermostats and local fans in both single- and multi-occupant scenarios. Subject-specific thermal sensation models were developed (R² = [0.605, 0.942]; mean absolute error = [0.17, 0.61]) and embedded within a thermophysiological model coupled with a simulated environment to construct a testing framework for strategy evaluation. Coordinated operation setpoints were computed for randomly generated occupant groupings within this framework, and their energy performance was evaluated using EnergyPlus. Results indicate that the proposed strategy enables an increase in the shared thermostat setpoint while maintaining the majority of occupants within the neutral thermal sensation range. In scenarios with 1 to 4 occupants, the developed control strategy achieved energy savings exceeding 20 % compared to A/C-only operation. Robustness tests further demonstrated that the strategy prioritized air speed adjustment and maintained stable thermostat settings under perturbations in air temperature, skin temperature, and air speed, while maintaining thermal comfort. Additionally, analysis of subject data from Shanghai revealed that when maximizing overall neutral thermal sensation, the optimal shared thermostat setpoint decreased with increasing occupant numbers, highlighting the influence of occupancy on FACS performance. This study provides a model-based solution for individualized indoor thermal regulation with enhanced energy efficiency. [Display omitted]
AbstractList •Developed an automatic coordinated fan–air-conditioner control strategy.•The strategy enables local thermal control based on individual thermal sensations.•Surrogate models were built in a simulated environment for performance evaluation.•The strategy achieved over 20 % energy savings while maintaining neutral sensation.•Key factors affecting the operational performance of the system were analyzed. The local fan and air conditioning coordinated system (FACS) enables individualized thermal environments, which has practical significance for enhancing thermal comfort and energy efficiency. However, few studies have developed control strategies that simultaneously balance individual comfort and energy minimization. This study proposes an optimal control strategy based on individual thermal sensation models to optimize the coordinated settings of shared thermostats and local fans in both single- and multi-occupant scenarios. Subject-specific thermal sensation models were developed (R² = [0.605, 0.942]; mean absolute error = [0.17, 0.61]) and embedded within a thermophysiological model coupled with a simulated environment to construct a testing framework for strategy evaluation. Coordinated operation setpoints were computed for randomly generated occupant groupings within this framework, and their energy performance was evaluated using EnergyPlus. Results indicate that the proposed strategy enables an increase in the shared thermostat setpoint while maintaining the majority of occupants within the neutral thermal sensation range. In scenarios with 1 to 4 occupants, the developed control strategy achieved energy savings exceeding 20 % compared to A/C-only operation. Robustness tests further demonstrated that the strategy prioritized air speed adjustment and maintained stable thermostat settings under perturbations in air temperature, skin temperature, and air speed, while maintaining thermal comfort. Additionally, analysis of subject data from Shanghai revealed that when maximizing overall neutral thermal sensation, the optimal shared thermostat setpoint decreased with increasing occupant numbers, highlighting the influence of occupancy on FACS performance. This study provides a model-based solution for individualized indoor thermal regulation with enhanced energy efficiency. [Display omitted]
ArticleNumber 113523
Author Du, Heng
Lyu, Junmeng
Yang, Yuxin
Lian, Zhiwei
Author_xml – sequence: 1
  givenname: Junmeng
  surname: Lyu
  fullname: Lyu, Junmeng
  organization: Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
– sequence: 2
  givenname: Yuxin
  surname: Yang
  fullname: Yang, Yuxin
  organization: Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
– sequence: 3
  givenname: Zhiwei
  orcidid: 0000-0003-3718-1450
  surname: Lian
  fullname: Lian, Zhiwei
  email: zwlian@sjtu.edu.cn
  organization: Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China
– sequence: 4
  givenname: Heng
  surname: Du
  fullname: Du, Heng
  organization: Department of Built Environment, National University of Singapore, Singapore
BookMark eNqFkM9OAyEQxjnUxFZ9BcML7ApLl249qY3_kia96JmwMFSaLTRAm-yD-L6yXT17mm9gvm8mvxmaOO8AoVtKSkoov9uV7dF2GtyprEhVl5SyumITNCWMk4Kyil2iWYw7koeXbD5F35tDsnvZYeVdCr4rWhlB584HbZ1MWfsDBJmsdzimLGDbY-MDNtJh6TSWNgxmbYcR67Y49jHBPt7jJ9lJp4Ynm79PVh_znvQFYdy3zynpHAEOQk4FY6yy4FR_jS6M7CLc_NYr9Pny_LF6K9ab1_fV47pQFaepqCpjFlQaUIs5k7wmykjaEA1MkpbXpqkXy3pQnINp5ksKTLWKSSBNwziT7ArxMVcFH2MAIw4h0wi9oEQMQMVO_AEVA1AxAs3Gh9EI-bqThSDi-XLQNoBKQnv7X8QP1tuLIw
Cites_doi 10.1016/j.buildenv.2024.111925
10.1016/j.buildenv.2021.108437
10.1016/j.enbuild.2017.11.028
10.1080/17512549.2018.1505654
10.1016/j.buildenv.2019.106443
10.1016/j.enbuild.2017.02.051
10.1016/j.buildenv.2018.07.008
10.1016/j.buildenv.2019.106351
10.1016/j.apenergy.2024.123707
10.1111/j.1600-0668.2004.00284.x
10.1016/j.buildenv.2022.109458
10.1016/j.buildenv.2017.07.021
10.1016/j.enbuild.2023.113437
10.1016/j.buildenv.2019.106329
10.1016/j.apenergy.2019.01.070
10.1016/j.buildenv.2023.111002
10.1016/j.apenergy.2017.11.021
10.1016/j.buildenv.2013.03.022
10.1016/j.buildenv.2014.04.024
10.1016/j.buildenv.2022.109933
10.1016/j.buildenv.2021.107808
10.1111/ina.13138
10.1016/j.softx.2020.100578
10.1016/j.buildenv.2015.12.015
10.1016/j.buildenv.2017.06.027
10.1016/j.applthermaleng.2022.119915
10.1016/j.buildenv.2018.11.019
10.1016/S0360-1323(96)00038-8
10.1016/j.buildenv.2020.107443
10.1016/j.buildenv.2010.03.016
10.1016/j.enbuild.2020.110011
10.1016/j.rser.2023.113316
10.1016/j.buildenv.2012.12.002
10.1016/j.buildenv.2013.12.009
10.1111/ina.12352
10.1016/j.buildenv.2020.107316
10.1080/09613210902899785
10.1016/j.buildenv.2018.01.023
10.1016/j.enbuild.2024.114437
10.1016/j.buildenv.2024.111692
10.1016/j.enbuild.2023.112900
10.1038/s41598-024-62377-5
10.1016/S0378-7788(97)00025-X
10.1016/j.buildenv.2024.111260
10.1016/j.buildenv.2023.110667
10.1016/j.buildenv.2023.110405
10.1016/j.buildenv.2023.110958
10.1016/j.enbuild.2015.01.050
10.1016/j.enbuild.2020.110392
10.3390/s18051602
10.1007/s12273-024-1147-0
10.1016/j.enbuild.2020.110575
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.buildenv.2025.113523
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_buildenv_2025_113523
S0360132325009965
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ACDAQ
ACGFS
ACIWK
ACLOT
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHIDL
AHJVU
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKIFW
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
BELTK
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JARJE
JJJVA
KCYFY
KOM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SEN
SES
SEW
SPC
SPCBC
SSJ
SSR
SST
SSZ
T5K
~G-
~HD
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AEGFY
AGQPQ
AI.
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HMC
HVGLF
HZ~
LY6
LY7
LY9
M41
R2-
SAC
SET
VH1
WUQ
ZMT
ID FETCH-LOGICAL-c261t-22ff71afec743a650cfa180de3a0b65f857950b6566ef8491e3cbc3ae088363a3
IEDL.DBID AIKHN
ISSN 0360-1323
IngestDate Thu Sep 25 00:41:07 EDT 2025
Sat Sep 27 17:13:14 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Personal environmental control systems
Personal thermal sensation model
Occupant-centric control
Thermal environment
Skin temperature
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c261t-22ff71afec743a650cfa180de3a0b65f857950b6566ef8491e3cbc3ae088363a3
ORCID 0000-0003-3718-1450
ParticipantIDs crossref_primary_10_1016_j_buildenv_2025_113523
elsevier_sciencedirect_doi_10_1016_j_buildenv_2025_113523
PublicationCentury 2000
PublicationDate 2025-11-01
2025-11-00
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Building and environment
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Aryal, Becerik-Gerber (bib0020) 2020; 185
Aijazi, Parkinson, Zhang, Schiavon (bib0059) 2024; 14
Lyu, Du, Zhao, Shi, Wang, Lian (bib0021) 2023; 239
Yu, Xu, Zhang, Guan, Yue (bib0025) 2022; 223
Ghahramani, Castro, Karvigh, Becerik-Gerber (bib0018) 2018; 211
Hu, Zhou, Yan, Guo, Hong, Jiang (bib0004) 2023; 181
Zhai, Miao, Yang, Zhao, Zhang, Arens (bib0044) 2019; 165
Kubo, Isoda, Enomoto-Koshimizu (bib0062) 1997; 32
Jung, Jazizadeh (bib0009) 2019; 239
Tartarini, Schiavon (bib0047) 2020; 12
Schiavon, Yang, Donner, Chang, Nazaroff (bib0014) 2017; 27
Guenther, Sawodny (bib0019) 2019; 148
Jung, Jazizadeh (bib0028) 2019; 239
Jung, Jazizadeh, Smith, Domer, Smith, Domer (bib0030) 2018
Tartarini, Schiavon, Jay, Arens, Huizenga (bib0061) 2022; 207
Younes, Chen, Ghali, Kosonen, Melikov, Kilpeläinen, Ghaddar (bib0012) 2024; 318
Kalaimani, Jain, Keshav, Rosenberg (bib0023) 2020; 14
Lyu, Shi, Du, Lian (bib0031) 2023
.
ASHRAE (bib0001) 2023; 145
Zhai, Arens, Elsworth, Zhang (bib0032) 2017; 122
Zhai, Zhang, Zhang, Pasut, Arens, Meng (bib0013) 2013; 65
Arens, Xu, Miura, Hui, Fountain, Bauman (bib0036) 1998; 27
de Dear, Kim, Parkinson (bib0051) 2018; 158
Lyu, Yang, Shi, Lian (bib0057) 2024; 17
Klein, Becerik-Gerber, Kavulya, Jazizadeh (bib0029) 2011
Wu, Cao, Zhu (bib0056) 2023; 246
Huang, Ouyang, Zhu, Jiang (bib0035) 2013; 61
Yang, Liu, Liu, Wang (bib0054) 2023; 222
André, De Vecchi, Lamberts (bib0017) 2020; 222
Pasut, Arens, Zhang, Zhai (bib0033) 2014; 79
Xu, Liu, Hu, Spanos (bib0024) 2017; 141
Park, Ouf, Gunay, Peng, O’Brien, Kjærgaard, Nagy (bib0010) 2019; 165
He, Li, He, He, Song (bib0034) 2017; 123
International Organization for Standardization, ISO 9241-5:1998 ergonomic requirements for office work with visual display terminals (VDTs) – Part 5: workstation layout and postural requirements, (1998).
Melikov (bib0043) 2004; 14
International Organization for Standardization, ISO 7730:2005 ergonomics of the thermal environment: analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, (2005).
Brager, Baker (bib0003) 2009; 37
Brooks, Kumar, Goyal, Subramany, Barooah (bib0002) 2015; 93
Rida, Frijns, Khovalyg (bib0048) 2023; 243
Cheung, Schiavon, Graham, Tham (bib0060) 2021; 188
Chow, Fong, Givoni, Lin, Chan (bib0063) 2010; 45
Takahashi, Nomoto, Yoda, Hisayama, Ogata, Ozeki, Tanabe (bib0046) 2021; 231
Luo, Arens, Zhang, Ghahramani, Wang (bib0005) 2018; 143
Wu, Cao, Hu, Lv, Meng, Zhang (bib0053) 2023; 285
Song, Duan, Wang, Liu, Du, Chen (bib0037) 2021; 196
Xie, Li, Li, Zhang, Luo (bib0008) 2020; 226
Xue, Zhang, Chen, Li (bib0016) 2024; 84
Kim, Schiavon, Brager (bib0022) 2018; 132
Wu, Jiang, Chen, Fan, Cao (bib0027) 2024; 371
Wang, Warren, Luo, He, Zhang, Arens, Chen, He, Hu, Jin, Liu, Cohen-Tanugi, Smith (bib0006) 2020; 167
Shinoda, Bogatu, Watanabe, Kaneko, Olesen, Kazanci (bib0011) 2024; 252
Fanger (bib0050) 1970
Cao, Awbi, Yao, Fan, Sirén, Kosonen, (Jensen) Zhang (bib0055) 2014; 73
Zhang (bib0042) 2003
X. Jia, Y. Pan, M. Zhu, H. Zhu, Z. Li, J. Zhang, X. Zhou, S. Pan, C. Wang, D. Yan, Z. Wu, H. Deng, Y. Pan, J. Xie, L. Xu, Occupant behavior modules development for coupled simulation in DeST 3.0, Energy Build. 297 (2023) 113437.
Perino, Bilardo, Fabrizio (bib0007) 2024; 265
Salamone, Belussi, Currò, Danza, Ghellere, Guazzi, Lenzi, Megale, Meroni (bib0026) 2018; 18
Tian, Yu, Liu (bib0039) 2022; 32
Zhou, Zhang, Xie, Liu (bib0015) 2023; 229
International Organization for Standardization, ISO 7726:1998 Ergonomics of the thermal environment – Instruments for measuring physical quantities, (1998).
Hou, Lyu, Wu, Chen, Shi, Lian (bib0040) 2024; 261
Luo, Ji, Cao, Ouyang, Zhu (bib0052) 2016; 98
Wheat, Sullivan, Lefevre, Ostriker (bib0058) 2024
He (10.1016/j.buildenv.2025.113523_bib0034) 2017; 123
10.1016/j.buildenv.2025.113523_bib0041
Luo (10.1016/j.buildenv.2025.113523_bib0005) 2018; 143
Wu (10.1016/j.buildenv.2025.113523_bib0053) 2023; 285
10.1016/j.buildenv.2025.113523_bib0045
Chow (10.1016/j.buildenv.2025.113523_bib0063) 2010; 45
Lyu (10.1016/j.buildenv.2025.113523_bib0021) 2023; 239
Perino (10.1016/j.buildenv.2025.113523_bib0007) 2024; 265
André (10.1016/j.buildenv.2025.113523_bib0017) 2020; 222
Xu (10.1016/j.buildenv.2025.113523_bib0024) 2017; 141
Ghahramani (10.1016/j.buildenv.2025.113523_bib0018) 2018; 211
Song (10.1016/j.buildenv.2025.113523_bib0037) 2021; 196
Takahashi (10.1016/j.buildenv.2025.113523_bib0046) 2021; 231
Wu (10.1016/j.buildenv.2025.113523_bib0056) 2023; 246
Jung (10.1016/j.buildenv.2025.113523_bib0028) 2019; 239
Melikov (10.1016/j.buildenv.2025.113523_bib0043) 2004; 14
Xue (10.1016/j.buildenv.2025.113523_bib0016) 2024; 84
Zhou (10.1016/j.buildenv.2025.113523_bib0015) 2023; 229
Aryal (10.1016/j.buildenv.2025.113523_bib0020) 2020; 185
10.1016/j.buildenv.2025.113523_bib0038
Yang (10.1016/j.buildenv.2025.113523_bib0054) 2023; 222
Arens (10.1016/j.buildenv.2025.113523_bib0036) 1998; 27
Jung (10.1016/j.buildenv.2025.113523_bib0009) 2019; 239
Kalaimani (10.1016/j.buildenv.2025.113523_bib0023) 2020; 14
Brooks (10.1016/j.buildenv.2025.113523_bib0002) 2015; 93
Lyu (10.1016/j.buildenv.2025.113523_bib0057) 2024; 17
Luo (10.1016/j.buildenv.2025.113523_bib0052) 2016; 98
Cao (10.1016/j.buildenv.2025.113523_bib0055) 2014; 73
Zhang (10.1016/j.buildenv.2025.113523_bib0042) 2003
Wang (10.1016/j.buildenv.2025.113523_bib0006) 2020; 167
Salamone (10.1016/j.buildenv.2025.113523_bib0026) 2018; 18
Younes (10.1016/j.buildenv.2025.113523_bib0012) 2024; 318
Guenther (10.1016/j.buildenv.2025.113523_bib0019) 2019; 148
Xie (10.1016/j.buildenv.2025.113523_bib0008) 2020; 226
Pasut (10.1016/j.buildenv.2025.113523_bib0033) 2014; 79
Zhai (10.1016/j.buildenv.2025.113523_bib0044) 2019; 165
Fanger (10.1016/j.buildenv.2025.113523_bib0050) 1970
Schiavon (10.1016/j.buildenv.2025.113523_bib0014) 2017; 27
Tian (10.1016/j.buildenv.2025.113523_bib0039) 2022; 32
de Dear (10.1016/j.buildenv.2025.113523_bib0051) 2018; 158
Tartarini (10.1016/j.buildenv.2025.113523_bib0047) 2020; 12
Rida (10.1016/j.buildenv.2025.113523_bib0048) 2023; 243
Wu (10.1016/j.buildenv.2025.113523_bib0027) 2024; 371
Hou (10.1016/j.buildenv.2025.113523_bib0040) 2024; 261
Zhai (10.1016/j.buildenv.2025.113523_bib0032) 2017; 122
Klein (10.1016/j.buildenv.2025.113523_bib0029) 2011
Wheat (10.1016/j.buildenv.2025.113523_bib0058) 2024
Kubo (10.1016/j.buildenv.2025.113523_bib0062) 1997; 32
Huang (10.1016/j.buildenv.2025.113523_bib0035) 2013; 61
Tartarini (10.1016/j.buildenv.2025.113523_bib0061) 2022; 207
Jung (10.1016/j.buildenv.2025.113523_bib0030) 2018
Hu (10.1016/j.buildenv.2025.113523_bib0004) 2023; 181
ASHRAE (10.1016/j.buildenv.2025.113523_bib0001) 2023; 145
Yu (10.1016/j.buildenv.2025.113523_bib0025) 2022; 223
Cheung (10.1016/j.buildenv.2025.113523_bib0060) 2021; 188
Park (10.1016/j.buildenv.2025.113523_bib0010) 2019; 165
Aijazi (10.1016/j.buildenv.2025.113523_bib0059) 2024; 14
Shinoda (10.1016/j.buildenv.2025.113523_bib0011) 2024; 252
Lyu (10.1016/j.buildenv.2025.113523_bib0031) 2023
10.1016/j.buildenv.2025.113523_bib0049
Kim (10.1016/j.buildenv.2025.113523_bib0022) 2018; 132
Brager (10.1016/j.buildenv.2025.113523_bib0003) 2009; 37
Zhai (10.1016/j.buildenv.2025.113523_bib0013) 2013; 65
References_xml – volume: 243
  year: 2023
  ident: bib0048
  article-title: Modeling local thermal responses of individuals: validation of advanced human thermo-physiology models
  publication-title: Build Env.
– volume: 132
  start-page: 114
  year: 2018
  end-page: 124
  ident: bib0022
  article-title: Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control
  publication-title: Build. Env.
– volume: 148
  start-page: 448
  year: 2019
  end-page: 458
  ident: bib0019
  article-title: Feature selection and Gaussian Process regression for personalized thermal comfort prediction
  publication-title: Build. Env.
– volume: 239
  year: 2023
  ident: bib0021
  article-title: Where should the thermal image sensor of a smart A/C look?-occupant thermal sensation model based on thermal imaging data
  publication-title: Build. Env.
– volume: 73
  start-page: 171
  year: 2014
  end-page: 186
  ident: bib0055
  article-title: A review of the performance of different ventilation and airflow distribution systems in buildings
  publication-title: Build Env.
– volume: 123
  start-page: 378
  year: 2017
  end-page: 389
  ident: bib0034
  article-title: The influence of personally controlled desk fan on comfort and energy consumption in hot and humid environments
  publication-title: Build. Env.
– volume: 231
  year: 2021
  ident: bib0046
  article-title: Thermoregulation model JOS-3 with new open source code
  publication-title: Energy Build.
– year: 1970
  ident: bib0050
  article-title: Thermal comfort. Analysis and applications in environmental engineering
  publication-title: Thermal Comfort. Analysis and Applications in Environmental Engineering
– volume: 17
  start-page: 1401
  year: 2024
  end-page: 1417
  ident: bib0057
  article-title: Application-driven development of a thermal imaging-based cabin occupant thermal sensation assessment model and its validation
  publication-title: Build. Simul.
– start-page: 232
  year: 2018
  end-page: 242
  ident: bib0030
  article-title: Multi-occupancy Indoor Thermal Condition Optimization in Consideration of Thermal Sensitivity
– volume: 265
  year: 2024
  ident: bib0007
  article-title: A framework for assessing the energy performance of Personalized Environmental Control Systems (PECS) for heating, cooling and ventilation
  publication-title: Build Env.
– year: 2003
  ident: bib0042
  article-title: Human Thermal Sensation and Comfort in Transient and Non-Uniform Thermal Environments
– volume: 32
  start-page: 211
  year: 1997
  end-page: 218
  ident: bib0062
  article-title: Cooling effects of preferred air velocity in muggy conditions
  publication-title: Build Env.
– volume: 27
  start-page: 690
  year: 2017
  end-page: 702
  ident: bib0014
  article-title: Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons
  publication-title: Indoor. Air.
– volume: 79
  start-page: 13
  year: 2014
  end-page: 19
  ident: bib0033
  article-title: Enabling energy-efficient approaches to thermal comfort using room air motion
  publication-title: Build. Env.
– volume: 165
  year: 2019
  ident: bib0010
  article-title: A critical review of field implementations of occupant-centric building controls
  publication-title: Build. Env.
– volume: 318
  year: 2024
  ident: bib0012
  article-title: Enhancing thermal comfort of older adults during extreme weather: combined personal comfort system and ventilated vest
  publication-title: Energy Build.
– volume: 61
  start-page: 27
  year: 2013
  end-page: 33
  ident: bib0035
  article-title: A study about the demand for air movement in warm environment
  publication-title: Build. Env.
– start-page: 161
  year: 2011
  end-page: 168
  ident: bib0029
  article-title: Continuous Sensing of Occupant Perception of Indoor Ambient Factors
– volume: 12
  year: 2020
  ident: bib0047
  article-title: pythermalcomfort: a Python package for thermal comfort research
  publication-title: SoftwareX.
– reference: International Organization for Standardization, ISO 7726:1998 Ergonomics of the thermal environment – Instruments for measuring physical quantities, (1998).
– volume: 285
  year: 2023
  ident: bib0053
  article-title: Development of personal comfort model and its use in the control of air conditioner
  publication-title: Energy Build.
– volume: 14
  year: 2024
  ident: bib0059
  article-title: Passive and low-energy strategies to improve sleep thermal comfort and energy resilience during heat waves and cold snaps
  publication-title: Sci. Rep.
– volume: 185
  year: 2020
  ident: bib0020
  article-title: Thermal comfort modeling when personalized comfort systems are in use: comparison of sensing and learning methods
  publication-title: Build. Env.
– year: 2024
  ident: bib0058
  article-title: Feeling the Heat: How Households Manage High Air Conditioning Bills
– volume: 167
  year: 2020
  ident: bib0006
  article-title: Evaluating the comfort of thermally dynamic wearable devices
  publication-title: Build Env.
– volume: 158
  start-page: 1296
  year: 2018
  end-page: 1305
  ident: bib0051
  article-title: Residential adaptive comfort in a humid subtropical climate—Sydney Australia
  publication-title: Energy Build.
– volume: 27
  start-page: 45
  year: 1998
  end-page: 59
  ident: bib0036
  article-title: A study of occupant cooling by personally controlled air movement
  publication-title: Energy Build.
– volume: 18
  year: 2018
  ident: bib0026
  article-title: Integrated method for personal thermal comfort assessment and optimization through users’ Feedback, IoT and machine learning: a case study †
  publication-title: Sensors
– volume: 211
  start-page: 41
  year: 2018
  end-page: 49
  ident: bib0018
  article-title: Towards unsupervised learning of thermal comfort using infrared thermography
  publication-title: Appl. Energy
– volume: 37
  start-page: 369
  year: 2009
  end-page: 380
  ident: bib0003
  article-title: Occupant satisfaction in mixed-mode buildings
  publication-title: Build. Res. Inf.
– volume: 93
  start-page: 160
  year: 2015
  end-page: 168
  ident: bib0002
  article-title: Energy-efficient control of under-actuated HVAC zones in commercial buildings
  publication-title: Energy Build.
– volume: 246
  year: 2023
  ident: bib0056
  article-title: Development of an automatic personal comfort system (APCS) based on real-time thermal sensation prediction
  publication-title: Build Env.
– volume: 98
  start-page: 30
  year: 2016
  end-page: 38
  ident: bib0052
  article-title: Indoor climate and thermal physiological adaptation: evidences from migrants with different cold indoor exposures
  publication-title: Build Env.
– volume: 196
  year: 2021
  ident: bib0037
  article-title: Study on the influence of air velocity on human thermal comfort under non-uniform thermal environment
  publication-title: Build. Env.
– volume: 32
  year: 2022
  ident: bib0039
  article-title: Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China
  publication-title: Indoor. Air.
– volume: 14
  start-page: 157
  year: 2004
  end-page: 167
  ident: bib0043
  article-title: Personalized ventilationAbstract
  publication-title: Indoor. Air.
– volume: 207
  year: 2022
  ident: bib0061
  article-title: Application of Gagge’s energy balance model to determine humidity-dependent temperature thresholds for healthy adults using electric fans during heatwaves
  publication-title: Build Env.
– volume: 181
  year: 2023
  ident: bib0004
  article-title: A systematic review of building energy sufficiency towards energy and climate targets
  publication-title: Renew. Sustain. Energy Rev.
– volume: 222
  year: 2020
  ident: bib0017
  article-title: User-centered environmental control: a review of current findings on personal conditioning systems and personal comfort models
  publication-title: Energy Build.
– volume: 239
  start-page: 1471
  year: 2019
  end-page: 1508
  ident: bib0028
  article-title: Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions
  publication-title: Appl. Energy
– volume: 371
  year: 2024
  ident: bib0027
  article-title: Overall and local environmental collaborative control based on personal comfort model and personal comfort system
  publication-title: Appl. Energy
– volume: 222
  year: 2023
  ident: bib0054
  article-title: Performance evaluation of ductless personalized ventilation combined with impinging jet ventilation
  publication-title: Appl. Therm. Eng.
– reference: International Organization for Standardization, ISO 7730:2005 ergonomics of the thermal environment: analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, (2005).
– year: 2023
  ident: bib0031
  article-title: Sex-based thermal comfort zones and energy savings in spaces with joint operation of air conditioner and fan
  publication-title: Build. Env.
– volume: 45
  start-page: 2177
  year: 2010
  end-page: 2183
  ident: bib0063
  article-title: Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment
  publication-title: Build Env.
– volume: 229
  year: 2023
  ident: bib0015
  article-title: Occupant’s preferred indoor air speed in hot-humid climate and its influence on thermal comfort
  publication-title: Build. Env.
– volume: 141
  start-page: 308
  year: 2017
  end-page: 320
  ident: bib0024
  article-title: Optimal coordination of air conditioning system and personal fans for building energy efficiency improvement
  publication-title: Energy Build.
– volume: 239
  start-page: 1471
  year: 2019
  end-page: 1508
  ident: bib0009
  article-title: Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions
  publication-title: Appl. Energy
– volume: 188
  year: 2021
  ident: bib0060
  article-title: Occupant satisfaction with the indoor environment in seven commercial buildings in Singapore
  publication-title: Build Env.
– reference: X. Jia, Y. Pan, M. Zhu, H. Zhu, Z. Li, J. Zhang, X. Zhou, S. Pan, C. Wang, D. Yan, Z. Wu, H. Deng, Y. Pan, J. Xie, L. Xu, Occupant behavior modules development for coupled simulation in DeST 3.0, Energy Build. 297 (2023) 113437.
– volume: 223
  year: 2022
  ident: bib0025
  article-title: Energy-efficient personalized thermal comfort control in office buildings based on multi-agent deep reinforcement learning
  publication-title: Build Env.
– volume: 84
  year: 2024
  ident: bib0016
  article-title: Developing a novel personal thermoelectric comfort system for improving indoor occupant’s thermal comfort
  publication-title: J. Build. Eng.
– volume: 65
  start-page: 109
  year: 2013
  end-page: 117
  ident: bib0013
  article-title: Comfort under personally controlled air movement in warm and humid environments
  publication-title: Build. Env.
– reference: .
– volume: 252
  year: 2024
  ident: bib0011
  article-title: Performance evaluation of a multi-functional personalized environmental control system (PECS) prototype
  publication-title: Build. Env.
– volume: 226
  year: 2020
  ident: bib0008
  article-title: Review on occupant-centric thermal comfort sensing, predicting, and controlling
  publication-title: Energy Build.
– volume: 165
  year: 2019
  ident: bib0044
  article-title: Using personally controlled air movement to improve comfort after simulated summer commute
  publication-title: Build. Env.
– volume: 261
  year: 2024
  ident: bib0040
  article-title: Occupant-centric cabin thermal sensation assessment system based on low-cost thermal imaging
  publication-title: Build. Env.
– volume: 14
  start-page: 129
  year: 2020
  end-page: 157
  ident: bib0023
  article-title: On the interaction between personal comfort systems and centralized HVAC systems in office buildings
  publication-title: Adv. Build Energy Res.
– volume: 145
  year: 2023
  ident: bib0001
  article-title: Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard 55-2023, American Society of Heating
  publication-title: Refrig. Air Cond Eng.
– volume: 143
  start-page: 206
  year: 2018
  end-page: 216
  ident: bib0005
  article-title: Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices
  publication-title: Build. Env.
– reference: International Organization for Standardization, ISO 9241-5:1998 ergonomic requirements for office work with visual display terminals (VDTs) – Part 5: workstation layout and postural requirements, (1998).
– volume: 122
  start-page: 247
  year: 2017
  end-page: 257
  ident: bib0032
  article-title: Selecting air speeds for cooling at sedentary and non-sedentary office activity levels
  publication-title: Build. Env.
– volume: 265
  year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0007
  article-title: A framework for assessing the energy performance of Personalized Environmental Control Systems (PECS) for heating, cooling and ventilation
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2024.111925
– volume: 207
  year: 2022
  ident: 10.1016/j.buildenv.2025.113523_bib0061
  article-title: Application of Gagge’s energy balance model to determine humidity-dependent temperature thresholds for healthy adults using electric fans during heatwaves
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2021.108437
– volume: 158
  start-page: 1296
  year: 2018
  ident: 10.1016/j.buildenv.2025.113523_bib0051
  article-title: Residential adaptive comfort in a humid subtropical climate—Sydney Australia
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.028
– volume: 14
  start-page: 129
  year: 2020
  ident: 10.1016/j.buildenv.2025.113523_bib0023
  article-title: On the interaction between personal comfort systems and centralized HVAC systems in office buildings
  publication-title: Adv. Build Energy Res.
  doi: 10.1080/17512549.2018.1505654
– volume: 167
  year: 2020
  ident: 10.1016/j.buildenv.2025.113523_bib0006
  article-title: Evaluating the comfort of thermally dynamic wearable devices
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2019.106443
– volume: 141
  start-page: 308
  year: 2017
  ident: 10.1016/j.buildenv.2025.113523_bib0024
  article-title: Optimal coordination of air conditioning system and personal fans for building energy efficiency improvement
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.02.051
– volume: 143
  start-page: 206
  year: 2018
  ident: 10.1016/j.buildenv.2025.113523_bib0005
  article-title: Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2018.07.008
– volume: 165
  year: 2019
  ident: 10.1016/j.buildenv.2025.113523_bib0010
  article-title: A critical review of field implementations of occupant-centric building controls
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2019.106351
– year: 2003
  ident: 10.1016/j.buildenv.2025.113523_bib0042
– year: 1970
  ident: 10.1016/j.buildenv.2025.113523_bib0050
  article-title: Thermal comfort. Analysis and applications in environmental engineering
– volume: 371
  year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0027
  article-title: Overall and local environmental collaborative control based on personal comfort model and personal comfort system
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123707
– volume: 14
  start-page: 157
  year: 2004
  ident: 10.1016/j.buildenv.2025.113523_bib0043
  article-title: Personalized ventilationAbstract
  publication-title: Indoor. Air.
  doi: 10.1111/j.1600-0668.2004.00284.x
– volume: 223
  year: 2022
  ident: 10.1016/j.buildenv.2025.113523_bib0025
  article-title: Energy-efficient personalized thermal comfort control in office buildings based on multi-agent deep reinforcement learning
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2022.109458
– volume: 123
  start-page: 378
  year: 2017
  ident: 10.1016/j.buildenv.2025.113523_bib0034
  article-title: The influence of personally controlled desk fan on comfort and energy consumption in hot and humid environments
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2017.07.021
– ident: 10.1016/j.buildenv.2025.113523_bib0049
  doi: 10.1016/j.enbuild.2023.113437
– volume: 165
  year: 2019
  ident: 10.1016/j.buildenv.2025.113523_bib0044
  article-title: Using personally controlled air movement to improve comfort after simulated summer commute
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2019.106329
– volume: 239
  start-page: 1471
  year: 2019
  ident: 10.1016/j.buildenv.2025.113523_bib0028
  article-title: Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.070
– year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0031
  article-title: Sex-based thermal comfort zones and energy savings in spaces with joint operation of air conditioner and fan
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2023.111002
– volume: 211
  start-page: 41
  year: 2018
  ident: 10.1016/j.buildenv.2025.113523_bib0018
  article-title: Towards unsupervised learning of thermal comfort using infrared thermography
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2017.11.021
– volume: 65
  start-page: 109
  year: 2013
  ident: 10.1016/j.buildenv.2025.113523_bib0013
  article-title: Comfort under personally controlled air movement in warm and humid environments
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2013.03.022
– volume: 79
  start-page: 13
  year: 2014
  ident: 10.1016/j.buildenv.2025.113523_bib0033
  article-title: Enabling energy-efficient approaches to thermal comfort using room air motion
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2014.04.024
– volume: 229
  year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0015
  article-title: Occupant’s preferred indoor air speed in hot-humid climate and its influence on thermal comfort
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2022.109933
– volume: 196
  year: 2021
  ident: 10.1016/j.buildenv.2025.113523_bib0037
  article-title: Study on the influence of air velocity on human thermal comfort under non-uniform thermal environment
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2021.107808
– start-page: 232
  year: 2018
  ident: 10.1016/j.buildenv.2025.113523_bib0030
– volume: 32
  year: 2022
  ident: 10.1016/j.buildenv.2025.113523_bib0039
  article-title: Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China
  publication-title: Indoor. Air.
  doi: 10.1111/ina.13138
– volume: 12
  year: 2020
  ident: 10.1016/j.buildenv.2025.113523_bib0047
  article-title: pythermalcomfort: a Python package for thermal comfort research
  publication-title: SoftwareX.
  doi: 10.1016/j.softx.2020.100578
– volume: 98
  start-page: 30
  year: 2016
  ident: 10.1016/j.buildenv.2025.113523_bib0052
  article-title: Indoor climate and thermal physiological adaptation: evidences from migrants with different cold indoor exposures
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2015.12.015
– volume: 122
  start-page: 247
  year: 2017
  ident: 10.1016/j.buildenv.2025.113523_bib0032
  article-title: Selecting air speeds for cooling at sedentary and non-sedentary office activity levels
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2017.06.027
– volume: 222
  year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0054
  article-title: Performance evaluation of ductless personalized ventilation combined with impinging jet ventilation
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2022.119915
– volume: 148
  start-page: 448
  year: 2019
  ident: 10.1016/j.buildenv.2025.113523_bib0019
  article-title: Feature selection and Gaussian Process regression for personalized thermal comfort prediction
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2018.11.019
– volume: 32
  start-page: 211
  year: 1997
  ident: 10.1016/j.buildenv.2025.113523_bib0062
  article-title: Cooling effects of preferred air velocity in muggy conditions
  publication-title: Build Env.
  doi: 10.1016/S0360-1323(96)00038-8
– volume: 188
  year: 2021
  ident: 10.1016/j.buildenv.2025.113523_bib0060
  article-title: Occupant satisfaction with the indoor environment in seven commercial buildings in Singapore
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2020.107443
– volume: 45
  start-page: 2177
  year: 2010
  ident: 10.1016/j.buildenv.2025.113523_bib0063
  article-title: Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2010.03.016
– volume: 222
  year: 2020
  ident: 10.1016/j.buildenv.2025.113523_bib0017
  article-title: User-centered environmental control: a review of current findings on personal conditioning systems and personal comfort models
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110011
– volume: 181
  year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0004
  article-title: A systematic review of building energy sufficiency towards energy and climate targets
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2023.113316
– start-page: 161
  year: 2011
  ident: 10.1016/j.buildenv.2025.113523_bib0029
– volume: 61
  start-page: 27
  year: 2013
  ident: 10.1016/j.buildenv.2025.113523_bib0035
  article-title: A study about the demand for air movement in warm environment
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2012.12.002
– volume: 73
  start-page: 171
  year: 2014
  ident: 10.1016/j.buildenv.2025.113523_bib0055
  article-title: A review of the performance of different ventilation and airflow distribution systems in buildings
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2013.12.009
– volume: 27
  start-page: 690
  year: 2017
  ident: 10.1016/j.buildenv.2025.113523_bib0014
  article-title: Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons
  publication-title: Indoor. Air.
  doi: 10.1111/ina.12352
– volume: 185
  year: 2020
  ident: 10.1016/j.buildenv.2025.113523_bib0020
  article-title: Thermal comfort modeling when personalized comfort systems are in use: comparison of sensing and learning methods
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2020.107316
– volume: 37
  start-page: 369
  year: 2009
  ident: 10.1016/j.buildenv.2025.113523_bib0003
  article-title: Occupant satisfaction in mixed-mode buildings
  publication-title: Build. Res. Inf.
  doi: 10.1080/09613210902899785
– volume: 132
  start-page: 114
  year: 2018
  ident: 10.1016/j.buildenv.2025.113523_bib0022
  article-title: Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2018.01.023
– volume: 318
  year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0012
  article-title: Enhancing thermal comfort of older adults during extreme weather: combined personal comfort system and ventilated vest
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2024.114437
– volume: 84
  year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0016
  article-title: Developing a novel personal thermoelectric comfort system for improving indoor occupant’s thermal comfort
  publication-title: J. Build. Eng.
– volume: 261
  year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0040
  article-title: Occupant-centric cabin thermal sensation assessment system based on low-cost thermal imaging
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2024.111692
– volume: 285
  year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0053
  article-title: Development of personal comfort model and its use in the control of air conditioner
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2023.112900
– volume: 14
  year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0059
  article-title: Passive and low-energy strategies to improve sleep thermal comfort and energy resilience during heat waves and cold snaps
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-024-62377-5
– year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0058
– volume: 145
  year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0001
  article-title: Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard 55-2023, American Society of Heating
  publication-title: Refrig. Air Cond Eng.
– volume: 27
  start-page: 45
  year: 1998
  ident: 10.1016/j.buildenv.2025.113523_bib0036
  article-title: A study of occupant cooling by personally controlled air movement
  publication-title: Energy Build.
  doi: 10.1016/S0378-7788(97)00025-X
– volume: 252
  year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0011
  article-title: Performance evaluation of a multi-functional personalized environmental control system (PECS) prototype
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2024.111260
– volume: 243
  year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0048
  article-title: Modeling local thermal responses of individuals: validation of advanced human thermo-physiology models
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2023.110667
– volume: 239
  year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0021
  article-title: Where should the thermal image sensor of a smart A/C look?-occupant thermal sensation model based on thermal imaging data
  publication-title: Build. Env.
  doi: 10.1016/j.buildenv.2023.110405
– volume: 246
  year: 2023
  ident: 10.1016/j.buildenv.2025.113523_bib0056
  article-title: Development of an automatic personal comfort system (APCS) based on real-time thermal sensation prediction
  publication-title: Build Env.
  doi: 10.1016/j.buildenv.2023.110958
– volume: 93
  start-page: 160
  year: 2015
  ident: 10.1016/j.buildenv.2025.113523_bib0002
  article-title: Energy-efficient control of under-actuated HVAC zones in commercial buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2015.01.050
– ident: 10.1016/j.buildenv.2025.113523_bib0045
– volume: 226
  year: 2020
  ident: 10.1016/j.buildenv.2025.113523_bib0008
  article-title: Review on occupant-centric thermal comfort sensing, predicting, and controlling
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110392
– volume: 18
  year: 2018
  ident: 10.1016/j.buildenv.2025.113523_bib0026
  article-title: Integrated method for personal thermal comfort assessment and optimization through users’ Feedback, IoT and machine learning: a case study †
  publication-title: Sensors
  doi: 10.3390/s18051602
– ident: 10.1016/j.buildenv.2025.113523_bib0041
– volume: 239
  start-page: 1471
  year: 2019
  ident: 10.1016/j.buildenv.2025.113523_bib0009
  article-title: Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.070
– volume: 17
  start-page: 1401
  year: 2024
  ident: 10.1016/j.buildenv.2025.113523_bib0057
  article-title: Application-driven development of a thermal imaging-based cabin occupant thermal sensation assessment model and its validation
  publication-title: Build. Simul.
  doi: 10.1007/s12273-024-1147-0
– volume: 231
  year: 2021
  ident: 10.1016/j.buildenv.2025.113523_bib0046
  article-title: Thermoregulation model JOS-3 with new open source code
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2020.110575
– ident: 10.1016/j.buildenv.2025.113523_bib0038
SSID ssj0016934
Score 2.4638083
Snippet •Developed an automatic coordinated fan–air-conditioner control strategy.•The strategy enables local thermal control based on individual thermal...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 113523
SubjectTerms Occupant-centric control
Personal environmental control systems
Personal thermal sensation model
Skin temperature
Thermal environment
Title Optimal control-based coordinated operation strategy for fan and air conditioning systems: Balancing individual thermal comfort and energy efficiency
URI https://dx.doi.org/10.1016/j.buildenv.2025.113523
Volume 285
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50vehBfOKbHLzG3TZNtvWmoqyKelDBW0mTCVSwu-gqePFf-H-dbFJZQfDgrQmdtGTSb75pZiYA-y4n0LfY52RqLc_QIq-ck9zk0iUOMU8yn5x8da0G99nFg3yYgZM2F8aHVUbsD5g-QevY042z2R3VdfeWsNdvFAgy4kRzlJyFuZSsfd6BuaPzy8H192aCKkSsItXjXmAqUfjxoPKnT2PzRq5iKv0JJzIVv9uoKbtztgSLkTCyo_BOyzCDzQosTJURXIXPG_run-imGHfOvWmy1CLHsm6ITFo2HGFQNXsJ5WjfGbFV5nTDdGOZrp-9sK3j71kWCjy_HLJjH_pofFf9nbrFPGkMz3uiUcaTIXCSRMhwUpLC53Ouwf3Z6d3JgMfjFrghN2rM09S5fqIdGmIVmpibcTrJexaF7lVKulz2C-mvlEKXZ0WCwlRGaCSgEkposQ6dZtjgBrDCZcQ0jBWqKjJjJCGqook3MsmdcMZuQred4HIUqmqUbbjZY9mqpPQqKYNKNqFo9VD-WB8lQf8fslv_kN2Ged8K2Yc70Bk_v-Iu0ZBxtQezBx_JXlxsX2nZ4eg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8Ylvc_Aad7tpsq03FWV9rQcVvJU0mUAF66Kr4A_x_zrZpLKC4MFbm3bSkkm_-dLMA2DfZQT6FnucTK3lKVrkpXOSm0y6xCFmSeqDk68Hqn-fXjzIhyk4aWJhvFtlxP6A6WO0ji3tOJrtYVW1bwl7_UaBICNONEfJaZhJfVHrFswcnV_2B9-bCSoXMYtUh3uBiUDhx4PSV5_G-p2Wil3pK5zIrvjdRk3YnbNFWIiEkR2Fd1qCKayXYX4ijeAKfN7Qd_9EN0W_c-5Nk6UzWlhWNZFJy56HGFTNXkM62g9GbJU5XTNdW6arFy9sq_h7loUEz6-H7Ni7PhrfVH2HbjFPGsPznqiX0bgLHAcRMhynpPDxnKtwf3Z6d9LnsdwCN7SMGvFu17leoh0aYhWamJtxOsk6FoXulEq6TPZy6Y-UQpeleYLClEZoJKASSmixBq36ucZ1YLlLiWkYK1SZp8ZIQlRFA29kkjnhjN2AdjPAxTBk1Sgad7PHolFJ4VVSBJVsQN7oofgxPwqC_j9kN_8huwez_bvrq-LqfHC5BXP-SohE3IbW6OUNd4iSjMrdOOW-AL-y484
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control-based+coordinated+operation+strategy+for+fan+and+air+conditioning+systems%3A+Balancing+individual+thermal+comfort+and+energy+efficiency&rft.jtitle=Building+and+environment&rft.au=Lyu%2C+Junmeng&rft.au=Yang%2C+Yuxin&rft.au=Lian%2C+Zhiwei&rft.au=Du%2C+Heng&rft.date=2025-11-01&rft.issn=0360-1323&rft.volume=285&rft.spage=113523&rft_id=info:doi/10.1016%2Fj.buildenv.2025.113523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2025_113523
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon