Optimal control-based coordinated operation strategy for fan and air conditioning systems: Balancing individual thermal comfort and energy efficiency
•Developed an automatic coordinated fan–air-conditioner control strategy.•The strategy enables local thermal control based on individual thermal sensations.•Surrogate models were built in a simulated environment for performance evaluation.•The strategy achieved over 20 % energy savings while maintai...
Saved in:
Published in | Building and environment Vol. 285; p. 113523 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.11.2025
|
Subjects | |
Online Access | Get full text |
ISSN | 0360-1323 |
DOI | 10.1016/j.buildenv.2025.113523 |
Cover
Abstract | •Developed an automatic coordinated fan–air-conditioner control strategy.•The strategy enables local thermal control based on individual thermal sensations.•Surrogate models were built in a simulated environment for performance evaluation.•The strategy achieved over 20 % energy savings while maintaining neutral sensation.•Key factors affecting the operational performance of the system were analyzed.
The local fan and air conditioning coordinated system (FACS) enables individualized thermal environments, which has practical significance for enhancing thermal comfort and energy efficiency. However, few studies have developed control strategies that simultaneously balance individual comfort and energy minimization. This study proposes an optimal control strategy based on individual thermal sensation models to optimize the coordinated settings of shared thermostats and local fans in both single- and multi-occupant scenarios. Subject-specific thermal sensation models were developed (R² = [0.605, 0.942]; mean absolute error = [0.17, 0.61]) and embedded within a thermophysiological model coupled with a simulated environment to construct a testing framework for strategy evaluation. Coordinated operation setpoints were computed for randomly generated occupant groupings within this framework, and their energy performance was evaluated using EnergyPlus. Results indicate that the proposed strategy enables an increase in the shared thermostat setpoint while maintaining the majority of occupants within the neutral thermal sensation range. In scenarios with 1 to 4 occupants, the developed control strategy achieved energy savings exceeding 20 % compared to A/C-only operation. Robustness tests further demonstrated that the strategy prioritized air speed adjustment and maintained stable thermostat settings under perturbations in air temperature, skin temperature, and air speed, while maintaining thermal comfort. Additionally, analysis of subject data from Shanghai revealed that when maximizing overall neutral thermal sensation, the optimal shared thermostat setpoint decreased with increasing occupant numbers, highlighting the influence of occupancy on FACS performance. This study provides a model-based solution for individualized indoor thermal regulation with enhanced energy efficiency.
[Display omitted] |
---|---|
AbstractList | •Developed an automatic coordinated fan–air-conditioner control strategy.•The strategy enables local thermal control based on individual thermal sensations.•Surrogate models were built in a simulated environment for performance evaluation.•The strategy achieved over 20 % energy savings while maintaining neutral sensation.•Key factors affecting the operational performance of the system were analyzed.
The local fan and air conditioning coordinated system (FACS) enables individualized thermal environments, which has practical significance for enhancing thermal comfort and energy efficiency. However, few studies have developed control strategies that simultaneously balance individual comfort and energy minimization. This study proposes an optimal control strategy based on individual thermal sensation models to optimize the coordinated settings of shared thermostats and local fans in both single- and multi-occupant scenarios. Subject-specific thermal sensation models were developed (R² = [0.605, 0.942]; mean absolute error = [0.17, 0.61]) and embedded within a thermophysiological model coupled with a simulated environment to construct a testing framework for strategy evaluation. Coordinated operation setpoints were computed for randomly generated occupant groupings within this framework, and their energy performance was evaluated using EnergyPlus. Results indicate that the proposed strategy enables an increase in the shared thermostat setpoint while maintaining the majority of occupants within the neutral thermal sensation range. In scenarios with 1 to 4 occupants, the developed control strategy achieved energy savings exceeding 20 % compared to A/C-only operation. Robustness tests further demonstrated that the strategy prioritized air speed adjustment and maintained stable thermostat settings under perturbations in air temperature, skin temperature, and air speed, while maintaining thermal comfort. Additionally, analysis of subject data from Shanghai revealed that when maximizing overall neutral thermal sensation, the optimal shared thermostat setpoint decreased with increasing occupant numbers, highlighting the influence of occupancy on FACS performance. This study provides a model-based solution for individualized indoor thermal regulation with enhanced energy efficiency.
[Display omitted] |
ArticleNumber | 113523 |
Author | Du, Heng Lyu, Junmeng Yang, Yuxin Lian, Zhiwei |
Author_xml | – sequence: 1 givenname: Junmeng surname: Lyu fullname: Lyu, Junmeng organization: Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China – sequence: 2 givenname: Yuxin surname: Yang fullname: Yang, Yuxin organization: Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China – sequence: 3 givenname: Zhiwei orcidid: 0000-0003-3718-1450 surname: Lian fullname: Lian, Zhiwei email: zwlian@sjtu.edu.cn organization: Department of Architecture, School of Design, Shanghai Jiao Tong University, Shanghai, China – sequence: 4 givenname: Heng surname: Du fullname: Du, Heng organization: Department of Built Environment, National University of Singapore, Singapore |
BookMark | eNqFkM9OAyEQxjnUxFZ9BcML7ApLl249qY3_kia96JmwMFSaLTRAm-yD-L6yXT17mm9gvm8mvxmaOO8AoVtKSkoov9uV7dF2GtyprEhVl5SyumITNCWMk4Kyil2iWYw7koeXbD5F35tDsnvZYeVdCr4rWhlB584HbZ1MWfsDBJmsdzimLGDbY-MDNtJh6TSWNgxmbYcR67Y49jHBPt7jJ9lJp4Ynm79PVh_znvQFYdy3zynpHAEOQk4FY6yy4FR_jS6M7CLc_NYr9Pny_LF6K9ab1_fV47pQFaepqCpjFlQaUIs5k7wmykjaEA1MkpbXpqkXy3pQnINp5ksKTLWKSSBNwziT7ArxMVcFH2MAIw4h0wi9oEQMQMVO_AEVA1AxAs3Gh9EI-bqThSDi-XLQNoBKQnv7X8QP1tuLIw |
Cites_doi | 10.1016/j.buildenv.2024.111925 10.1016/j.buildenv.2021.108437 10.1016/j.enbuild.2017.11.028 10.1080/17512549.2018.1505654 10.1016/j.buildenv.2019.106443 10.1016/j.enbuild.2017.02.051 10.1016/j.buildenv.2018.07.008 10.1016/j.buildenv.2019.106351 10.1016/j.apenergy.2024.123707 10.1111/j.1600-0668.2004.00284.x 10.1016/j.buildenv.2022.109458 10.1016/j.buildenv.2017.07.021 10.1016/j.enbuild.2023.113437 10.1016/j.buildenv.2019.106329 10.1016/j.apenergy.2019.01.070 10.1016/j.buildenv.2023.111002 10.1016/j.apenergy.2017.11.021 10.1016/j.buildenv.2013.03.022 10.1016/j.buildenv.2014.04.024 10.1016/j.buildenv.2022.109933 10.1016/j.buildenv.2021.107808 10.1111/ina.13138 10.1016/j.softx.2020.100578 10.1016/j.buildenv.2015.12.015 10.1016/j.buildenv.2017.06.027 10.1016/j.applthermaleng.2022.119915 10.1016/j.buildenv.2018.11.019 10.1016/S0360-1323(96)00038-8 10.1016/j.buildenv.2020.107443 10.1016/j.buildenv.2010.03.016 10.1016/j.enbuild.2020.110011 10.1016/j.rser.2023.113316 10.1016/j.buildenv.2012.12.002 10.1016/j.buildenv.2013.12.009 10.1111/ina.12352 10.1016/j.buildenv.2020.107316 10.1080/09613210902899785 10.1016/j.buildenv.2018.01.023 10.1016/j.enbuild.2024.114437 10.1016/j.buildenv.2024.111692 10.1016/j.enbuild.2023.112900 10.1038/s41598-024-62377-5 10.1016/S0378-7788(97)00025-X 10.1016/j.buildenv.2024.111260 10.1016/j.buildenv.2023.110667 10.1016/j.buildenv.2023.110405 10.1016/j.buildenv.2023.110958 10.1016/j.enbuild.2015.01.050 10.1016/j.enbuild.2020.110392 10.3390/s18051602 10.1007/s12273-024-1147-0 10.1016/j.enbuild.2020.110575 |
ContentType | Journal Article |
Copyright | 2025 Elsevier Ltd |
Copyright_xml | – notice: 2025 Elsevier Ltd |
DBID | AAYXX CITATION |
DOI | 10.1016/j.buildenv.2025.113523 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
ExternalDocumentID | 10_1016_j_buildenv_2025_113523 S0360132325009965 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAHCO AAIKC AAIKJ AAKOC AALRI AAMNW AAOAW AAQFI AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABFYP ABJNI ABLST ABMAC ACDAQ ACGFS ACIWK ACLOT ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHIDL AHJVU AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKIFW AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP AXJTR BELTK BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JARJE JJJVA KCYFY KOM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RNS ROL RPZ SDF SDG SDP SEN SES SEW SPC SPCBC SSJ SSR SST SSZ T5K ~G- ~HD AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AEGFY AGQPQ AI. ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HMC HVGLF HZ~ LY6 LY7 LY9 M41 R2- SAC SET VH1 WUQ ZMT |
ID | FETCH-LOGICAL-c261t-22ff71afec743a650cfa180de3a0b65f857950b6566ef8491e3cbc3ae088363a3 |
IEDL.DBID | AIKHN |
ISSN | 0360-1323 |
IngestDate | Thu Sep 25 00:41:07 EDT 2025 Sat Sep 27 17:13:14 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Personal environmental control systems Personal thermal sensation model Occupant-centric control Thermal environment Skin temperature |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c261t-22ff71afec743a650cfa180de3a0b65f857950b6566ef8491e3cbc3ae088363a3 |
ORCID | 0000-0003-3718-1450 |
ParticipantIDs | crossref_primary_10_1016_j_buildenv_2025_113523 elsevier_sciencedirect_doi_10_1016_j_buildenv_2025_113523 |
PublicationCentury | 2000 |
PublicationDate | 2025-11-01 2025-11-00 |
PublicationDateYYYYMMDD | 2025-11-01 |
PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Building and environment |
PublicationYear | 2025 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Aryal, Becerik-Gerber (bib0020) 2020; 185 Aijazi, Parkinson, Zhang, Schiavon (bib0059) 2024; 14 Lyu, Du, Zhao, Shi, Wang, Lian (bib0021) 2023; 239 Yu, Xu, Zhang, Guan, Yue (bib0025) 2022; 223 Ghahramani, Castro, Karvigh, Becerik-Gerber (bib0018) 2018; 211 Hu, Zhou, Yan, Guo, Hong, Jiang (bib0004) 2023; 181 Zhai, Miao, Yang, Zhao, Zhang, Arens (bib0044) 2019; 165 Kubo, Isoda, Enomoto-Koshimizu (bib0062) 1997; 32 Jung, Jazizadeh (bib0009) 2019; 239 Tartarini, Schiavon (bib0047) 2020; 12 Schiavon, Yang, Donner, Chang, Nazaroff (bib0014) 2017; 27 Guenther, Sawodny (bib0019) 2019; 148 Jung, Jazizadeh (bib0028) 2019; 239 Jung, Jazizadeh, Smith, Domer, Smith, Domer (bib0030) 2018 Tartarini, Schiavon, Jay, Arens, Huizenga (bib0061) 2022; 207 Younes, Chen, Ghali, Kosonen, Melikov, Kilpeläinen, Ghaddar (bib0012) 2024; 318 Kalaimani, Jain, Keshav, Rosenberg (bib0023) 2020; 14 Lyu, Shi, Du, Lian (bib0031) 2023 . ASHRAE (bib0001) 2023; 145 Zhai, Arens, Elsworth, Zhang (bib0032) 2017; 122 Zhai, Zhang, Zhang, Pasut, Arens, Meng (bib0013) 2013; 65 Arens, Xu, Miura, Hui, Fountain, Bauman (bib0036) 1998; 27 de Dear, Kim, Parkinson (bib0051) 2018; 158 Lyu, Yang, Shi, Lian (bib0057) 2024; 17 Klein, Becerik-Gerber, Kavulya, Jazizadeh (bib0029) 2011 Wu, Cao, Zhu (bib0056) 2023; 246 Huang, Ouyang, Zhu, Jiang (bib0035) 2013; 61 Yang, Liu, Liu, Wang (bib0054) 2023; 222 André, De Vecchi, Lamberts (bib0017) 2020; 222 Pasut, Arens, Zhang, Zhai (bib0033) 2014; 79 Xu, Liu, Hu, Spanos (bib0024) 2017; 141 Park, Ouf, Gunay, Peng, O’Brien, Kjærgaard, Nagy (bib0010) 2019; 165 He, Li, He, He, Song (bib0034) 2017; 123 International Organization for Standardization, ISO 9241-5:1998 ergonomic requirements for office work with visual display terminals (VDTs) – Part 5: workstation layout and postural requirements, (1998). Melikov (bib0043) 2004; 14 International Organization for Standardization, ISO 7730:2005 ergonomics of the thermal environment: analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, (2005). Brager, Baker (bib0003) 2009; 37 Brooks, Kumar, Goyal, Subramany, Barooah (bib0002) 2015; 93 Rida, Frijns, Khovalyg (bib0048) 2023; 243 Cheung, Schiavon, Graham, Tham (bib0060) 2021; 188 Chow, Fong, Givoni, Lin, Chan (bib0063) 2010; 45 Takahashi, Nomoto, Yoda, Hisayama, Ogata, Ozeki, Tanabe (bib0046) 2021; 231 Luo, Arens, Zhang, Ghahramani, Wang (bib0005) 2018; 143 Wu, Cao, Hu, Lv, Meng, Zhang (bib0053) 2023; 285 Song, Duan, Wang, Liu, Du, Chen (bib0037) 2021; 196 Xie, Li, Li, Zhang, Luo (bib0008) 2020; 226 Xue, Zhang, Chen, Li (bib0016) 2024; 84 Kim, Schiavon, Brager (bib0022) 2018; 132 Wu, Jiang, Chen, Fan, Cao (bib0027) 2024; 371 Wang, Warren, Luo, He, Zhang, Arens, Chen, He, Hu, Jin, Liu, Cohen-Tanugi, Smith (bib0006) 2020; 167 Shinoda, Bogatu, Watanabe, Kaneko, Olesen, Kazanci (bib0011) 2024; 252 Fanger (bib0050) 1970 Cao, Awbi, Yao, Fan, Sirén, Kosonen, (Jensen) Zhang (bib0055) 2014; 73 Zhang (bib0042) 2003 X. Jia, Y. Pan, M. Zhu, H. Zhu, Z. Li, J. Zhang, X. Zhou, S. Pan, C. Wang, D. Yan, Z. Wu, H. Deng, Y. Pan, J. Xie, L. Xu, Occupant behavior modules development for coupled simulation in DeST 3.0, Energy Build. 297 (2023) 113437. Perino, Bilardo, Fabrizio (bib0007) 2024; 265 Salamone, Belussi, Currò, Danza, Ghellere, Guazzi, Lenzi, Megale, Meroni (bib0026) 2018; 18 Tian, Yu, Liu (bib0039) 2022; 32 Zhou, Zhang, Xie, Liu (bib0015) 2023; 229 International Organization for Standardization, ISO 7726:1998 Ergonomics of the thermal environment – Instruments for measuring physical quantities, (1998). Hou, Lyu, Wu, Chen, Shi, Lian (bib0040) 2024; 261 Luo, Ji, Cao, Ouyang, Zhu (bib0052) 2016; 98 Wheat, Sullivan, Lefevre, Ostriker (bib0058) 2024 He (10.1016/j.buildenv.2025.113523_bib0034) 2017; 123 10.1016/j.buildenv.2025.113523_bib0041 Luo (10.1016/j.buildenv.2025.113523_bib0005) 2018; 143 Wu (10.1016/j.buildenv.2025.113523_bib0053) 2023; 285 10.1016/j.buildenv.2025.113523_bib0045 Chow (10.1016/j.buildenv.2025.113523_bib0063) 2010; 45 Lyu (10.1016/j.buildenv.2025.113523_bib0021) 2023; 239 Perino (10.1016/j.buildenv.2025.113523_bib0007) 2024; 265 André (10.1016/j.buildenv.2025.113523_bib0017) 2020; 222 Xu (10.1016/j.buildenv.2025.113523_bib0024) 2017; 141 Ghahramani (10.1016/j.buildenv.2025.113523_bib0018) 2018; 211 Song (10.1016/j.buildenv.2025.113523_bib0037) 2021; 196 Takahashi (10.1016/j.buildenv.2025.113523_bib0046) 2021; 231 Wu (10.1016/j.buildenv.2025.113523_bib0056) 2023; 246 Jung (10.1016/j.buildenv.2025.113523_bib0028) 2019; 239 Melikov (10.1016/j.buildenv.2025.113523_bib0043) 2004; 14 Xue (10.1016/j.buildenv.2025.113523_bib0016) 2024; 84 Zhou (10.1016/j.buildenv.2025.113523_bib0015) 2023; 229 Aryal (10.1016/j.buildenv.2025.113523_bib0020) 2020; 185 10.1016/j.buildenv.2025.113523_bib0038 Yang (10.1016/j.buildenv.2025.113523_bib0054) 2023; 222 Arens (10.1016/j.buildenv.2025.113523_bib0036) 1998; 27 Jung (10.1016/j.buildenv.2025.113523_bib0009) 2019; 239 Kalaimani (10.1016/j.buildenv.2025.113523_bib0023) 2020; 14 Brooks (10.1016/j.buildenv.2025.113523_bib0002) 2015; 93 Lyu (10.1016/j.buildenv.2025.113523_bib0057) 2024; 17 Luo (10.1016/j.buildenv.2025.113523_bib0052) 2016; 98 Cao (10.1016/j.buildenv.2025.113523_bib0055) 2014; 73 Zhang (10.1016/j.buildenv.2025.113523_bib0042) 2003 Wang (10.1016/j.buildenv.2025.113523_bib0006) 2020; 167 Salamone (10.1016/j.buildenv.2025.113523_bib0026) 2018; 18 Younes (10.1016/j.buildenv.2025.113523_bib0012) 2024; 318 Guenther (10.1016/j.buildenv.2025.113523_bib0019) 2019; 148 Xie (10.1016/j.buildenv.2025.113523_bib0008) 2020; 226 Pasut (10.1016/j.buildenv.2025.113523_bib0033) 2014; 79 Zhai (10.1016/j.buildenv.2025.113523_bib0044) 2019; 165 Fanger (10.1016/j.buildenv.2025.113523_bib0050) 1970 Schiavon (10.1016/j.buildenv.2025.113523_bib0014) 2017; 27 Tian (10.1016/j.buildenv.2025.113523_bib0039) 2022; 32 de Dear (10.1016/j.buildenv.2025.113523_bib0051) 2018; 158 Tartarini (10.1016/j.buildenv.2025.113523_bib0047) 2020; 12 Rida (10.1016/j.buildenv.2025.113523_bib0048) 2023; 243 Wu (10.1016/j.buildenv.2025.113523_bib0027) 2024; 371 Hou (10.1016/j.buildenv.2025.113523_bib0040) 2024; 261 Zhai (10.1016/j.buildenv.2025.113523_bib0032) 2017; 122 Klein (10.1016/j.buildenv.2025.113523_bib0029) 2011 Wheat (10.1016/j.buildenv.2025.113523_bib0058) 2024 Kubo (10.1016/j.buildenv.2025.113523_bib0062) 1997; 32 Huang (10.1016/j.buildenv.2025.113523_bib0035) 2013; 61 Tartarini (10.1016/j.buildenv.2025.113523_bib0061) 2022; 207 Jung (10.1016/j.buildenv.2025.113523_bib0030) 2018 Hu (10.1016/j.buildenv.2025.113523_bib0004) 2023; 181 ASHRAE (10.1016/j.buildenv.2025.113523_bib0001) 2023; 145 Yu (10.1016/j.buildenv.2025.113523_bib0025) 2022; 223 Cheung (10.1016/j.buildenv.2025.113523_bib0060) 2021; 188 Park (10.1016/j.buildenv.2025.113523_bib0010) 2019; 165 Aijazi (10.1016/j.buildenv.2025.113523_bib0059) 2024; 14 Shinoda (10.1016/j.buildenv.2025.113523_bib0011) 2024; 252 Lyu (10.1016/j.buildenv.2025.113523_bib0031) 2023 10.1016/j.buildenv.2025.113523_bib0049 Kim (10.1016/j.buildenv.2025.113523_bib0022) 2018; 132 Brager (10.1016/j.buildenv.2025.113523_bib0003) 2009; 37 Zhai (10.1016/j.buildenv.2025.113523_bib0013) 2013; 65 |
References_xml | – volume: 243 year: 2023 ident: bib0048 article-title: Modeling local thermal responses of individuals: validation of advanced human thermo-physiology models publication-title: Build Env. – volume: 132 start-page: 114 year: 2018 end-page: 124 ident: bib0022 article-title: Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control publication-title: Build. Env. – volume: 148 start-page: 448 year: 2019 end-page: 458 ident: bib0019 article-title: Feature selection and Gaussian Process regression for personalized thermal comfort prediction publication-title: Build. Env. – volume: 239 year: 2023 ident: bib0021 article-title: Where should the thermal image sensor of a smart A/C look?-occupant thermal sensation model based on thermal imaging data publication-title: Build. Env. – volume: 73 start-page: 171 year: 2014 end-page: 186 ident: bib0055 article-title: A review of the performance of different ventilation and airflow distribution systems in buildings publication-title: Build Env. – volume: 123 start-page: 378 year: 2017 end-page: 389 ident: bib0034 article-title: The influence of personally controlled desk fan on comfort and energy consumption in hot and humid environments publication-title: Build. Env. – volume: 231 year: 2021 ident: bib0046 article-title: Thermoregulation model JOS-3 with new open source code publication-title: Energy Build. – year: 1970 ident: bib0050 article-title: Thermal comfort. Analysis and applications in environmental engineering publication-title: Thermal Comfort. Analysis and Applications in Environmental Engineering – volume: 17 start-page: 1401 year: 2024 end-page: 1417 ident: bib0057 article-title: Application-driven development of a thermal imaging-based cabin occupant thermal sensation assessment model and its validation publication-title: Build. Simul. – start-page: 232 year: 2018 end-page: 242 ident: bib0030 article-title: Multi-occupancy Indoor Thermal Condition Optimization in Consideration of Thermal Sensitivity – volume: 265 year: 2024 ident: bib0007 article-title: A framework for assessing the energy performance of Personalized Environmental Control Systems (PECS) for heating, cooling and ventilation publication-title: Build Env. – year: 2003 ident: bib0042 article-title: Human Thermal Sensation and Comfort in Transient and Non-Uniform Thermal Environments – volume: 32 start-page: 211 year: 1997 end-page: 218 ident: bib0062 article-title: Cooling effects of preferred air velocity in muggy conditions publication-title: Build Env. – volume: 27 start-page: 690 year: 2017 end-page: 702 ident: bib0014 article-title: Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons publication-title: Indoor. Air. – volume: 79 start-page: 13 year: 2014 end-page: 19 ident: bib0033 article-title: Enabling energy-efficient approaches to thermal comfort using room air motion publication-title: Build. Env. – volume: 165 year: 2019 ident: bib0010 article-title: A critical review of field implementations of occupant-centric building controls publication-title: Build. Env. – volume: 318 year: 2024 ident: bib0012 article-title: Enhancing thermal comfort of older adults during extreme weather: combined personal comfort system and ventilated vest publication-title: Energy Build. – volume: 61 start-page: 27 year: 2013 end-page: 33 ident: bib0035 article-title: A study about the demand for air movement in warm environment publication-title: Build. Env. – start-page: 161 year: 2011 end-page: 168 ident: bib0029 article-title: Continuous Sensing of Occupant Perception of Indoor Ambient Factors – volume: 12 year: 2020 ident: bib0047 article-title: pythermalcomfort: a Python package for thermal comfort research publication-title: SoftwareX. – reference: International Organization for Standardization, ISO 7726:1998 Ergonomics of the thermal environment – Instruments for measuring physical quantities, (1998). – volume: 285 year: 2023 ident: bib0053 article-title: Development of personal comfort model and its use in the control of air conditioner publication-title: Energy Build. – volume: 14 year: 2024 ident: bib0059 article-title: Passive and low-energy strategies to improve sleep thermal comfort and energy resilience during heat waves and cold snaps publication-title: Sci. Rep. – volume: 185 year: 2020 ident: bib0020 article-title: Thermal comfort modeling when personalized comfort systems are in use: comparison of sensing and learning methods publication-title: Build. Env. – year: 2024 ident: bib0058 article-title: Feeling the Heat: How Households Manage High Air Conditioning Bills – volume: 167 year: 2020 ident: bib0006 article-title: Evaluating the comfort of thermally dynamic wearable devices publication-title: Build Env. – volume: 158 start-page: 1296 year: 2018 end-page: 1305 ident: bib0051 article-title: Residential adaptive comfort in a humid subtropical climate—Sydney Australia publication-title: Energy Build. – volume: 27 start-page: 45 year: 1998 end-page: 59 ident: bib0036 article-title: A study of occupant cooling by personally controlled air movement publication-title: Energy Build. – volume: 18 year: 2018 ident: bib0026 article-title: Integrated method for personal thermal comfort assessment and optimization through users’ Feedback, IoT and machine learning: a case study † publication-title: Sensors – volume: 211 start-page: 41 year: 2018 end-page: 49 ident: bib0018 article-title: Towards unsupervised learning of thermal comfort using infrared thermography publication-title: Appl. Energy – volume: 37 start-page: 369 year: 2009 end-page: 380 ident: bib0003 article-title: Occupant satisfaction in mixed-mode buildings publication-title: Build. Res. Inf. – volume: 93 start-page: 160 year: 2015 end-page: 168 ident: bib0002 article-title: Energy-efficient control of under-actuated HVAC zones in commercial buildings publication-title: Energy Build. – volume: 246 year: 2023 ident: bib0056 article-title: Development of an automatic personal comfort system (APCS) based on real-time thermal sensation prediction publication-title: Build Env. – volume: 98 start-page: 30 year: 2016 end-page: 38 ident: bib0052 article-title: Indoor climate and thermal physiological adaptation: evidences from migrants with different cold indoor exposures publication-title: Build Env. – volume: 196 year: 2021 ident: bib0037 article-title: Study on the influence of air velocity on human thermal comfort under non-uniform thermal environment publication-title: Build. Env. – volume: 32 year: 2022 ident: bib0039 article-title: Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China publication-title: Indoor. Air. – volume: 14 start-page: 157 year: 2004 end-page: 167 ident: bib0043 article-title: Personalized ventilationAbstract publication-title: Indoor. Air. – volume: 207 year: 2022 ident: bib0061 article-title: Application of Gagge’s energy balance model to determine humidity-dependent temperature thresholds for healthy adults using electric fans during heatwaves publication-title: Build Env. – volume: 181 year: 2023 ident: bib0004 article-title: A systematic review of building energy sufficiency towards energy and climate targets publication-title: Renew. Sustain. Energy Rev. – volume: 222 year: 2020 ident: bib0017 article-title: User-centered environmental control: a review of current findings on personal conditioning systems and personal comfort models publication-title: Energy Build. – volume: 239 start-page: 1471 year: 2019 end-page: 1508 ident: bib0028 article-title: Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions publication-title: Appl. Energy – volume: 371 year: 2024 ident: bib0027 article-title: Overall and local environmental collaborative control based on personal comfort model and personal comfort system publication-title: Appl. Energy – volume: 222 year: 2023 ident: bib0054 article-title: Performance evaluation of ductless personalized ventilation combined with impinging jet ventilation publication-title: Appl. Therm. Eng. – reference: International Organization for Standardization, ISO 7730:2005 ergonomics of the thermal environment: analytical determination and interpretation of thermal comfort using calculation of the PMV and PPD indices and local thermal comfort criteria, (2005). – year: 2023 ident: bib0031 article-title: Sex-based thermal comfort zones and energy savings in spaces with joint operation of air conditioner and fan publication-title: Build. Env. – volume: 45 start-page: 2177 year: 2010 end-page: 2183 ident: bib0063 article-title: Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment publication-title: Build Env. – volume: 229 year: 2023 ident: bib0015 article-title: Occupant’s preferred indoor air speed in hot-humid climate and its influence on thermal comfort publication-title: Build. Env. – volume: 141 start-page: 308 year: 2017 end-page: 320 ident: bib0024 article-title: Optimal coordination of air conditioning system and personal fans for building energy efficiency improvement publication-title: Energy Build. – volume: 239 start-page: 1471 year: 2019 end-page: 1508 ident: bib0009 article-title: Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions publication-title: Appl. Energy – volume: 188 year: 2021 ident: bib0060 article-title: Occupant satisfaction with the indoor environment in seven commercial buildings in Singapore publication-title: Build Env. – reference: X. Jia, Y. Pan, M. Zhu, H. Zhu, Z. Li, J. Zhang, X. Zhou, S. Pan, C. Wang, D. Yan, Z. Wu, H. Deng, Y. Pan, J. Xie, L. Xu, Occupant behavior modules development for coupled simulation in DeST 3.0, Energy Build. 297 (2023) 113437. – volume: 223 year: 2022 ident: bib0025 article-title: Energy-efficient personalized thermal comfort control in office buildings based on multi-agent deep reinforcement learning publication-title: Build Env. – volume: 84 year: 2024 ident: bib0016 article-title: Developing a novel personal thermoelectric comfort system for improving indoor occupant’s thermal comfort publication-title: J. Build. Eng. – volume: 65 start-page: 109 year: 2013 end-page: 117 ident: bib0013 article-title: Comfort under personally controlled air movement in warm and humid environments publication-title: Build. Env. – reference: . – volume: 252 year: 2024 ident: bib0011 article-title: Performance evaluation of a multi-functional personalized environmental control system (PECS) prototype publication-title: Build. Env. – volume: 226 year: 2020 ident: bib0008 article-title: Review on occupant-centric thermal comfort sensing, predicting, and controlling publication-title: Energy Build. – volume: 165 year: 2019 ident: bib0044 article-title: Using personally controlled air movement to improve comfort after simulated summer commute publication-title: Build. Env. – volume: 261 year: 2024 ident: bib0040 article-title: Occupant-centric cabin thermal sensation assessment system based on low-cost thermal imaging publication-title: Build. Env. – volume: 14 start-page: 129 year: 2020 end-page: 157 ident: bib0023 article-title: On the interaction between personal comfort systems and centralized HVAC systems in office buildings publication-title: Adv. Build Energy Res. – volume: 145 year: 2023 ident: bib0001 article-title: Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard 55-2023, American Society of Heating publication-title: Refrig. Air Cond Eng. – volume: 143 start-page: 206 year: 2018 end-page: 216 ident: bib0005 article-title: Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices publication-title: Build. Env. – reference: International Organization for Standardization, ISO 9241-5:1998 ergonomic requirements for office work with visual display terminals (VDTs) – Part 5: workstation layout and postural requirements, (1998). – volume: 122 start-page: 247 year: 2017 end-page: 257 ident: bib0032 article-title: Selecting air speeds for cooling at sedentary and non-sedentary office activity levels publication-title: Build. Env. – volume: 265 year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0007 article-title: A framework for assessing the energy performance of Personalized Environmental Control Systems (PECS) for heating, cooling and ventilation publication-title: Build Env. doi: 10.1016/j.buildenv.2024.111925 – volume: 207 year: 2022 ident: 10.1016/j.buildenv.2025.113523_bib0061 article-title: Application of Gagge’s energy balance model to determine humidity-dependent temperature thresholds for healthy adults using electric fans during heatwaves publication-title: Build Env. doi: 10.1016/j.buildenv.2021.108437 – volume: 158 start-page: 1296 year: 2018 ident: 10.1016/j.buildenv.2025.113523_bib0051 article-title: Residential adaptive comfort in a humid subtropical climate—Sydney Australia publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.11.028 – volume: 14 start-page: 129 year: 2020 ident: 10.1016/j.buildenv.2025.113523_bib0023 article-title: On the interaction between personal comfort systems and centralized HVAC systems in office buildings publication-title: Adv. Build Energy Res. doi: 10.1080/17512549.2018.1505654 – volume: 167 year: 2020 ident: 10.1016/j.buildenv.2025.113523_bib0006 article-title: Evaluating the comfort of thermally dynamic wearable devices publication-title: Build Env. doi: 10.1016/j.buildenv.2019.106443 – volume: 141 start-page: 308 year: 2017 ident: 10.1016/j.buildenv.2025.113523_bib0024 article-title: Optimal coordination of air conditioning system and personal fans for building energy efficiency improvement publication-title: Energy Build. doi: 10.1016/j.enbuild.2017.02.051 – volume: 143 start-page: 206 year: 2018 ident: 10.1016/j.buildenv.2025.113523_bib0005 article-title: Thermal comfort evaluated for combinations of energy-efficient personal heating and cooling devices publication-title: Build. Env. doi: 10.1016/j.buildenv.2018.07.008 – volume: 165 year: 2019 ident: 10.1016/j.buildenv.2025.113523_bib0010 article-title: A critical review of field implementations of occupant-centric building controls publication-title: Build. Env. doi: 10.1016/j.buildenv.2019.106351 – year: 2003 ident: 10.1016/j.buildenv.2025.113523_bib0042 – year: 1970 ident: 10.1016/j.buildenv.2025.113523_bib0050 article-title: Thermal comfort. Analysis and applications in environmental engineering – volume: 371 year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0027 article-title: Overall and local environmental collaborative control based on personal comfort model and personal comfort system publication-title: Appl. Energy doi: 10.1016/j.apenergy.2024.123707 – volume: 14 start-page: 157 year: 2004 ident: 10.1016/j.buildenv.2025.113523_bib0043 article-title: Personalized ventilationAbstract publication-title: Indoor. Air. doi: 10.1111/j.1600-0668.2004.00284.x – volume: 223 year: 2022 ident: 10.1016/j.buildenv.2025.113523_bib0025 article-title: Energy-efficient personalized thermal comfort control in office buildings based on multi-agent deep reinforcement learning publication-title: Build Env. doi: 10.1016/j.buildenv.2022.109458 – volume: 123 start-page: 378 year: 2017 ident: 10.1016/j.buildenv.2025.113523_bib0034 article-title: The influence of personally controlled desk fan on comfort and energy consumption in hot and humid environments publication-title: Build. Env. doi: 10.1016/j.buildenv.2017.07.021 – ident: 10.1016/j.buildenv.2025.113523_bib0049 doi: 10.1016/j.enbuild.2023.113437 – volume: 165 year: 2019 ident: 10.1016/j.buildenv.2025.113523_bib0044 article-title: Using personally controlled air movement to improve comfort after simulated summer commute publication-title: Build. Env. doi: 10.1016/j.buildenv.2019.106329 – volume: 239 start-page: 1471 year: 2019 ident: 10.1016/j.buildenv.2025.113523_bib0028 article-title: Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.070 – year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0031 article-title: Sex-based thermal comfort zones and energy savings in spaces with joint operation of air conditioner and fan publication-title: Build. Env. doi: 10.1016/j.buildenv.2023.111002 – volume: 211 start-page: 41 year: 2018 ident: 10.1016/j.buildenv.2025.113523_bib0018 article-title: Towards unsupervised learning of thermal comfort using infrared thermography publication-title: Appl. Energy doi: 10.1016/j.apenergy.2017.11.021 – volume: 65 start-page: 109 year: 2013 ident: 10.1016/j.buildenv.2025.113523_bib0013 article-title: Comfort under personally controlled air movement in warm and humid environments publication-title: Build. Env. doi: 10.1016/j.buildenv.2013.03.022 – volume: 79 start-page: 13 year: 2014 ident: 10.1016/j.buildenv.2025.113523_bib0033 article-title: Enabling energy-efficient approaches to thermal comfort using room air motion publication-title: Build. Env. doi: 10.1016/j.buildenv.2014.04.024 – volume: 229 year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0015 article-title: Occupant’s preferred indoor air speed in hot-humid climate and its influence on thermal comfort publication-title: Build. Env. doi: 10.1016/j.buildenv.2022.109933 – volume: 196 year: 2021 ident: 10.1016/j.buildenv.2025.113523_bib0037 article-title: Study on the influence of air velocity on human thermal comfort under non-uniform thermal environment publication-title: Build. Env. doi: 10.1016/j.buildenv.2021.107808 – start-page: 232 year: 2018 ident: 10.1016/j.buildenv.2025.113523_bib0030 – volume: 32 year: 2022 ident: 10.1016/j.buildenv.2025.113523_bib0039 article-title: Facial skin temperature and its relationship with overall thermal sensation during winter in Changsha, China publication-title: Indoor. Air. doi: 10.1111/ina.13138 – volume: 12 year: 2020 ident: 10.1016/j.buildenv.2025.113523_bib0047 article-title: pythermalcomfort: a Python package for thermal comfort research publication-title: SoftwareX. doi: 10.1016/j.softx.2020.100578 – volume: 98 start-page: 30 year: 2016 ident: 10.1016/j.buildenv.2025.113523_bib0052 article-title: Indoor climate and thermal physiological adaptation: evidences from migrants with different cold indoor exposures publication-title: Build Env. doi: 10.1016/j.buildenv.2015.12.015 – volume: 122 start-page: 247 year: 2017 ident: 10.1016/j.buildenv.2025.113523_bib0032 article-title: Selecting air speeds for cooling at sedentary and non-sedentary office activity levels publication-title: Build. Env. doi: 10.1016/j.buildenv.2017.06.027 – volume: 222 year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0054 article-title: Performance evaluation of ductless personalized ventilation combined with impinging jet ventilation publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2022.119915 – volume: 148 start-page: 448 year: 2019 ident: 10.1016/j.buildenv.2025.113523_bib0019 article-title: Feature selection and Gaussian Process regression for personalized thermal comfort prediction publication-title: Build. Env. doi: 10.1016/j.buildenv.2018.11.019 – volume: 32 start-page: 211 year: 1997 ident: 10.1016/j.buildenv.2025.113523_bib0062 article-title: Cooling effects of preferred air velocity in muggy conditions publication-title: Build Env. doi: 10.1016/S0360-1323(96)00038-8 – volume: 188 year: 2021 ident: 10.1016/j.buildenv.2025.113523_bib0060 article-title: Occupant satisfaction with the indoor environment in seven commercial buildings in Singapore publication-title: Build Env. doi: 10.1016/j.buildenv.2020.107443 – volume: 45 start-page: 2177 year: 2010 ident: 10.1016/j.buildenv.2025.113523_bib0063 article-title: Thermal sensation of Hong Kong people with increased air speed, temperature and humidity in air-conditioned environment publication-title: Build Env. doi: 10.1016/j.buildenv.2010.03.016 – volume: 222 year: 2020 ident: 10.1016/j.buildenv.2025.113523_bib0017 article-title: User-centered environmental control: a review of current findings on personal conditioning systems and personal comfort models publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110011 – volume: 181 year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0004 article-title: A systematic review of building energy sufficiency towards energy and climate targets publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2023.113316 – start-page: 161 year: 2011 ident: 10.1016/j.buildenv.2025.113523_bib0029 – volume: 61 start-page: 27 year: 2013 ident: 10.1016/j.buildenv.2025.113523_bib0035 article-title: A study about the demand for air movement in warm environment publication-title: Build. Env. doi: 10.1016/j.buildenv.2012.12.002 – volume: 73 start-page: 171 year: 2014 ident: 10.1016/j.buildenv.2025.113523_bib0055 article-title: A review of the performance of different ventilation and airflow distribution systems in buildings publication-title: Build Env. doi: 10.1016/j.buildenv.2013.12.009 – volume: 27 start-page: 690 year: 2017 ident: 10.1016/j.buildenv.2025.113523_bib0014 article-title: Thermal comfort, perceived air quality, and cognitive performance when personally controlled air movement is used by tropically acclimatized persons publication-title: Indoor. Air. doi: 10.1111/ina.12352 – volume: 185 year: 2020 ident: 10.1016/j.buildenv.2025.113523_bib0020 article-title: Thermal comfort modeling when personalized comfort systems are in use: comparison of sensing and learning methods publication-title: Build. Env. doi: 10.1016/j.buildenv.2020.107316 – volume: 37 start-page: 369 year: 2009 ident: 10.1016/j.buildenv.2025.113523_bib0003 article-title: Occupant satisfaction in mixed-mode buildings publication-title: Build. Res. Inf. doi: 10.1080/09613210902899785 – volume: 132 start-page: 114 year: 2018 ident: 10.1016/j.buildenv.2025.113523_bib0022 article-title: Personal comfort models – A new paradigm in thermal comfort for occupant-centric environmental control publication-title: Build. Env. doi: 10.1016/j.buildenv.2018.01.023 – volume: 318 year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0012 article-title: Enhancing thermal comfort of older adults during extreme weather: combined personal comfort system and ventilated vest publication-title: Energy Build. doi: 10.1016/j.enbuild.2024.114437 – volume: 84 year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0016 article-title: Developing a novel personal thermoelectric comfort system for improving indoor occupant’s thermal comfort publication-title: J. Build. Eng. – volume: 261 year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0040 article-title: Occupant-centric cabin thermal sensation assessment system based on low-cost thermal imaging publication-title: Build. Env. doi: 10.1016/j.buildenv.2024.111692 – volume: 285 year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0053 article-title: Development of personal comfort model and its use in the control of air conditioner publication-title: Energy Build. doi: 10.1016/j.enbuild.2023.112900 – volume: 14 year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0059 article-title: Passive and low-energy strategies to improve sleep thermal comfort and energy resilience during heat waves and cold snaps publication-title: Sci. Rep. doi: 10.1038/s41598-024-62377-5 – year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0058 – volume: 145 year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0001 article-title: Thermal environmental conditions for human occupancy. ANSI/ASHRAE Standard 55-2023, American Society of Heating publication-title: Refrig. Air Cond Eng. – volume: 27 start-page: 45 year: 1998 ident: 10.1016/j.buildenv.2025.113523_bib0036 article-title: A study of occupant cooling by personally controlled air movement publication-title: Energy Build. doi: 10.1016/S0378-7788(97)00025-X – volume: 252 year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0011 article-title: Performance evaluation of a multi-functional personalized environmental control system (PECS) prototype publication-title: Build. Env. doi: 10.1016/j.buildenv.2024.111260 – volume: 243 year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0048 article-title: Modeling local thermal responses of individuals: validation of advanced human thermo-physiology models publication-title: Build Env. doi: 10.1016/j.buildenv.2023.110667 – volume: 239 year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0021 article-title: Where should the thermal image sensor of a smart A/C look?-occupant thermal sensation model based on thermal imaging data publication-title: Build. Env. doi: 10.1016/j.buildenv.2023.110405 – volume: 246 year: 2023 ident: 10.1016/j.buildenv.2025.113523_bib0056 article-title: Development of an automatic personal comfort system (APCS) based on real-time thermal sensation prediction publication-title: Build Env. doi: 10.1016/j.buildenv.2023.110958 – volume: 93 start-page: 160 year: 2015 ident: 10.1016/j.buildenv.2025.113523_bib0002 article-title: Energy-efficient control of under-actuated HVAC zones in commercial buildings publication-title: Energy Build. doi: 10.1016/j.enbuild.2015.01.050 – ident: 10.1016/j.buildenv.2025.113523_bib0045 – volume: 226 year: 2020 ident: 10.1016/j.buildenv.2025.113523_bib0008 article-title: Review on occupant-centric thermal comfort sensing, predicting, and controlling publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110392 – volume: 18 year: 2018 ident: 10.1016/j.buildenv.2025.113523_bib0026 article-title: Integrated method for personal thermal comfort assessment and optimization through users’ Feedback, IoT and machine learning: a case study † publication-title: Sensors doi: 10.3390/s18051602 – ident: 10.1016/j.buildenv.2025.113523_bib0041 – volume: 239 start-page: 1471 year: 2019 ident: 10.1016/j.buildenv.2025.113523_bib0009 article-title: Human-in-the-loop HVAC operations: a quantitative review on occupancy, comfort, and energy-efficiency dimensions publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.070 – volume: 17 start-page: 1401 year: 2024 ident: 10.1016/j.buildenv.2025.113523_bib0057 article-title: Application-driven development of a thermal imaging-based cabin occupant thermal sensation assessment model and its validation publication-title: Build. Simul. doi: 10.1007/s12273-024-1147-0 – volume: 231 year: 2021 ident: 10.1016/j.buildenv.2025.113523_bib0046 article-title: Thermoregulation model JOS-3 with new open source code publication-title: Energy Build. doi: 10.1016/j.enbuild.2020.110575 – ident: 10.1016/j.buildenv.2025.113523_bib0038 |
SSID | ssj0016934 |
Score | 2.4638083 |
Snippet | •Developed an automatic coordinated fan–air-conditioner control strategy.•The strategy enables local thermal control based on individual thermal... |
SourceID | crossref elsevier |
SourceType | Index Database Publisher |
StartPage | 113523 |
SubjectTerms | Occupant-centric control Personal environmental control systems Personal thermal sensation model Skin temperature Thermal environment |
Title | Optimal control-based coordinated operation strategy for fan and air conditioning systems: Balancing individual thermal comfort and energy efficiency |
URI | https://dx.doi.org/10.1016/j.buildenv.2025.113523 |
Volume | 285 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50vehBfOKbHLzG3TZNtvWmoqyKelDBW0mTCVSwu-gqePFf-H-dbFJZQfDgrQmdtGTSb75pZiYA-y4n0LfY52RqLc_QIq-ck9zk0iUOMU8yn5x8da0G99nFg3yYgZM2F8aHVUbsD5g-QevY042z2R3VdfeWsNdvFAgy4kRzlJyFuZSsfd6BuaPzy8H192aCKkSsItXjXmAqUfjxoPKnT2PzRq5iKv0JJzIVv9uoKbtztgSLkTCyo_BOyzCDzQosTJURXIXPG_run-imGHfOvWmy1CLHsm6ITFo2HGFQNXsJ5WjfGbFV5nTDdGOZrp-9sK3j71kWCjy_HLJjH_pofFf9nbrFPGkMz3uiUcaTIXCSRMhwUpLC53Ouwf3Z6d3JgMfjFrghN2rM09S5fqIdGmIVmpibcTrJexaF7lVKulz2C-mvlEKXZ0WCwlRGaCSgEkposQ6dZtjgBrDCZcQ0jBWqKjJjJCGqook3MsmdcMZuQred4HIUqmqUbbjZY9mqpPQqKYNKNqFo9VD-WB8lQf8fslv_kN2Ged8K2Yc70Bk_v-Iu0ZBxtQezBx_JXlxsX2nZ4eg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50PagH8Ylvc_Aad7tpsq03FWV9rQcVvJU0mUAF66Kr4A_x_zrZpLKC4MFbm3bSkkm_-dLMA2DfZQT6FnucTK3lKVrkpXOSm0y6xCFmSeqDk68Hqn-fXjzIhyk4aWJhvFtlxP6A6WO0ji3tOJrtYVW1bwl7_UaBICNONEfJaZhJfVHrFswcnV_2B9-bCSoXMYtUh3uBiUDhx4PSV5_G-p2Wil3pK5zIrvjdRk3YnbNFWIiEkR2Fd1qCKayXYX4ijeAKfN7Qd_9EN0W_c-5Nk6UzWlhWNZFJy56HGFTNXkM62g9GbJU5XTNdW6arFy9sq_h7loUEz6-H7Ni7PhrfVH2HbjFPGsPznqiX0bgLHAcRMhynpPDxnKtwf3Z6d9LnsdwCN7SMGvFu17leoh0aYhWamJtxOsk6FoXulEq6TPZy6Y-UQpeleYLClEZoJKASSmixBq36ucZ1YLlLiWkYK1SZp8ZIQlRFA29kkjnhjN2AdjPAxTBk1Sgad7PHolFJ4VVSBJVsQN7oofgxPwqC_j9kN_8huwez_bvrq-LqfHC5BXP-SohE3IbW6OUNd4iSjMrdOOW-AL-y484 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+control-based+coordinated+operation+strategy+for+fan+and+air+conditioning+systems%3A+Balancing+individual+thermal+comfort+and+energy+efficiency&rft.jtitle=Building+and+environment&rft.au=Lyu%2C+Junmeng&rft.au=Yang%2C+Yuxin&rft.au=Lian%2C+Zhiwei&rft.au=Du%2C+Heng&rft.date=2025-11-01&rft.issn=0360-1323&rft.volume=285&rft.spage=113523&rft_id=info:doi/10.1016%2Fj.buildenv.2025.113523&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_buildenv_2025_113523 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0360-1323&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0360-1323&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0360-1323&client=summon |