A PSO algorithm-based seasonal nonlinear grey Bernoulli model with fractional order accumulation for forecasting quarterly hydropower generation

The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy...

Full description

Saved in:
Bibliographic Details
Published inJournal of intelligent & fuzzy systems Vol. 40; no. 1; pp. 507 - 519
Main Authors Jiang, Jianming, Wu, Wen-Ze, Li, Qi, Zhang, Yu
Format Journal Article
LanguageEnglish
Published London Sage Publications Ltd 01.01.2021
Subjects
Online AccessGet full text
ISSN1064-1246
1875-8967
DOI10.3233/JIFS-200113

Cover

Abstract The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy sectors, which could assist policymakers in adjusting corresponding schemes for facing with sustained demands. For this purpose, this paper presents a fractional nonlinear grey Bernoulli model (abbreviated as FANGBM(1,1)) coupled seasonal factor and Particular Swarm Optimization (PSO) algorithm, namely PSO algorithm-based FASNGBM(1,1) model. In the proposed method, the moving average method that eliminates the seasonal fluctuations is introduced into FANGBM(1,1), then in which the structure parameters of FASNGBM(1,1) are determined by PSO. Based on hydropower generation of China from the first quarter of 2011 to the final quarter of 2018 (2011Q1-2018Q4), the numerical results show that the proposed model has a better performance than that of other benchmark models. Eventually, the quarterly hydropower generation of China from 2019 to 2020 are forecasted by the proposed model, according to results, the hydropower generation of China will reach 11287.14 × 108 Kwh in 2020.
AbstractList The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy sectors, which could assist policymakers in adjusting corresponding schemes for facing with sustained demands. For this purpose, this paper presents a fractional nonlinear grey Bernoulli model (abbreviated as FANGBM(1,1)) coupled seasonal factor and Particular Swarm Optimization (PSO) algorithm, namely PSO algorithm-based FASNGBM(1,1) model. In the proposed method, the moving average method that eliminates the seasonal fluctuations is introduced into FANGBM(1,1), then in which the structure parameters of FASNGBM(1,1) are determined by PSO. Based on hydropower generation of China from the first quarter of 2011 to the final quarter of 2018 (2011Q1-2018Q4), the numerical results show that the proposed model has a better performance than that of other benchmark models. Eventually, the quarterly hydropower generation of China from 2019 to 2020 are forecasted by the proposed model, according to results, the hydropower generation of China will reach 11287.14 × 108 Kwh in 2020.
The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable development of national economy. Developing a proper forecasting model for the quarterly hydropower generation is crucial for associated energy sectors, which could assist policymakers in adjusting corresponding schemes for facing with sustained demands. For this purpose, this paper presents a fractional nonlinear grey Bernoulli model (abbreviated as FANGBM(1,1)) coupled seasonal factor and Particular Swarm Optimization (PSO) algorithm, namely PSO algorithm-based FASNGBM(1,1) model. In the proposed method, the moving average method that eliminates the seasonal fluctuations is introduced into FANGBM(1,1), then in which the structure parameters of FASNGBM(1,1) are determined by PSO. Based on hydropower generation of China from the first quarter of 2011 to the final quarter of 2018 (2011Q1-2018Q4), the numerical results show that the proposed model has a better performance than that of other benchmark models. Eventually, the quarterly hydropower generation of China from 2019 to 2020 are forecasted by the proposed model, according to results, the hydropower generation of China will reach 11287.14 × 108 Kwh in 2020.
Author Wu, Wen-Ze
Jiang, Jianming
Li, Qi
Zhang, Yu
Author_xml – sequence: 1
  givenname: Jianming
  surname: Jiang
  fullname: Jiang, Jianming
  organization: School of Mathematics and Statistics, Baise University, Baise, China
– sequence: 2
  givenname: Wen-Ze
  surname: Wu
  fullname: Wu, Wen-Ze
  organization: School of Economics and Business Administration, Central China Normal University, Wuhan, China
– sequence: 3
  givenname: Qi
  surname: Li
  fullname: Li, Qi
  organization: School of Economics and Business Administration, Central China Normal University, Wuhan, China
– sequence: 4
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Department of Mathematics, Nanjing University of Aeronautics and Astronautics, Nanjing, China
BookMark eNptkMtOwzAQRS1UJMpjxQ9YYokCdpzYyRIqykNIIAHryHHGJZUbl3GiKn_BJ-O2rBCL0YxG587jHpNJ5zsg5JyzK5EKcf30OH9LUsY4FwdkyguVJ0Up1STWTGYJTzN5RI5DWEZE5Smbku8b-vr2QrVbeGz7z1VS6wANDaCD77SjcYFrO9BIFwgjvQXs_OBcS1e-AUc3UUMtatO3O9xjA0i1McNqcHrbpNbjNsDo0Lfdgn4NGntAN9LPsUG_9puoWEAHuONPyaHVLsDZbz4hH_O799lD8vxy_zi7eU5MKnmf8DKtG8hYrUoobQ1pfEjI2hqpGlE30paFNczKohBlzY20LFM1y1imcyaB5eKEXOznrtF_DRD6aukHjD-EKs1UzgVTTEWK7ymDPgQEW5m2393Zo25dxVm1Nb7aGl_tjY-ayz-aNbYrjeO_9A-c7olN
CitedBy_id crossref_primary_10_1177_0734242X241271065
crossref_primary_10_1016_j_enbuild_2022_112305
crossref_primary_10_3233_JIFS_222520
crossref_primary_10_1007_s11356_023_30035_4
crossref_primary_10_1111_exsy_12868
crossref_primary_10_1016_j_techfore_2023_122677
crossref_primary_10_3233_JIFS_234812
crossref_primary_10_1016_j_aej_2024_08_096
crossref_primary_10_1016_j_apenergy_2022_120180
crossref_primary_10_1016_j_energy_2023_127568
crossref_primary_10_1007_s00500_023_09007_w
crossref_primary_10_3390_su14042431
crossref_primary_10_1016_j_apenergy_2021_117540
crossref_primary_10_1108_GS_04_2021_0057
Cites_doi 10.1016/j.ins.2018.11.041
10.1016/j.energy.2017.09.037
10.1016/j.apm.2018.06.035
10.1016/j.cie.2018.02.042
10.1016/j.energy.2018.04.155
10.1080/15567249.2015.1089337
10.1016/j.jclepro.2018.10.010
10.1016/j.isatra.2019.07.009
10.1016/j.energy.2009.12.021
10.1063/1.5124097
10.1016/j.spc.2020.07.009
10.1016/j.cnsns.2020.105493
10.1016/j.enpol.2013.10.002
10.1016/j.apm.2017.07.003
10.1007/s11269-017-1632-7
10.1016/j.amc.2015.11.001
10.1016/j.asoc.2018.07.022
10.1016/j.knosys.2013.12.014
10.1016/j.energy.2018.01.169
10.1016/j.renene.2019.01.031
10.1093/biomet/60.2.255
10.1016/j.apm.2019.09.013
10.1016/j.jclepro.2016.08.067
10.1016/j.renene.2019.03.006
10.3389/fevo.2019.00372
10.1016/j.apm.2017.07.010
10.1016/j.energy.2019.04.096
10.1016/j.energy.2017.10.052
10.1038/s41598-020-69192-8
10.1016/j.enconman.2014.08.017
10.1109/TSP.2016.2614793
10.3390/en12020289
ContentType Journal Article
Copyright Copyright IOS Press BV 2021
Copyright_xml – notice: Copyright IOS Press BV 2021
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.3233/JIFS-200113
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1875-8967
EndPage 519
ExternalDocumentID 10_3233_JIFS_200113
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID .4S
.DC
0R~
4.4
5GY
8VB
AAYXX
ABCQX
ABDBF
ABJNI
ABUJY
ACGFS
ACPQW
ACUHS
ADMLS
ADZMO
AEMOZ
AENEX
AFRHK
AHDMH
AHQJS
AJNRN
AKVCP
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARCSS
ARTOV
ASPBG
AVWKF
CITATION
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EMK
EPL
EST
ESX
H13
HZ~
I-F
IOS
K1G
L7B
MET
MIO
MK~
MV1
NGNOM
O9-
P2P
QWB
TH9
TUS
ZL0
7SC
8FD
AAGLT
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c261t-192bde40b79e9fbe201736bfc67d3bd6f98fc0f68839b1c6f047b0404a506e053
ISSN 1064-1246
IngestDate Fri Jul 25 10:09:24 EDT 2025
Wed Oct 01 06:37:49 EDT 2025
Thu Apr 24 22:58:18 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c261t-192bde40b79e9fbe201736bfc67d3bd6f98fc0f68839b1c6f047b0404a506e053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2475130707
PQPubID 2046407
PageCount 13
ParticipantIDs proquest_journals_2475130707
crossref_citationtrail_10_3233_JIFS_200113
crossref_primary_10_3233_JIFS_200113
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of intelligent & fuzzy systems
PublicationYear 2021
Publisher Sage Publications Ltd
Publisher_xml – name: Sage Publications Ltd
References Dehghani (10.3233/JIFS-200113_ref3) 2019; 12
Wang (10.3233/JIFS-200113_ref1) 2017; 142
Ma (10.3233/JIFS-200113_ref9) 2020; 96
Luo (10.3233/JIFS-200113_ref15) 2003; 8
Zeng (10.3233/JIFS-200113_ref16) 2018; 118
Akaike (10.3233/JIFS-200113_ref32) 1973; 60
Xia (10.3233/JIFS-200113_ref29) 2014; 57
Şahin (10.3233/JIFS-200113_ref19) 2020; 25
Wang (10.3233/JIFS-200113_ref22) 2018; 72
Monteiro (10.3233/JIFS-200113_ref4) 2014; 88
Xie (10.3233/JIFS-200113_ref20) 2020; 77
Wang (10.3233/JIFS-200113_ref37) 2019; 207
Kumar (10.3233/JIFS-200113_ref14) 2010; 35
Garg (10.3233/JIFS-200113_ref23) 2016; 274
Dennis (10.3233/JIFS-200113_ref42) 2019; 7
Shaikh (10.3233/JIFS-200113_ref18) 2017; 140
Aslam (10.3233/JIFS-200113_ref35) 2020; 10
Ding (10.3233/JIFS-200113_ref39) 2018; 149
Singh (10.3233/JIFS-200113_ref40) 2019; 136
Ma (10.3233/JIFS-200113_ref21) 2019; 178
Wu (10.3233/JIFS-200113_ref33) 2019; 140
Liu (10.3233/JIFS-200113_ref12) 2017; 10
Isufi (10.3233/JIFS-200113_ref34) 2016; 65
Wang (10.3233/JIFS-200113_ref28) 2018; 154
Moeeni (10.3233/JIFS-200113_ref41) 2017; 31
Wei (10.3233/JIFS-200113_ref13) 2018; 62
Garg (10.3233/JIFS-200113_ref25) 2019; 478
Zhou (10.3233/JIFS-200113_ref43) 2021; 93
Ayvaz (10.3233/JIFS-200113_ref17) 2017; 12
Xiao (10.3233/JIFS-200113_ref30) 2017; 51
Ahmad (10.3233/JIFS-200113_ref7) 2020; 12
Deng (10.3233/JIFS-200113_ref11) 1989; 1
Wang (10.3233/JIFS-200113_ref2) 2014; 65
Patwal (10.3233/JIFS-200113_ref24) 2018; 142
Wang (10.3233/JIFS-200113_ref27) 2017; 51
References_xml – volume: 478
  start-page: 499
  year: 2019
  ident: 10.3233/JIFS-200113_ref25
  article-title: A hybrid GSA-GA algorithm for constrained optimization problems
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.11.041
– volume: 140
  start-page: 941
  year: 2017
  ident: 10.3233/JIFS-200113_ref18
  article-title: Forecasting Chinas natural gas demand based on optimised nonlinear grey models
  publication-title: Energy
  doi: 10.1016/j.energy.2017.09.037
– volume: 62
  start-page: 717
  year: 2018
  ident: 10.3233/JIFS-200113_ref13
  article-title: Optimal solution for novel grey polynomial prediction model
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2018.06.035
– volume: 118
  start-page: 278
  year: 2018
  ident: 10.3233/JIFS-200113_ref16
  article-title: Improved multi-variable grey forecasting model with a dynamic background-value coefficient and its application
  publication-title: Computers & Industrial Engineering
  doi: 10.1016/j.cie.2018.02.042
– volume: 154
  start-page: 522
  year: 2018
  ident: 10.3233/JIFS-200113_ref28
  article-title: A seasonal GM (1, 1) model for forecasting the electricity consumption of the primary economic sectors
  publication-title: Energy
  doi: 10.1016/j.energy.2018.04.155
– volume: 12
  start-page: 260
  year: 2017
  ident: 10.3233/JIFS-200113_ref17
  article-title: Electricity consumption forecasting for Turkey with nonhomogeneous discrete grey model
  publication-title: Energy Sources, Part B: Economics, Planning, Policy
  doi: 10.1080/15567249.2015.1089337
– volume: 8
  start-page: 50
  year: 2003
  ident: 10.3233/JIFS-200113_ref15
  article-title: The optimization of GM (1,1) model
  publication-title: Engineering Science
– volume: 207
  start-page: 214
  year: 2019
  ident: 10.3233/JIFS-200113_ref37
  article-title: Modelling the nonlinear relationship between CO2 emissions and economic growth using a PSO algorithm-based grey Verhulst model
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.10.010
– volume: 96
  start-page: 255
  year: 2020
  ident: 10.3233/JIFS-200113_ref9
  article-title: The conformable fractional grey system model
  publication-title: ISA transactions
  doi: 10.1016/j.isatra.2019.07.009
– volume: 35
  start-page: 1709
  year: 2010
  ident: 10.3233/JIFS-200113_ref14
  article-title: Time series models (Grey-Markov, Grey Model with rolling mechanism and singular spectrum analysis) to forecast energy consumption in India
  publication-title: Energy
  doi: 10.1016/j.energy.2009.12.021
– volume: 12
  start-page: 014501
  year: 2020
  ident: 10.3233/JIFS-200113_ref7
  article-title: Forecast-informed hydropower optimization at long and short-time scales for a multiple dam network
  publication-title: Journal of Renewable Sustainable Energy
  doi: 10.1063/1.5124097
– volume: 25
  start-page: 1
  year: 2020
  ident: 10.3233/JIFS-200113_ref19
  article-title: Future of renewable energy consumption in France, Germany, Italy, Spain, Turkey and UK by using optimized fractional nonlinear grey Bernoulli model
  publication-title: Sustainable Production Consumption
  doi: 10.1016/j.spc.2020.07.009
– volume: 93
  start-page: 105493
  year: 2021
  ident: 10.3233/JIFS-200113_ref43
  article-title: A novel discrete grey seasonal model and its applications
  publication-title: Communications in Nonlinear Science and Numerical Simulation
  doi: 10.1016/j.cnsns.2020.105493
– volume: 65
  start-page: 701
  year: 2014
  ident: 10.3233/JIFS-200113_ref2
  article-title: Vulnerability of hydropower generation to climate change in China: Results based on Grey forecasting model
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.10.002
– volume: 51
  start-page: 302
  year: 2017
  ident: 10.3233/JIFS-200113_ref27
  article-title: Grey forecasting method of quarterly hydropower production in China based on a data grouping approach
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2017.07.003
– volume: 31
  start-page: 2141
  issue: 7
  year: 2017
  ident: 10.3233/JIFS-200113_ref41
  article-title: Integrated SARIMA with neuro-fuzzy systems and neural networks for monthly inflow prediction
  publication-title: Water Resources Management
  doi: 10.1007/s11269-017-1632-7
– volume: 274
  start-page: 292
  year: 2016
  ident: 10.3233/JIFS-200113_ref23
  article-title: A hybrid PSO-GA algorithm for constrained optimization problems
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2015.11.001
– volume: 72
  start-page: 321
  year: 2018
  ident: 10.3233/JIFS-200113_ref22
  article-title: An improved grey model optimized by multi-objective ant lion optimization algorithm for annual electricity consumption forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2018.07.022
– volume: 57
  start-page: 119
  year: 2014
  ident: 10.3233/JIFS-200113_ref29
  article-title: A seasonal discrete grey forecasting model for fashion retailing
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2013.12.014
– volume: 149
  start-page: 314
  year: 2018
  ident: 10.3233/JIFS-200113_ref39
  article-title: Forecasting China’s electricity consumption using a new grey prediction model
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.169
– volume: 136
  start-page: 758
  year: 2019
  ident: 10.3233/JIFS-200113_ref40
  article-title: Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.01.031
– volume: 1
  start-page: 1
  year: 1989
  ident: 10.3233/JIFS-200113_ref11
  article-title: Introduction to grey system theory
  publication-title: The Journal of Grey System
– volume: 60
  start-page: 255
  year: 1973
  ident: 10.3233/JIFS-200113_ref32
  article-title: Maximum likelihood identification of Gaussian autoregressive moving average models
  publication-title: Biometrika
  doi: 10.1093/biomet/60.2.255
– volume: 77
  start-page: 1242
  year: 2020
  ident: 10.3233/JIFS-200113_ref20
  article-title: A novel hybrid multivariate nonlinear grey model for forecasting the traffic-related emissions
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2019.09.013
– volume: 142
  start-page: 600
  year: 2017
  ident: 10.3233/JIFS-200113_ref1
  article-title: Forecasting Chinese carbon emissions from fossil energy consumption using non-linear grey multivariable models
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2016.08.067
– volume: 140
  start-page: 70
  year: 2019
  ident: 10.3233/JIFS-200113_ref33
  article-title: Forecasting short-term renewable energy consumption of China using a novel fractional nonlinear grey Bernoulli model
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.03.006
– volume: 7
  start-page: 372
  year: 2019
  ident: 10.3233/JIFS-200113_ref42
  article-title: Errors in statistical inference under model misspecification: evidence, hypothesis testing, and AIC
  publication-title: Frontiers in Ecology and Evolution
  doi: 10.3389/fevo.2019.00372
– volume: 51
  start-page: 386
  year: 2017
  ident: 10.3233/JIFS-200113_ref30
  article-title: An improved seasonal rolling grey forecasting model using a cycle truncation accumulated generating operation for traffic flow
  publication-title: Applied Mathematical Modelling
  doi: 10.1016/j.apm.2017.07.010
– volume: 178
  start-page: 487
  year: 2019
  ident: 10.3233/JIFS-200113_ref21
  article-title: A novel fractional time delayed grey model with Grey Wolf Optimizer and its applications in forecasting the natural gas and coal consumption in Chongqing China
  publication-title: Energy
  doi: 10.1016/j.energy.2019.04.096
– volume: 142
  start-page: 822
  year: 2018
  ident: 10.3233/JIFS-200113_ref24
  article-title: A novel TVAC-PSO based mutation strategies algorithm for generation scheduling of pumped storage hydrothermal system incorporating solar units
  publication-title: Energy
  doi: 10.1016/j.energy.2017.10.052
– volume: 10
  start-page: 1
  year: 2020
  ident: 10.3233/JIFS-200113_ref35
  article-title: Monitoring the temperature through moving average control under uncertainty environment
  publication-title: Scientific Reports
  doi: 10.1038/s41598-020-69192-8
– volume: 10
  start-page: 978
  year: 2017
  ident: 10.3233/JIFS-200113_ref12
  article-title: Grey data analysis
  publication-title: Springer-Verlag
– volume: 88
  start-page: 231
  year: 2014
  ident: 10.3233/JIFS-200113_ref4
  article-title: Short-term forecasting model for aggregated regional hydropower generation
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2014.08.017
– volume: 65
  start-page: 274
  year: 2016
  ident: 10.3233/JIFS-200113_ref34
  article-title: Autoregressive moving average graph filtering
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2016.2614793
– volume: 12
  start-page: 289
  year: 2019
  ident: 10.3233/JIFS-200113_ref3
  article-title: Prediction of hydropower generation using grey wolf optimization adaptive neuro-fuzzy inference system
  publication-title: Energies
  doi: 10.3390/en12020289
SSID ssj0017520
Score 2.3175778
Snippet The hydropower plays a key role in electricity system owing to its renewability and largest share of clean electricity generation that promotes sustainable...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 507
SubjectTerms Algorithms
Economic forecasting
Electricity
Hydroelectric power
Hydroelectric power generation
Mathematical models
Optimization
Seasonal variations
Sustainable development
Title A PSO algorithm-based seasonal nonlinear grey Bernoulli model with fractional order accumulation for forecasting quarterly hydropower generation
URI https://www.proquest.com/docview/2475130707
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ABDBF
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: ADMLS
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1875-8967
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017520
  issn: 1064-1246
  databaseCode: AMVHM
  dateStart: 19980201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF6F9AIHxFMUCtpDe8FacOz16xigVqiSFtQEBS6Wd-1tIzVpm9qH5Ffwj_hrzHj9Sloh4BDL2lh2kvkyr535hpB9B4yG63qKmdzjjAexzXxLJkxBfC0dwaWVYDfy6NgdTPjR1Jl2Or9aVUt5Jt7J9Z19Jf8jVVgDuWKX7D9Itr4pLMA5yBeOIGE4_pWM-8aX0xMjvji7hBD_fM7QJCUGpv2K_N5C02DESwOC6pXxIV0uLnHvR4-_0SlYtdSdDeiTIgunEUuZz8uZXkUNIrxSGd8U5dHXVQmocb5KcL4CltifFczVtYBve7qzmvYzK5Cm8vV6VXJINxWMszJzjSfzyqCiuciLOsB0wX7UIBwWNQhfZ7fS3t_zdhrD6m2lMdoVSroEsKlqQr0MnhMDV6RkzdZrEGoxP9DTPCplrrmfNkCrNbOjh-tuWwzbwox2ePQ5PEVo9XRj7CYv9_FJFE6Gw2h8OB0f2OHVNcOhZbi5f2B_0qi6R3YsMCtml-z0R98Go3ojy3MsTYhRfn7dIopPfd965qZTtOkTFI7O-BF5WMqN9jXcHpNOunhCHrR4K5-Sn30KwKNbwKMV8GgNPIrAozXwaAE8isCjDfBoATzaBh4F0NEW8GgNPNoAjzbAe0Ym4eH444CVoz2YhJA9YxBXiCTlpvCCNFAiBTfUs12hpOsltkhcFfhKmsr1wX8XPekqUCUC7A2PHdPFaSbPSRe-S_qCUBVDEOBZPDZtyUHB-LEUwocb2zHGI_4ueVv9tpEsee9x_MpFBPEvCiJCQURaELtkv774StO93H3ZXiWkqNQHN5HFPaeHJtR7-ee3X5H7zT9gj3SzZZ6-Btc2E29K-PwG73uuWw
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+PSO+algorithm-based+seasonal+nonlinear+grey+Bernoulli+model+with+fractional+order+accumulation+for+forecasting+quarterly+hydropower+generation&rft.jtitle=Journal+of+intelligent+%26+fuzzy+systems&rft.au=Jiang%2C+Jianming&rft.au=Wu%2C+Wen-Ze&rft.au=Li%2C+Qi&rft.au=Zhang%2C+Yu&rft.date=2021-01-01&rft.pub=Sage+Publications+Ltd&rft.issn=1064-1246&rft.eissn=1875-8967&rft.volume=40&rft.issue=1&rft.spage=507&rft_id=info:doi/10.3233%2FJIFS-200113&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1064-1246&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1064-1246&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1064-1246&client=summon