The influence of phonon bath on the control of single photon
The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both consid- ered in the two-level system model theoretically; by using the master equations and generating function method we get the analytical expression of the second-order fluorescence correlati...
Saved in:
| Published in | Chinese physics B Vol. 24; no. 6; pp. 591 - 597 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
01.06.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1674-1056 2058-3834 1741-4199 |
| DOI | 10.1088/1674-1056/24/6/067806 |
Cover
| Abstract | The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both consid- ered in the two-level system model theoretically; by using the master equations and generating function method we get the analytical expression of the second-order fluorescence correlation function, probability of single photon emission, and Mandel's Q parameter. The results manifest that the coupling between the phonon bath and single photon source destroys the superposition state induced by the square laser pulse, the Rabi oscillation damped rapidly with the increasing of tem- perature. Theoretically, when the structure parameter of arsenide quantum dots tx scaled to O. 1 times of the sample, the critical coherence-temperature will rise up to hundreds of Kelvin, which means a step forward to the realization of coherent control of single photon source at room temperature. |
|---|---|
| AbstractList | The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both consid- ered in the two-level system model theoretically; by using the master equations and generating function method we get the analytical expression of the second-order fluorescence correlation function, probability of single photon emission, and Mandel's Q parameter. The results manifest that the coupling between the phonon bath and single photon source destroys the superposition state induced by the square laser pulse, the Rabi oscillation damped rapidly with the increasing of tem- perature. Theoretically, when the structure parameter of arsenide quantum dots tx scaled to O. 1 times of the sample, the critical coherence-temperature will rise up to hundreds of Kelvin, which means a step forward to the realization of coherent control of single photon source at room temperature. The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both considered in the two-level system model theoretically; by using the master equations and generating function method we get the analytical expression of the second-order fluorescence correlation function, probability of single photon emission, and Mandel's Q parameter. The results manifest that the coupling between the phonon bath and single photon source destroys the superposition state induced by the square laser pulse, the Rabi oscillation damped rapidly with the increasing of temperature. Theoretically, when the structure parameter of arsenide quantum dots alpha scaled to 0.1 times of the sample, the critical coherence-temperature will rise up to hundreds of Kelvin, which means a step forward to the realization of coherent control of single photon source at room temperature. |
| Author | 张威 芦海涛 |
| AuthorAffiliation | Institute of Super-Microstructure and Ultrafast Process in Advanced Materials,School of Physics and Electronics, Central South University, Changsha 410012, China |
| Author_xml | – sequence: 1 fullname: 张威 芦海涛 |
| BookMark | eNo9kEtrwzAQhEVJoUnan1AwPfXievXwWoZeSugLAr3kLmRZSlwcKbGcQ_99ZRJy2sN8M-zMgsx88JaQRwovFKQsKFYip1BiwUSBBWAlAW_InEEpcy65mJH5lbkjixh_AZAC43PyutnZrPOuP1lvbBZcdtiFlJ81etxl6Y5JN8GPQ-gnNXZ-29sJGoO_J7dO99E-XO6SbD7eN6uvfP3z-b16W-eGIR1zShummUHmtG6taJxt01O0LrkUZQuS1ZXABhy4Rpq2tlUSpGYJLhsGLV-S53PsYQjHk42j2nfR2L7X3oZTVLSSyEDWdZXQ8oyaIcQ4WKcOQ7fXw5-ioKax1DSEmoZQTChU57GS7-niS-23x1TyakQUtcCac_4P2bBpgQ |
| Cites_doi | 10.1103/PhysRevLett.81.2594 10.1088/1367-2630/6/1/088 10.1103/PhysRevB.65.195313 10.1103/PhysRevB.78.153309 10.1038/nphys1184 10.1103/PhysRevLett.83.2722 10.1103/PhysRevA.74.011803 10.1103/PhysRevB.71.115328 10.1103/PhysRevA.69.032305 10.1103/PhysRevA.55.2290 10.1017/CBO9781139644105.018 10.1103/PhysRevLett.83.2270 10.1103/PhysRevLett.104.017402 10.1103/PhysRevLett.86.1502 10.1103/RevModPhys.59.1 10.1103/PhysRevLett.91.127401 10.1039/b606198b 10.1103/PhysRevLett.90.238305 10.1088/1367-2630/9/12/434 10.1088/0034-4885/74/7/076501 10.1038/35035032 10.1103/PhysRevB.66.161302 10.1103/PhysRevA.23.1243 10.1088/1367-2630/6/1/098 10.1103/PhysRevLett.85.26 10.1140/epjd/e2003-00020-2 |
| ContentType | Journal Article |
| DBID | 2RA 92L CQIGP ~WA AAYXX CITATION 7U5 8FD H8D L7M |
| DOI | 10.1088/1674-1056/24/6/067806 |
| DatabaseName | 维普_期刊 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库- 镜像站点 CrossRef Solid State and Superconductivity Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| DocumentTitleAlternate | The influence of phonon bath on the control of single photon |
| EISSN | 2058-3834 1741-4199 |
| EndPage | 597 |
| ExternalDocumentID | 10_1088_1674_1056_24_6_067806 664946933 |
| GroupedDBID | 02O 1JI 1WK 29B 2RA 4.4 5B3 5GY 5VR 5VS 5ZH 6J9 7.M 7.Q 92L AAGCD AAJIO AAJKP AALHV AATNI ABHWH ABJNI ABQJV ACAFW ACGFS ACHIP AEFHF AENEX AFUIB AFYNE AHSEE AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN BBWZM CCEZO CCVFK CEBXE CHBEP CJUJL CQIGP CRLBU CS3 DU5 EBS EDWGO EJD EMSAF EPQRW EQZZN FA0 FEDTE HAK HVGLF IJHAN IOP IZVLO JCGBZ KNG KOT M45 N5L NT- NT. PJBAE Q02 RIN RNS ROL RPA RW3 SY9 TCJ TGP UCJ W28 ~WA -SA -S~ AAYXX ACARI ADEQX AEINN AERVB AGQPQ AOAED ARNYC CAJEA CITATION Q-- U1G U5K 7U5 8FD H8D L7M |
| ID | FETCH-LOGICAL-c261t-11b2a2c62faade4bfed8341953845d0829746b0f0fb8cd9e75388a2aad5b20d3 |
| ISSN | 1674-1056 |
| IngestDate | Fri Sep 05 06:50:15 EDT 2025 Wed Oct 01 03:34:54 EDT 2025 Wed Feb 14 10:29:39 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c261t-11b2a2c62faade4bfed8341953845d0829746b0f0fb8cd9e75388a2aad5b20d3 |
| Notes | Zhang Wei and Lu Hai-Tao( Institute of Super-Microstructure and Ultrafast Process in Advanced Materials, School of Physics and Electronics, Central South University, Changsha 410012, China) single photon, generating function, photon bath, phonon bath The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both consid- ered in the two-level system model theoretically; by using the master equations and generating function method we get the analytical expression of the second-order fluorescence correlation function, probability of single photon emission, and Mandel's Q parameter. The results manifest that the coupling between the phonon bath and single photon source destroys the superposition state induced by the square laser pulse, the Rabi oscillation damped rapidly with the increasing of tem- perature. Theoretically, when the structure parameter of arsenide quantum dots tx scaled to O. 1 times of the sample, the critical coherence-temperature will rise up to hundreds of Kelvin, which means a step forward to the realization of coherent control of single photon source at room temperature. 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1786208997 |
| PQPubID | 23500 |
| PageCount | 7 |
| ParticipantIDs | proquest_miscellaneous_1786208997 crossref_primary_10_1088_1674_1056_24_6_067806 chongqing_primary_664946933 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-06-01 |
| PublicationDateYYYYMMDD | 2015-06-01 |
| PublicationDate_xml | – month: 06 year: 2015 text: 2015-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Chinese physics B |
| PublicationTitleAlternate | Chinese Physics |
| PublicationYear | 2015 |
| References | 22 Gaebel T (17) 2004; 6 23 25 Tannoudji C C (37) 2004 26 27 28 Loudon R (30) 2000 Moerner W E (16) 2004; 6 Huang W Q (3) 2012; 21 Aharonovich I (19) 2011; 74 31 Qiu L (10) 2013; 22 11 33 12 34 13 35 14 15 Wu E (18) 2007; 9 Wang W S (24) 2014; 23 1 Liu J (4) 2010; 19 2 Wang C L (32) 2007 7 Carmichael H (36) 1993 8 9 Carmichael H (29) 1993 Li Z G (6) 2010; 27 20 Niu Z C (5) 2010; 39 21 |
| References_xml | – ident: 12 doi: 10.1103/PhysRevLett.81.2594 – volume: 6 start-page: 88 issn: 1367-2630 year: 2004 ident: 16 publication-title: New J. Phys. doi: 10.1088/1367-2630/6/1/088 – volume: 27 issn: 0256-307X year: 2010 ident: 6 publication-title: Chin. Phys. Lett. – ident: 22 doi: 10.1103/PhysRevB.65.195313 – ident: 26 doi: 10.1103/PhysRevB.78.153309 – start-page: 32 year: 1993 ident: 29 publication-title: An Open Systems Approach to Quantum Optics – ident: 34 doi: 10.1038/nphys1184 – ident: 14 doi: 10.1103/PhysRevLett.83.2722 – ident: 7 doi: 10.1103/PhysRevA.74.011803 – ident: 21 doi: 10.1103/PhysRevB.71.115328 – ident: 35 doi: 10.1103/PhysRevA.69.032305 – volume: 19 issn: 1674-1056 year: 2010 ident: 4 publication-title: Chin. Phys. B – ident: 11 doi: 10.1103/PhysRevA.55.2290 – ident: 31 doi: 10.1017/CBO9781139644105.018 – ident: 1 doi: 10.1103/PhysRevLett.83.2270 – volume: 39 start-page: 737 year: 2010 ident: 5 publication-title: Physics – volume: 22 issn: 1674-1056 year: 2013 ident: 10 publication-title: Chin. Phys. B – ident: 27 doi: 10.1103/PhysRevLett.104.017402 – ident: 13 doi: 10.1103/PhysRevLett.86.1502 – ident: 25 doi: 10.1103/RevModPhys.59.1 – ident: 20 doi: 10.1103/PhysRevLett.91.127401 – start-page: 283 year: 2004 ident: 37 publication-title: Atom–Photon Interaction: Basic Processes and Applications – ident: 8 doi: 10.1039/b606198b – ident: 9 doi: 10.1103/PhysRevLett.90.238305 – volume: 9 start-page: 434 issn: 1367-2630 year: 2007 ident: 18 publication-title: New. J. Phys. doi: 10.1088/1367-2630/9/12/434 – volume: 23 issn: 1674-1056 year: 2014 ident: 24 publication-title: Chin. Phys. B – volume: 74 issn: 0034-4885 year: 2011 ident: 19 publication-title: Rep. Prog. Phys. doi: 10.1088/0034-4885/74/7/076501 – start-page: 36 year: 1993 ident: 36 publication-title: An Open Systems Approach to Quantum Optics – ident: 15 doi: 10.1038/35035032 – year: 2007 ident: 32 publication-title: “A Solid-State Single Photon Source Based on Color Centers in Diamond” – volume: 21 issn: 1674-1056 year: 2012 ident: 3 publication-title: Chin. Phys. B – ident: 28 doi: 10.1103/PhysRevB.66.161302 – ident: 33 doi: 10.1103/PhysRevA.23.1243 – volume: 6 start-page: 98 issn: 1367-2630 year: 2004 ident: 17 publication-title: New. J. Phys. doi: 10.1088/1367-2630/6/1/098 – ident: 2 doi: 10.1103/PhysRevLett.85.26 – ident: 23 doi: 10.1140/epjd/e2003-00020-2 – start-page: 333 year: 2000 ident: 30 publication-title: The Quantum Theory of Light |
| SSID | ssj0061023 ssib054405859 ssib000804704 |
| Score | 2.0089617 |
| Snippet | The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both consid- ered in the two-level system model... The influence of vacuum fluctuation and phonon bath on the probability of single photon emission are both considered in the two-level system model... |
| SourceID | proquest crossref chongqing |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 591 |
| SubjectTerms | Coherence Lasers Mathematical analysis Mathematical models Oscillations Phonons Photon emission Photons 函数方法 单光子发射 单光子源 声子 模型理论 相关函数 相干控制 解析表达式 |
| Title | The influence of phonon bath on the control of single photon |
| URI | http://lib.cqvip.com/qk/85823A/201506/664946933.html https://www.proquest.com/docview/1786208997 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Electronic Journals customDbUrl: eissn: 2058-3834 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061023 issn: 1674-1056 databaseCode: IOP dateStart: 20080101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3LbtQw0FqKkLggnmIpoCDhU5Wu49jOWOKSlFQFxOOwSL1FcR5QCXWBZi98PTOOk7YUIeDiWPbEiWZG87Bnxow9V7q3gGo31qZRsbIijetO1HEPDV1WiCLRUb7z23fm6KN6fayPF4s3F6KWtoPbb378Nq_kf6iKY0hXypL9B8rOi-IA9pG-2CKFsf1rGp9Mt4z42OXPG3Tn9xyadeEUYI5Fx1naFvjSEdAQiBGsUl4qXgDPX_JSc1vwAjsZB8tzSx0rOJiCl4e8OOA25yVwQKCEl4ZbwyEL0DCHxdI6CJsL6uQInuz5t3KeG3qrwOnMd3CF4uLOQ6LPI6SCsDSZQjGuQylrPyaFhjidNihPrghIPd7NFXStHmNzr4hxFH20ozCtT1krCht_1ITaVfxSPNurY2OURV8_Ta-x6xJFPN3j8er9h0ktG6pRQd73tOiUzgWwmsdWUq3MavwEFdtAon36hrS5bLRc1tneEFnfZreCBxHlIzvcYYvu9C674SN5m7N77AUyRTQzRbTpo5EpImKKCJ_IFFFgCpodmSIameI-Wx-W64OjOFyRETfo-g5xkjhZy8bIvq7bTrm-a4Eq9KEaU7r1edPKONGL3kHT2g6dU4BaIrB2UrTpA7aDf9A9ZJFsalGjbZe6hkoMAiSdTHuJwK51qcmWbHdGR_V1rIRSzThfsv0JQfOkD28AqAi7FWG3kqoy1YjdJXs2obFCgUanVPVpt9meVUmGTjYdRmeP_vjJXXbznCkfs53h-7Z7ggbi4J56wv8E_qBNzg |
| linkProvider | IOP Publishing |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+influence+of+phonon+bath+on+the+control+of+single+photon&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%89%A9%E7%90%86B%EF%BC%9A%E8%8B%B1%E6%96%87%E7%89%88&rft.au=%E5%BC%A0%E5%A8%81+%E8%8A%A6%E6%B5%B7%E6%B6%9B&rft.date=2015-06-01&rft.issn=1674-1056&rft.eissn=2058-3834&rft.issue=6&rft.spage=591&rft.epage=597&rft_id=info:doi/10.1088%2F1674-1056%2F24%2F6%2F067806&rft.externalDocID=664946933 |
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F85823A%2F85823A.jpg |