An Improved Particle Swarm Optimization Method for Nonlinear Optimization

Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical particle swarm‐based methods are usually characterized by low efficiency, accuracy, and convergence speed in specific issues. To solve these...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of intelligent systems Vol. 2024; no. 1
Main Authors Liu, Shiwei, Hua, Xia, Shan, Longxiang, Wang, Dongqiao, Liu, Yong, Wang, Qiaohua, Sun, Yanhua, He, Lingsong
Format Journal Article
LanguageEnglish
Published New York John Wiley & Sons, Inc 2024
Subjects
Online AccessGet full text
ISSN0884-8173
1098-111X
1098-111X
DOI10.1155/2024/6628110

Cover

Abstract Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical particle swarm‐based methods are usually characterized by low efficiency, accuracy, and convergence speed in specific issues. To solve these problems and enhance the nonlinear optimization performance, an improved metaheuristic particle swarm optimization (PSO) model is proposed here. First, the optimization principles and model of the new method are introduced, and algorithms of the improved PSO are presented by updating the displacement and velocity of the moving particle according to Euler–Maruyama (EM) principle rather than traditional standard normal distribution. Then, the influence of the model parameters, input dimensions, and different nonlinear problems on the PSO optimization characterizations are studied by Pareto set solving and optimization performance comparison. The analysis regarding diverse nonlinear problems and optimization methods manifests that the improved method is capable of solving various nonlinear problems especially for multiobjective models, while the robustness and reliability can always keep consistent regardless of the change of model parameters. Finally, the performance evaluation is exhibited by the case study of nonlinear parameter optimization, 3 groups of CEC benchmark problems, and rank‐sum test for 6 comparable optimization algorithms, which all verify its effectiveness and reliability, as well as the significance and great application promise. The results show that the new proposed PSO method has the fastest convergence speed and least iteration numbers in searching for the global best solution of 9 nonlinear problems among 8 different optimization models indicated by the p values smaller than 0.05. Additionally, the main conclusions showing the calculation efficiency, stability, robustness, and great application promise of the proposed method are summarized, and future work is discussed.
AbstractList Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical particle swarm‐based methods are usually characterized by low efficiency, accuracy, and convergence speed in specific issues. To solve these problems and enhance the nonlinear optimization performance, an improved metaheuristic particle swarm optimization (PSO) model is proposed here. First, the optimization principles and model of the new method are introduced, and algorithms of the improved PSO are presented by updating the displacement and velocity of the moving particle according to Euler–Maruyama (EM) principle rather than traditional standard normal distribution. Then, the influence of the model parameters, input dimensions, and different nonlinear problems on the PSO optimization characterizations are studied by Pareto set solving and optimization performance comparison. The analysis regarding diverse nonlinear problems and optimization methods manifests that the improved method is capable of solving various nonlinear problems especially for multiobjective models, while the robustness and reliability can always keep consistent regardless of the change of model parameters. Finally, the performance evaluation is exhibited by the case study of nonlinear parameter optimization, 3 groups of CEC benchmark problems, and rank‐sum test for 6 comparable optimization algorithms, which all verify its effectiveness and reliability, as well as the significance and great application promise. The results show that the new proposed PSO method has the fastest convergence speed and least iteration numbers in searching for the global best solution of 9 nonlinear problems among 8 different optimization models indicated by the p values smaller than 0.05. Additionally, the main conclusions showing the calculation efficiency, stability, robustness, and great application promise of the proposed method are summarized, and future work is discussed.
Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical particle swarm-based methods are usually characterized by low efficiency, accuracy, and convergence speed in specific issues. To solve these problems and enhance the nonlinear optimization performance, an improved metaheuristic particle swarm optimization (PSO) model is proposed here. First, the optimization principles and model of the new method are introduced, and algorithms of the improved PSO are presented by updating the displacement and velocity of the moving particle according to Euler–Maruyama (EM) principle rather than traditional standard normal distribution. Then, the influence of the model parameters, input dimensions, and different nonlinear problems on the PSO optimization characterizations are studied by Pareto set solving and optimization performance comparison. The analysis regarding diverse nonlinear problems and optimization methods manifests that the improved method is capable of solving various nonlinear problems especially for multiobjective models, while the robustness and reliability can always keep consistent regardless of the change of model parameters. Finally, the performance evaluation is exhibited by the case study of nonlinear parameter optimization, 3 groups of CEC benchmark problems, and rank-sum test for 6 comparable optimization algorithms, which all verify its effectiveness and reliability, as well as the significance and great application promise. The results show that the new proposed PSO method has the fastest convergence speed and least iteration numbers in searching for the global best solution of 9 nonlinear problems among 8 different optimization models indicated by the p values smaller than 0.05. Additionally, the main conclusions showing the calculation efficiency, stability, robustness, and great application promise of the proposed method are summarized, and future work is discussed.
Author Liu, Shiwei
He, Lingsong
Shan, Longxiang
Wang, Dongqiao
Wang, Qiaohua
Hua, Xia
Liu, Yong
Sun, Yanhua
Author_xml – sequence: 1
  givenname: Shiwei
  orcidid: 0000-0002-5389-1930
  surname: Liu
  fullname: Liu, Shiwei
– sequence: 2
  givenname: Xia
  orcidid: 0000-0002-0953-3044
  surname: Hua
  fullname: Hua, Xia
– sequence: 3
  givenname: Longxiang
  surname: Shan
  fullname: Shan, Longxiang
– sequence: 4
  givenname: Dongqiao
  surname: Wang
  fullname: Wang, Dongqiao
– sequence: 5
  givenname: Yong
  surname: Liu
  fullname: Liu, Yong
– sequence: 6
  givenname: Qiaohua
  surname: Wang
  fullname: Wang, Qiaohua
– sequence: 7
  givenname: Yanhua
  surname: Sun
  fullname: Sun, Yanhua
– sequence: 8
  givenname: Lingsong
  surname: He
  fullname: He, Lingsong
BookMark eNp9kEtLAzEYRYMo2FZ3_oABt47Nl3eXpfgoVCuo4C6kkwSnzCRjZmqpv94p7caNq7s5XO49Q3QaYnAIXQG-BeB8TDBhYyGIAsAnaAB4onIA-DhFA6wUyxVIeo6GbbvGGEAyPkDzacjmdZPit7PZi0ldWVQue92aVGfLpivr8sd0ZQzZk-s-o818TNlzDFUZnEl_iAt05k3VustjjtD7_d3b7DFfLB_ms-kiL4jAXW6Vo6woMLaeOSqBGUMcVYUnnKyI8xNwgkvJhBIcqKV-ZRWTK0K8EAxPLB2h_NC7CY3ZbU1V6SaVtUk7DVjvPei9B3300PPXB74_-bVxbafXcZNCP1FTIJQrKjHtqZsDVaTYtsn5_0t_AeV3ayQ
Cites_doi 10.1016/j.advengsoft.2020.102865
10.1016/s0165-0114(98)00471-0
10.1007/s10107-005-0685-1
10.1016/j.jsv.2016.11.006
10.1016/j.asoc.2013.07.021
10.1016/j.swevo.2019.100569
10.1155/2021/5990999
10.1016/j.ijthermalsci.2021.107427
10.1016/j.cnsns.2011.08.035
10.1016/j.amc.2008.10.045
10.1007/s12532-020-00196-1
10.1166/jcies.2012.1016
10.1016/j.neucom.2017.10.051
10.1016/j.swevo.2019.100573
10.1155/2019/5213759
10.1016/j.jappgeo.2017.11.016
10.2307/j.ctvcm4hcj
10.1002/rnc.5451
10.1016/j.neucom.2013.01.027
10.1016/j.neucom.2020.07.061
10.1016/j.energy.2019.116847
10.1109/tdei.2015.005383
10.1109/tevc.2018.2836912
10.1016/j.compgeo.2008.02.004
10.1109/ICIC53490.2021.9692931
10.1007/978-3-030-42760-3
10.1007/s10479-022-04655-x
10.1007/s00521-019-04696-7
10.1002/sim.8865
10.1016/s0167-8191(03)00013-9
10.1002/ett.3523
10.1109/tie.2015.2464171
10.1109/tsmc.2021.3138550
10.1109/tnnls.2017.2761443
10.1109/tnn.2006.890809
10.1016/j.epsr.2009.01.001
10.1007/s44196-021-00039-4
10.1080/10618600.2020.1869027
10.1007/s11012-013-9699-6
10.1109/ICSCC.2019.8843624
10.1007/978-3-642-55692-0_4
10.1109/tcyb.2018.2833281
10.1137/19m1263121
10.1007/s12532-018-0139-4
10.1016/j.cie.2020.106429
10.1080/19386362.2019.1677050
10.1007/s10107-004-0560-5
10.1109/mci.2017.2742868
10.1007/s10957-017-1071-x
10.1109/CCECE47787.2020.9255784
10.1007/s10479-007-0172-6
10.3390/a10020057
10.1007/s10589-008-9218-1
10.1016/j.eswa.2011.02.075
10.1155/2018/4258676
10.1109/CEC48606.2020.9185901
ContentType Journal Article
Copyright Copyright © 2024 Shiwei Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
Copyright_xml – notice: Copyright © 2024 Shiwei Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
ADTOC
UNPAY
DOI 10.1155/2024/6628110
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database (Proquest)
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1098-111X
Editor Eugenio Vocaturo
Editor_xml – fullname: Eugenio Vocaturo
ExternalDocumentID 10.1155/2024/6628110
10_1155_2024_6628110
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
24P
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAMMB
AANHP
AAONW
AASGY
AAXRX
AAYXX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJCF
ABJNI
ABPVW
ABUWG
ACAHQ
ACBWZ
ACCMX
ACCZN
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIMD
AENEX
AFBPY
AFGKR
AFKRA
AFZJQ
AGQPQ
AGXDD
AI.
AIDQK
AIDYY
AIQQE
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZQEC
AZVAB
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CCPQU
CITATION
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EDO
EJD
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H.T
H.X
H13
HBH
HCIFZ
HF~
HHY
HVGLF
HZ~
I-F
IX1
J0M
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M59
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PTHSS
PUEGO
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
RYL
SAMSI
SUPJJ
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XPP
XV2
ZY4
ZZTAW
~IA
~WT
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
AAJEY
JQ2
L6V
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
UNPAY
ID FETCH-LOGICAL-c260t-d8e34cc00df4e3714aa2e38cf252b2ef91e65774686513d3fbd847b22f66409d3
IEDL.DBID UNPAY
ISSN 0884-8173
1098-111X
IngestDate Sun Sep 07 10:44:26 EDT 2025
Fri Jul 25 12:10:05 EDT 2025
Wed Oct 01 03:27:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c260t-d8e34cc00df4e3714aa2e38cf252b2ef91e65774686513d3fbd847b22f66409d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5389-1930
0000-0002-0953-3044
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1155/2024/6628110
PQID 3123583703
PQPubID 1026350
ParticipantIDs unpaywall_primary_10_1155_2024_6628110
proquest_journals_3123583703
crossref_primary_10_1155_2024_6628110
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-00-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024-00-00
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of intelligent systems
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References e_1_2_12_2_2
e_1_2_12_4_2
e_1_2_12_19_2
e_1_2_12_17_2
e_1_2_12_15_2
Nadeau P. C. (e_1_2_12_54_2) 2020
e_1_2_12_38_2
e_1_2_12_59_2
e_1_2_12_41_2
e_1_2_12_20_2
e_1_2_12_43_2
e_1_2_12_62_2
e_1_2_12_22_2
e_1_2_12_24_2
e_1_2_12_47_2
e_1_2_12_60_2
Ashraf A. (e_1_2_12_45_2) 2023; 70
Leutenegger S. (e_1_2_12_3_2) 2013; 2013
e_1_2_12_26_2
e_1_2_12_49_2
e_1_2_12_28_2
Shehata A. A. (e_1_2_12_56_2) 2021; 70
Hosseinpourfard R. (e_1_2_12_27_2) 2015; 12
e_1_2_12_52_2
e_1_2_12_31_2
e_1_2_12_33_2
e_1_2_12_35_2
e_1_2_12_58_2
e_1_2_12_14_2
e_1_2_12_12_2
e_1_2_12_10_2
e_1_2_12_6_2
e_1_2_12_50_2
e_1_2_12_8_2
e_1_2_12_5_2
e_1_2_12_18_2
e_1_2_12_1_2
e_1_2_12_16_2
e_1_2_12_37_2
e_1_2_12_39_2
e_1_2_12_40_2
e_1_2_12_21_2
e_1_2_12_42_2
e_1_2_12_63_2
e_1_2_12_23_2
e_1_2_12_44_2
e_1_2_12_25_2
e_1_2_12_46_2
e_1_2_12_61_2
e_1_2_12_48_2
e_1_2_12_29_2
e_1_2_12_30_2
e_1_2_12_51_2
e_1_2_12_32_2
e_1_2_12_53_2
e_1_2_12_34_2
e_1_2_12_55_2
e_1_2_12_36_2
e_1_2_12_57_2
e_1_2_12_13_2
e_1_2_12_11_2
e_1_2_12_7_2
e_1_2_12_9_2
References_xml – ident: e_1_2_12_49_2
  doi: 10.1016/j.advengsoft.2020.102865
– ident: e_1_2_12_7_2
  doi: 10.1016/s0165-0114(98)00471-0
– ident: e_1_2_12_16_2
  doi: 10.1007/s10107-005-0685-1
– ident: e_1_2_12_36_2
  doi: 10.1016/j.jsv.2016.11.006
– ident: e_1_2_12_29_2
  doi: 10.1016/j.asoc.2013.07.021
– ident: e_1_2_12_53_2
  doi: 10.1016/j.swevo.2019.100569
– ident: e_1_2_12_26_2
– ident: e_1_2_12_40_2
  doi: 10.1155/2021/5990999
– volume: 70
  year: 2021
  ident: e_1_2_12_56_2
  article-title: Optimal Placement and Sizing of FACTS Devices Based on Autonomous Groups Particle Swarm Optimization Technique
  publication-title: Archives of Electrical Engineering
– ident: e_1_2_12_57_2
  doi: 10.1016/j.ijthermalsci.2021.107427
– ident: e_1_2_12_10_2
  doi: 10.1016/j.cnsns.2011.08.035
– ident: e_1_2_12_24_2
  doi: 10.1016/j.amc.2008.10.045
– ident: e_1_2_12_15_2
  doi: 10.1007/s12532-020-00196-1
– ident: e_1_2_12_44_2
  doi: 10.1166/jcies.2012.1016
– ident: e_1_2_12_63_2
  doi: 10.1016/j.neucom.2017.10.051
– ident: e_1_2_12_58_2
  doi: 10.1016/j.swevo.2019.100573
– ident: e_1_2_12_35_2
  doi: 10.1155/2019/5213759
– ident: e_1_2_12_39_2
  doi: 10.1016/j.jappgeo.2017.11.016
– ident: e_1_2_12_1_2
  doi: 10.2307/j.ctvcm4hcj
– ident: e_1_2_12_50_2
  doi: 10.1002/rnc.5451
– ident: e_1_2_12_12_2
  doi: 10.1016/j.neucom.2013.01.027
– ident: e_1_2_12_11_2
  doi: 10.1016/j.neucom.2020.07.061
– ident: e_1_2_12_43_2
  doi: 10.1016/j.energy.2019.116847
– ident: e_1_2_12_20_2
  doi: 10.1109/tdei.2015.005383
– ident: e_1_2_12_52_2
  doi: 10.1109/tevc.2018.2836912
– ident: e_1_2_12_4_2
  doi: 10.1016/j.compgeo.2008.02.004
– ident: e_1_2_12_42_2
  doi: 10.1109/ICIC53490.2021.9692931
– ident: e_1_2_12_17_2
  doi: 10.1007/978-3-030-42760-3
– ident: e_1_2_12_41_2
  doi: 10.1007/s10479-022-04655-x
– ident: e_1_2_12_47_2
  doi: 10.1007/s00521-019-04696-7
– ident: e_1_2_12_62_2
  doi: 10.1002/sim.8865
– ident: e_1_2_12_5_2
  doi: 10.1016/s0167-8191(03)00013-9
– ident: e_1_2_12_38_2
  doi: 10.1002/ett.3523
– volume: 70
  year: 2023
  ident: e_1_2_12_45_2
  article-title: Analysis of Brain Imaging Data for the Detection of Early Age Autism Spectrum Disorder Using Transfer Learning Approaches for Internet of Things
  publication-title: IEEE Transactions on Consumer Electronics
– ident: e_1_2_12_22_2
  doi: 10.1109/tie.2015.2464171
– ident: e_1_2_12_48_2
  doi: 10.1109/tsmc.2021.3138550
– ident: e_1_2_12_32_2
  doi: 10.1109/tnnls.2017.2761443
– ident: e_1_2_12_28_2
  doi: 10.1109/tnn.2006.890809
– ident: e_1_2_12_25_2
  doi: 10.1016/j.epsr.2009.01.001
– ident: e_1_2_12_51_2
  doi: 10.1007/s44196-021-00039-4
– ident: e_1_2_12_19_2
  doi: 10.1080/10618600.2020.1869027
– ident: e_1_2_12_21_2
  doi: 10.1007/s11012-013-9699-6
– ident: e_1_2_12_60_2
  doi: 10.1109/ICSCC.2019.8843624
– volume: 12
  year: 2015
  ident: e_1_2_12_27_2
  article-title: Chaotic Pso Using the Lorenz System: An Efficient Approach for Optimizing Nonlinear Problems
  publication-title: Çankaya University Journal of Science and Engineering
– ident: e_1_2_12_2_2
  doi: 10.1007/978-3-642-55692-0_4
– volume-title: Multiobjective Nelder-Mead Algorithm Using a Mesh-Map of Weighted Sums
  year: 2020
  ident: e_1_2_12_54_2
– ident: e_1_2_12_34_2
  doi: 10.1109/tcyb.2018.2833281
– ident: e_1_2_12_33_2
  doi: 10.1137/19m1263121
– ident: e_1_2_12_14_2
  doi: 10.1007/s12532-018-0139-4
– ident: e_1_2_12_30_2
  doi: 10.1016/j.cie.2020.106429
– ident: e_1_2_12_6_2
  doi: 10.1080/19386362.2019.1677050
– ident: e_1_2_12_9_2
  doi: 10.1007/s10107-004-0560-5
– ident: e_1_2_12_61_2
  doi: 10.1109/mci.2017.2742868
– ident: e_1_2_12_31_2
  doi: 10.1007/s10957-017-1071-x
– ident: e_1_2_12_13_2
– ident: e_1_2_12_55_2
  doi: 10.1109/CCECE47787.2020.9255784
– ident: e_1_2_12_18_2
  doi: 10.1007/s10479-007-0172-6
– ident: e_1_2_12_46_2
  doi: 10.3390/a10020057
– ident: e_1_2_12_8_2
  doi: 10.1007/s10589-008-9218-1
– ident: e_1_2_12_23_2
  doi: 10.1016/j.eswa.2011.02.075
– ident: e_1_2_12_37_2
  doi: 10.1155/2018/4258676
– ident: e_1_2_12_59_2
  doi: 10.1109/CEC48606.2020.9185901
– volume: 2013
  year: 2013
  ident: e_1_2_12_3_2
  article-title: Keyframe-Based Visual-Inertial Slam Using Nonlinear Optimization
  publication-title: Proceedings of Robotis Science and Systems (RSS)
SSID ssj0011745
Score 2.3754072
Snippet Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical...
SourceID unpaywall
proquest
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
SubjectTerms Accuracy
Algorithms
Approximation
Brownian motion
Convergence
Field programmable gate arrays
Heuristic methods
Hierarchies
Industrial applications
Linear programming
Machine learning
Methods
Multiple objective analysis
Normal distribution
Optimization models
Optimization techniques
Parameter robustness
Particle swarm optimization
Performance evaluation
Portfolio management
Problem solving
Reliability
Robustness (mathematics)
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED6VMsDCG1EoyAOwWW38SjIgVBCoIBEqoFK3yI6dqYRSWlX8e-zEKbB0tz3cne--O_vuAzjXmoWxcF9xolBiphXFsQxjzLiJSShUTEq6t6dE9IfsccRHDUjqXhj3rbL2iaWj1h-Zq5F3aNnUSa2BXk8-sWONcq-rNYWG9NQK-qocMbYG68RNxmrC-s1dMnhZvitY_M0rXMlwFIS0_grPuasCsI4QJApcN-3fIPWLPDfmxUR-L-R4_CcI3e_AlkePqFepexcaptiD7ZqZAfmLug8PvQJV5QKj0cBbB3pdyOk7erZO4t13X6KnkkAaWeSKkmpohpz-W3EAw_u7t9s-9qQJOLOpyQzryFCWZd2uzplx4_ikJIZGWU44UcTkcWAEt5hPRIIHVNNcaRugFCG5EDbX0_QQmsVHYY4AdQ3PMqpM2THPqVL2XKaDOFZ2l9VtCy5qKaWTajZGWuYUnKdOmqmXZgvatQhTf0O-0l99tuByKdaV5xyvPucENt3qqj7ShuZsOjenFjHM1Jk3gx_f5ryf
  priority: 102
  providerName: ProQuest
Title An Improved Particle Swarm Optimization Method for Nonlinear Optimization
URI https://www.proquest.com/docview/3123583703
https://doi.org/10.1155/2024/6628110
UnpaywallVersion publishedVersion
Volume 2024
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  issn: 1098-111X
  databaseCode: ADMLS
  dateStart: 19860301
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011745
  issn: 1098-111X
  databaseCode: BENPR
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1098-111X
  databaseCode: DR2
  dateStart: 19960101
  customDbUrl:
  isFulltext: true
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011745
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1098-111X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0011745
  issn: 1098-111X
  databaseCode: 24P
  dateStart: 20230101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-icNCL-Iwokh7Q25D1xXZEBdHIJCIJnpZ17S7CJDhC9K-3eylwUE_LkrZpvke_39d-D4CalLRp8zgUx2p6BpWCGLbXtA3KlI2bXNg4affWc3h3SO9HbLQBtTwXZvn9Xpu62Denl5xjy4zzqIqcacRdgOLQ6bdeUoBIDSt9SDbj0phadUd5fPva9FXL8wMnt-bh1PtYeOPxkmXplKCd7ykNKHmtzyNR9z_XyjX-teld2MmgJWqlsrAHGyrch1LetgFlWnwAd60QpXcJSqJ-JjposPBmE_SoT5BJlpqJekl3aaRhLXLSihrebGXEIQw77efrrpF1VDB87bdEhrQUob7faMiAqrhWn-dhRSw_wAwLrALbVJxpQMgtzkwiSSCktl4C44Bz7QhKcgSF8C1Ux4Aaivk-ESpJp2dECL0ulaZtCz1LM74M5zm13WlaOMNNHA7G3Jg-bkafMlRyVriZ-ry7JMngJfo0KsPFN3t-XefkvwNPYTv-Ta9RKlCIZnN1poFFJKqwaXVuq1Bs3fQeBvp71Xb6T9VM2r4AtM3G4g
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25UsMwEN3hKKDhZginCqDzEOuyVTAM5ySEBIZjhs5IllwlTghhMvwc34ZkywQaOnpri9Xz6u1Kuw9gX2saCe6e4sSRDKhWJBAyEgFlRuCIK4ELubd2hzee6PUze56Cz6oXxj2rrGJiEah1P3U18iNSNHUSC9CTwWvgVKPc7WoloSG9tII-LkaM-caOlvkY2xTu7bh5Yff7AOOry8fzRuBVBoLUcvlRoGNDaJrW6zqjxs2vkxIbEqcZZlhhk4nQcGZJEo85C4kmmdI2oiuMM85tcqSJtTsNs5RQYZO_2bPLzt399z2G5fus5LE0iMOIVE_vGXNVB3rEOY5D173781CcMN2593wgP8ay2_1x6F0twYJnq-i0hNcyTJl8BRYrJQjkA8MqNE9zVJYnjEZ3Ho3oYSyHPXRrg1LPd3uidiFYjSxTRp1ySIcc_vpiDZ7-xX3rMJP3c7MBqG5YmhJlig59RpSydqkOhVB2lcVSDQ4qLyWDchZHUuQwjCXOm4n3Zg22Kxcm_o98Syb4qcHht1v_tLP5t509mGs8tm-Sm2antQXzbmVZm9mGmdHw3exYtjJSux4SCF7-G4VfN0X5BQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSMCFHVEo4ANwi9p4S3xAqKKUlqUgARK3EMfOqU1LKar4Nb4OO3EKXLj1Hs_h-WX8PJ4F4FgpGghuU3HCIPaoksQTcSA8yrTAAZcC5-Pe7rq8_UyvX9jLHHyVtTA2rbL0ibmjVoPExshrJC_qJIagtdSlRTw0W-fDN89OkLIvreU4jYIiN_pzYq5v72edptnrE4xbl08Xbc9NGPASo-PHngo1oUlSr6uUatu7Lo6xJmGSYoYl1qnwNWdGIPGQM58okkplvLnEOOXcXIwUMXbnYTGwXdxtlXrravqCYZQ-KxQs9UI_IGXSPWM23kBrnOPQt3W7v4_DH427_JEN489J3Ov9Ou5a67DqdCpqFMTagDmdbcJaOQMCOZewBZ1GhorAhFbowfEQPU7iUR_dG3fUd3We6C4fVY2MRkbdoj1HPPrzxTY8zwS8HVjIBpneBVTXLEmI1HltPiNSGrtU-UJIs8qwqAInJUrRsOjCEeW3F8Yii2bk0KxAtYQwcv_ie_TDnAqcTmH9187e_3aOYMlwL7rtdG_2YcUuLIIyVVgYjz70gZEpY3mY8wHB66wJ-A1d2Paf
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8hcNCL-BlRND2gtyHr17YjMRA0AUmUBE9Lu3YXZRIcIfrX222dAgf12KRtmvfR93vt-wBoKUW9gGehOL4nHKokcQLhBQ5lOsAelwHO270NR3wwofdTNq1Aq8yFWf-_N6Yu883pDefYd7M8qhpnBnFXoTYZjbvPBUCkjl98JLtZaUyjutMyvn1r-abl-YGTO8tkLj5W4vV1zbL069Arz1QElLy0l6lsR59b5Rr_OvQ-7FloibqFLBxARSeHUC_bNiCrxUdw101Q8ZagFRpb0UGPK7GYoQdzg8xsaiYa5t2lkYG1aFRU1BCLjRnHMOn3nm4Hju2o4ETGb0kd5WtCo6jTUTHVWa0-IbAmfhRjhiXWceBqzgwg5D5nLlEklspYL4lxzLlxBBU5gWryluhTQB3NoohInafTMyKl2ZcqNwikWWUY34CrktrhvCicEeYOB2NhRp_Q0qcBzZIVoVWf95DkGbzE3EYNuP5mz6_7nP134jnsZsPiGaUJ1XSx1BcGWKTy0srVF9Liws4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Particle+Swarm+Optimization+Method+for+Nonlinear+Optimization&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Liu%2C+Shiwei&rft.au=Xia+Hua&rft.au=Longxiang+Shan&rft.au=Wang%2C+Dongqiao&rft.date=2024&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F6628110&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon