A PSO algorithm-based seasonal nonlinear grey Bernoulli model with fractional order accumulation for forecasting quarterly hydropower generation
The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy...
Saved in:
| Published in | Journal of intelligent & fuzzy systems Vol. 40; no. 1; pp. 507 - 519 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
London
Sage Publications Ltd
01.01.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1064-1246 1875-8967 |
| DOI | 10.3233/JIFS-200113 |
Cover
| Abstract | The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy sectors, which could assist policymakers in adjusting corresponding schemes for facing with sustained demands. For this purpose, this paper presents a fractional nonlinear grey Bernoulli model (abbreviated as FANGBM(1,1)) coupled seasonal factor and Particular Swarm Optimization (PSO) algorithm, namely PSO algorithm-based FASNGBM(1,1) model. In the proposed method, the moving average method that eliminates the seasonal fluctuations is introduced into FANGBM(1,1), then in which the structure parameters of FASNGBM(1,1) are determined by PSO. Based on hydropower generation of China from the first quarter of 2011 to the final quarter of 2018 (2011Q1-2018Q4), the numerical results show that the proposed model has a better performance than that of other benchmark models. Eventually, the quarterly hydropower generation of China from 2019 to 2020 are forecasted by the proposed model, according to results, the hydropower generation of China will reach 11287.14 × 108 Kwh in 2020. |
|---|---|
| AbstractList | The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy sectors, which could assist policymakers in adjusting corresponding schemes for facing with sustained demands. For this purpose, this paper presents a fractional nonlinear grey Bernoulli model (abbreviated as FANGBM(1,1)) coupled seasonal factor and Particular Swarm Optimization (PSO) algorithm, namely PSO algorithm-based FASNGBM(1,1) model. In the proposed method, the moving average method that eliminates the seasonal fluctuations is introduced into FANGBM(1,1), then in which the structure parameters of FASNGBM(1,1) are determined by PSO. Based on hydropower generation of China from the first quarter of 2011 to the final quarter of 2018 (2011Q1-2018Q4), the numerical results show that the proposed model has a better performance than that of other benchmark models. Eventually, the quarterly hydropower generation of China from 2019 to 2020 are forecasted by the proposed model, according to results, the hydropower generation of China will reach 11287.14 × 108 Kwh in 2020. The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy sectors, which could assist policymakers in adjusting corresponding schemes for facing with sustained demands. For this purpose, this paper presents a fractional nonlinear grey Bernoulli model (abbreviated as FANGBM(1,1)) coupled seasonal factor and Particular Swarm Optimization (PSO) algorithm, namely PSO algorithm-based FASNGBM(1,1) model. In the proposed method, the moving average method that eliminates the seasonal fluctuations is introduced into FANGBM(1,1), then in which the structure parameters of FASNGBM(1,1) are determined by PSO. Based on hydropower generation of China from the first quarter of 2011 to the final quarter of 2018 (2011Q1-2018Q4), the numerical results show that the proposed model has a better performance than that of other benchmark models. Eventually, the quarterly hydropower generation of China from 2019 to 2020 are forecasted by the proposed model, according to results, the hydropower generation of China will reach 11287.14 × 108 Kwh in 2020. |
| Author | Wu, Wen-Ze Jiang, Jianming Li, Qi Zhang, Yu |
| Author_xml | – sequence: 1 givenname: Jianming surname: Jiang fullname: Jiang, Jianming organization: School of Mathematics and Statistics, Baise University, Baise, China – sequence: 2 givenname: Wen-Ze surname: Wu fullname: Wu, Wen-Ze organization: School of Economics and Business Administration, Central China Normal University, Wuhan, China – sequence: 3 givenname: Qi surname: Li fullname: Li, Qi organization: School of Economics and Business Administration, Central China Normal University, Wuhan, China – sequence: 4 givenname: Yu surname: Zhang fullname: Zhang, Yu organization: Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China |
| BookMark | eNptkMtOwzAQRS1UJMpjxQ9YYokCdpzYyRIqykNIIAHryHHGJZUbl3GiKn_BJ-O2rBCL0YxG587jHpNJ5zsg5JyzK5EKcf30OH9LUsY4FwdkyguVJ0Up1STWTGYJTzN5RI5DWEZE5Smbku8b-vr2QrVbeGz7z1VS6wANDaCD77SjcYFrO9BIFwgjvQXs_OBcS1e-AUc3UUMtatO3O9xjA0i1McNqcHrbpNbjNsDo0Lfdgn4NGntAN9LPsUG_9puoWEAHuONPyaHVLsDZbz4hH_O799lD8vxy_zi7eU5MKnmf8DKtG8hYrUoobQ1pfEjI2hqpGlE30paFNczKohBlzY20LFM1y1imcyaB5eKEXOznrtF_DRD6aukHjD-EKs1UzgVTTEWK7ymDPgQEW5m2393Zo25dxVm1Nb7aGl_tjY-ayz-aNbYrjeO_9A-c7olN |
| CitedBy_id | crossref_primary_10_1177_0734242X241271065 crossref_primary_10_1016_j_enbuild_2022_112305 crossref_primary_10_3233_JIFS_222520 crossref_primary_10_1007_s11356_023_30035_4 crossref_primary_10_1111_exsy_12868 crossref_primary_10_1016_j_techfore_2023_122677 crossref_primary_10_3233_JIFS_234812 crossref_primary_10_1016_j_aej_2024_08_096 crossref_primary_10_1016_j_apenergy_2022_120180 crossref_primary_10_1016_j_energy_2023_127568 crossref_primary_10_1007_s00500_023_09007_w crossref_primary_10_3390_su14042431 crossref_primary_10_1016_j_apenergy_2021_117540 crossref_primary_10_1108_GS_04_2021_0057 |
| Cites_doi | 10.1016/j.ins.2018.11.041 10.1016/j.energy.2017.09.037 10.1016/j.apm.2018.06.035 10.1016/j.cie.2018.02.042 10.1016/j.energy.2018.04.155 10.1080/15567249.2015.1089337 10.1016/j.jclepro.2018.10.010 10.1016/j.isatra.2019.07.009 10.1016/j.energy.2009.12.021 10.1063/1.5124097 10.1016/j.spc.2020.07.009 10.1016/j.cnsns.2020.105493 10.1016/j.enpol.2013.10.002 10.1016/j.apm.2017.07.003 10.1007/s11269-017-1632-7 10.1016/j.amc.2015.11.001 10.1016/j.asoc.2018.07.022 10.1016/j.knosys.2013.12.014 10.1016/j.energy.2018.01.169 10.1016/j.renene.2019.01.031 10.1093/biomet/60.2.255 10.1016/j.apm.2019.09.013 10.1016/j.jclepro.2016.08.067 10.1016/j.renene.2019.03.006 10.3389/fevo.2019.00372 10.1016/j.apm.2017.07.010 10.1016/j.energy.2019.04.096 10.1016/j.energy.2017.10.052 10.1038/s41598-020-69192-8 10.1016/j.enconman.2014.08.017 10.1109/TSP.2016.2614793 10.3390/en12020289 |
| ContentType | Journal Article |
| Copyright | Copyright IOS Press BV 2021 |
| Copyright_xml | – notice: Copyright IOS Press BV 2021 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.3233/JIFS-200113 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1875-8967 |
| EndPage | 519 |
| ExternalDocumentID | 10_3233_JIFS_200113 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | .4S .DC 0R~ 4.4 5GY 8VB AAYXX ABCQX ABDBF ABJNI ABUJY ACGFS ACPQW ACUHS ADMLS ADZMO AEMOZ AENEX AFRHK AHDMH AHQJS AJNRN AKVCP ALMA_UNASSIGNED_HOLDINGS AMVHM ARCSS ARTOV ASPBG AVWKF CITATION DU5 EAD EAP EBA EBR EBS EBU EDO EMK EPL EST ESX H13 HZ~ I-F IOS K1G L7B MET MIO MK~ MV1 NGNOM O9- P2P QWB TH9 TUS ZL0 7SC 8FD AAGLT JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c261t-192bde40b79e9fbe201736bfc67d3bd6f98fc0f68839b1c6f047b0404a506e053 |
| ISSN | 1064-1246 |
| IngestDate | Fri Jul 25 10:09:24 EDT 2025 Wed Oct 01 06:37:49 EDT 2025 Thu Apr 24 22:58:18 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-192bde40b79e9fbe201736bfc67d3bd6f98fc0f68839b1c6f047b0404a506e053 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2475130707 |
| PQPubID | 2046407 |
| PageCount | 13 |
| ParticipantIDs | proquest_journals_2475130707 crossref_citationtrail_10_3233_JIFS_200113 crossref_primary_10_3233_JIFS_200113 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Journal of intelligent & fuzzy systems |
| PublicationYear | 2021 |
| Publisher | Sage Publications Ltd |
| Publisher_xml | – name: Sage Publications Ltd |
| References | Dehghani (10.3233/JIFS-200113_ref3) 2019; 12 Wang (10.3233/JIFS-200113_ref1) 2017; 142 Ma (10.3233/JIFS-200113_ref9) 2020; 96 Luo (10.3233/JIFS-200113_ref15) 2003; 8 Zeng (10.3233/JIFS-200113_ref16) 2018; 118 Akaike (10.3233/JIFS-200113_ref32) 1973; 60 Xia (10.3233/JIFS-200113_ref29) 2014; 57 Şahin (10.3233/JIFS-200113_ref19) 2020; 25 Wang (10.3233/JIFS-200113_ref22) 2018; 72 Monteiro (10.3233/JIFS-200113_ref4) 2014; 88 Xie (10.3233/JIFS-200113_ref20) 2020; 77 Wang (10.3233/JIFS-200113_ref37) 2019; 207 Kumar (10.3233/JIFS-200113_ref14) 2010; 35 Garg (10.3233/JIFS-200113_ref23) 2016; 274 Dennis (10.3233/JIFS-200113_ref42) 2019; 7 Shaikh (10.3233/JIFS-200113_ref18) 2017; 140 Aslam (10.3233/JIFS-200113_ref35) 2020; 10 Ding (10.3233/JIFS-200113_ref39) 2018; 149 Singh (10.3233/JIFS-200113_ref40) 2019; 136 Ma (10.3233/JIFS-200113_ref21) 2019; 178 Wu (10.3233/JIFS-200113_ref33) 2019; 140 Liu (10.3233/JIFS-200113_ref12) 2017; 10 Isufi (10.3233/JIFS-200113_ref34) 2016; 65 Wang (10.3233/JIFS-200113_ref28) 2018; 154 Moeeni (10.3233/JIFS-200113_ref41) 2017; 31 Wei (10.3233/JIFS-200113_ref13) 2018; 62 Garg (10.3233/JIFS-200113_ref25) 2019; 478 Zhou (10.3233/JIFS-200113_ref43) 2021; 93 Ayvaz (10.3233/JIFS-200113_ref17) 2017; 12 Xiao (10.3233/JIFS-200113_ref30) 2017; 51 Ahmad (10.3233/JIFS-200113_ref7) 2020; 12 Deng (10.3233/JIFS-200113_ref11) 1989; 1 Wang (10.3233/JIFS-200113_ref2) 2014; 65 Patwal (10.3233/JIFS-200113_ref24) 2018; 142 Wang (10.3233/JIFS-200113_ref27) 2017; 51 |
| References_xml | – volume: 478 start-page: 499 year: 2019 ident: 10.3233/JIFS-200113_ref25 article-title: A hybrid GSA-GA algorithm for constrained optimization problems publication-title: Information Sciences doi: 10.1016/j.ins.2018.11.041 – volume: 140 start-page: 941 year: 2017 ident: 10.3233/JIFS-200113_ref18 article-title: Forecasting Chinas natural gas demand based on optimised nonlinear grey models publication-title: Energy doi: 10.1016/j.energy.2017.09.037 – volume: 62 start-page: 717 year: 2018 ident: 10.3233/JIFS-200113_ref13 article-title: Optimal solution for novel grey polynomial prediction model publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2018.06.035 – volume: 118 start-page: 278 year: 2018 ident: 10.3233/JIFS-200113_ref16 article-title: Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application publication-title: Computers & Industrial Engineering doi: 10.1016/j.cie.2018.02.042 – volume: 154 start-page: 522 year: 2018 ident: 10.3233/JIFS-200113_ref28 article-title: A seasonal GM (1, 1) model for forecasting the electricity consumption of the primary economic sectors publication-title: Energy doi: 10.1016/j.energy.2018.04.155 – volume: 12 start-page: 260 year: 2017 ident: 10.3233/JIFS-200113_ref17 article-title: Electricity consumption forecasting for Turkey with nonhomogeneous discrete grey model publication-title: Energy Sources, Part B: Economics, Planning, Policy doi: 10.1080/15567249.2015.1089337 – volume: 8 start-page: 50 year: 2003 ident: 10.3233/JIFS-200113_ref15 article-title: The optimization of GM (1,1) model publication-title: Engineering Science – volume: 207 start-page: 214 year: 2019 ident: 10.3233/JIFS-200113_ref37 article-title: Modelling the nonlinear relationship between CO2 emissions and economic growth using a PSO algorithm-based grey Verhulst model publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.10.010 – volume: 96 start-page: 255 year: 2020 ident: 10.3233/JIFS-200113_ref9 article-title: The conformable fractional grey system model publication-title: ISA transactions doi: 10.1016/j.isatra.2019.07.009 – volume: 35 start-page: 1709 year: 2010 ident: 10.3233/JIFS-200113_ref14 article-title: Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India publication-title: Energy doi: 10.1016/j.energy.2009.12.021 – volume: 12 start-page: 014501 year: 2020 ident: 10.3233/JIFS-200113_ref7 article-title: Forecast-informed hydropower optimization at long and short-time scales for a multiple dam network publication-title: Journal of Renewable Sustainable Energy doi: 10.1063/1.5124097 – volume: 25 start-page: 1 year: 2020 ident: 10.3233/JIFS-200113_ref19 article-title: Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by using optimized fractional nonlinear grey Bernoulli model publication-title: Sustainable Production Consumption doi: 10.1016/j.spc.2020.07.009 – volume: 93 start-page: 105493 year: 2021 ident: 10.3233/JIFS-200113_ref43 article-title: A novel discrete grey seasonal model and its applications publication-title: Communications in Nonlinear Science and Numerical Simulation doi: 10.1016/j.cnsns.2020.105493 – volume: 65 start-page: 701 year: 2014 ident: 10.3233/JIFS-200113_ref2 article-title: Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model publication-title: Energy Policy doi: 10.1016/j.enpol.2013.10.002 – volume: 51 start-page: 302 year: 2017 ident: 10.3233/JIFS-200113_ref27 article-title: Grey forecasting method of quarterly hydropower production in China based on a data grouping approach publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2017.07.003 – volume: 31 start-page: 2141 issue: 7 year: 2017 ident: 10.3233/JIFS-200113_ref41 article-title: Integrated SARIMA with neuro-fuzzy systems and neural networks for monthly inflow prediction publication-title: Water Resources Management doi: 10.1007/s11269-017-1632-7 – volume: 274 start-page: 292 year: 2016 ident: 10.3233/JIFS-200113_ref23 article-title: A hybrid PSO-GA algorithm for constrained optimization problems publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2015.11.001 – volume: 72 start-page: 321 year: 2018 ident: 10.3233/JIFS-200113_ref22 article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2018.07.022 – volume: 57 start-page: 119 year: 2014 ident: 10.3233/JIFS-200113_ref29 article-title: A seasonal discrete grey forecasting model for fashion retailing publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2013.12.014 – volume: 149 start-page: 314 year: 2018 ident: 10.3233/JIFS-200113_ref39 article-title: Forecasting China’s electricity consumption using a new grey prediction model publication-title: Energy doi: 10.1016/j.energy.2018.01.169 – volume: 136 start-page: 758 year: 2019 ident: 10.3233/JIFS-200113_ref40 article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting publication-title: Renewable Energy doi: 10.1016/j.renene.2019.01.031 – volume: 1 start-page: 1 year: 1989 ident: 10.3233/JIFS-200113_ref11 article-title: Introduction to grey system theory publication-title: The Journal of Grey System – volume: 60 start-page: 255 year: 1973 ident: 10.3233/JIFS-200113_ref32 article-title: Maximum likelihood identification of Gaussian autoregressive moving average models publication-title: Biometrika doi: 10.1093/biomet/60.2.255 – volume: 77 start-page: 1242 year: 2020 ident: 10.3233/JIFS-200113_ref20 article-title: A novel hybrid multivariate nonlinear grey model for forecasting the traffic-related emissions publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2019.09.013 – volume: 142 start-page: 600 year: 2017 ident: 10.3233/JIFS-200113_ref1 article-title: Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2016.08.067 – volume: 140 start-page: 70 year: 2019 ident: 10.3233/JIFS-200113_ref33 article-title: Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model publication-title: Renewable Energy doi: 10.1016/j.renene.2019.03.006 – volume: 7 start-page: 372 year: 2019 ident: 10.3233/JIFS-200113_ref42 article-title: Errors in statistical inference under model misspecification: evidence, hypothesis testing, and AIC publication-title: Frontiers in Ecology and Evolution doi: 10.3389/fevo.2019.00372 – volume: 51 start-page: 386 year: 2017 ident: 10.3233/JIFS-200113_ref30 article-title: An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow publication-title: Applied Mathematical Modelling doi: 10.1016/j.apm.2017.07.010 – volume: 178 start-page: 487 year: 2019 ident: 10.3233/JIFS-200113_ref21 article-title: A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China publication-title: Energy doi: 10.1016/j.energy.2019.04.096 – volume: 142 start-page: 822 year: 2018 ident: 10.3233/JIFS-200113_ref24 article-title: A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units publication-title: Energy doi: 10.1016/j.energy.2017.10.052 – volume: 10 start-page: 1 year: 2020 ident: 10.3233/JIFS-200113_ref35 article-title: Monitoring the temperature through moving average control under uncertainty environment publication-title: Scientific Reports doi: 10.1038/s41598-020-69192-8 – volume: 10 start-page: 978 year: 2017 ident: 10.3233/JIFS-200113_ref12 article-title: Grey data analysis publication-title: Springer-Verlag – volume: 88 start-page: 231 year: 2014 ident: 10.3233/JIFS-200113_ref4 article-title: Short-term forecasting model for aggregated regional hydropower generation publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2014.08.017 – volume: 65 start-page: 274 year: 2016 ident: 10.3233/JIFS-200113_ref34 article-title: Autoregressive moving average graph filtering publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2016.2614793 – volume: 12 start-page: 289 year: 2019 ident: 10.3233/JIFS-200113_ref3 article-title: Prediction of hydropower generation using grey wolf optimization adaptive neuro-fuzzy inference system publication-title: Energies doi: 10.3390/en12020289 |
| SSID | ssj0017520 |
| Score | 2.3175778 |
| Snippet | The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 507 |
| SubjectTerms | Algorithms Economic forecasting Electricity Hydroelectric power Hydroelectric power generation Mathematical models Optimization Seasonal variations Sustainable development |
| Title | A PSO algorithm-based seasonal nonlinear grey Bernoulli model with fractional order accumulation for forecasting quarterly hydropower generation |
| URI | https://www.proquest.com/docview/2475130707 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1875-8967 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ABDBF dateStart: 19980201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: ADMLS dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1875-8967 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017520 issn: 1064-1246 databaseCode: AMVHM dateStart: 19980201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMUCtpDe8FacOz16xigVqiSFtQEBS6Wd-1tIzVpm9qH5Ffwj_hrzHj9Sloh4BDL2lh2kvkyr535hpB9B4yG63qKmdzjjAexzXxLJkxBfC0dwaWVYDfy6NgdTPjR1Jl2Or9aVUt5Jt7J9Z19Jf8jVVgDuWKX7D9Itr4pLMA5yBeOIGE4_pWM-8aX0xMjvji7hBD_fM7QJCUGpv2K_N5C02DESwOC6pXxIV0uLnHvR4-_0SlYtdSdDeiTIgunEUuZz8uZXkUNIrxSGd8U5dHXVQmocb5KcL4CltifFczVtYBve7qzmvYzK5Cm8vV6VXJINxWMszJzjSfzyqCiuciLOsB0wX7UIBwWNQhfZ7fS3t_zdhrD6m2lMdoVSroEsKlqQr0MnhMDV6RkzdZrEGoxP9DTPCplrrmfNkCrNbOjh-tuWwzbwox2ePQ5PEVo9XRj7CYv9_FJFE6Gw2h8OB0f2OHVNcOhZbi5f2B_0qi6R3YsMCtml-z0R98Go3ojy3MsTYhRfn7dIopPfd965qZTtOkTFI7O-BF5WMqN9jXcHpNOunhCHrR4K5-Sn30KwKNbwKMV8GgNPIrAozXwaAE8isCjDfBoATzaBh4F0NEW8GgNPNoAjzbAe0Ym4eH444CVoz2YhJA9YxBXiCTlpvCCNFAiBTfUs12hpOsltkhcFfhKmsr1wX8XPekqUCUC7A2PHdPFaSbPSRe-S_qCUBVDEOBZPDZtyUHB-LEUwocb2zHGI_4ueVv9tpEsee9x_MpFBPEvCiJCQURaELtkv774StO93H3ZXiWkqNQHN5HFPaeHJtR7-ee3X5H7zT9gj3SzZZ6-Btc2E29K-PwG73uuWw |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PSO+algorithm-based+seasonal+nonlinear+grey+Bernoulli+model+with+fractional+order+accumulation+for+forecasting+quarterly+hydropower+generation&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Jiang%2C+Jianming&rft.au=Wu%2C+Wen-Ze&rft.au=Li%2C+Qi&rft.au=Zhang%2C+Yu&rft.date=2021-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=40&rft.issue=1&rft.spage=507&rft_id=info:doi/10.3233%2FJIFS-200113&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon |