An Improved Particle Swarm Optimization Method for Nonlinear Optimization
Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical particle swarm‐based methods are usually characterized by low efficiency, accuracy, and convergence speed in specific issues. To solve these...
Saved in:
| Published in | International journal of intelligent systems Vol. 2024; no. 1 |
|---|---|
| Main Authors | , , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
John Wiley & Sons, Inc
2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0884-8173 1098-111X 1098-111X |
| DOI | 10.1155/2024/6628110 |
Cover
| Abstract | Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical particle swarm‐based methods are usually characterized by low efficiency, accuracy, and convergence speed in specific issues. To solve these problems and enhance the nonlinear optimization performance, an improved metaheuristic particle swarm optimization (PSO) model is proposed here. First, the optimization principles and model of the new method are introduced, and algorithms of the improved PSO are presented by updating the displacement and velocity of the moving particle according to Euler–Maruyama (EM) principle rather than traditional standard normal distribution. Then, the influence of the model parameters, input dimensions, and different nonlinear problems on the PSO optimization characterizations are studied by Pareto set solving and optimization performance comparison. The analysis regarding diverse nonlinear problems and optimization methods manifests that the improved method is capable of solving various nonlinear problems especially for multiobjective models, while the robustness and reliability can always keep consistent regardless of the change of model parameters. Finally, the performance evaluation is exhibited by the case study of nonlinear parameter optimization, 3 groups of CEC benchmark problems, and rank‐sum test for 6 comparable optimization algorithms, which all verify its effectiveness and reliability, as well as the significance and great application promise. The results show that the new proposed PSO method has the fastest convergence speed and least iteration numbers in searching for the global best solution of 9 nonlinear problems among 8 different optimization models indicated by the
p
values smaller than 0.05. Additionally, the main conclusions showing the calculation efficiency, stability, robustness, and great application promise of the proposed method are summarized, and future work is discussed. |
|---|---|
| AbstractList | Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical particle swarm‐based methods are usually characterized by low efficiency, accuracy, and convergence speed in specific issues. To solve these problems and enhance the nonlinear optimization performance, an improved metaheuristic particle swarm optimization (PSO) model is proposed here. First, the optimization principles and model of the new method are introduced, and algorithms of the improved PSO are presented by updating the displacement and velocity of the moving particle according to Euler–Maruyama (EM) principle rather than traditional standard normal distribution. Then, the influence of the model parameters, input dimensions, and different nonlinear problems on the PSO optimization characterizations are studied by Pareto set solving and optimization performance comparison. The analysis regarding diverse nonlinear problems and optimization methods manifests that the improved method is capable of solving various nonlinear problems especially for multiobjective models, while the robustness and reliability can always keep consistent regardless of the change of model parameters. Finally, the performance evaluation is exhibited by the case study of nonlinear parameter optimization, 3 groups of CEC benchmark problems, and rank‐sum test for 6 comparable optimization algorithms, which all verify its effectiveness and reliability, as well as the significance and great application promise. The results show that the new proposed PSO method has the fastest convergence speed and least iteration numbers in searching for the global best solution of 9 nonlinear problems among 8 different optimization models indicated by the
p
values smaller than 0.05. Additionally, the main conclusions showing the calculation efficiency, stability, robustness, and great application promise of the proposed method are summarized, and future work is discussed. Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical particle swarm-based methods are usually characterized by low efficiency, accuracy, and convergence speed in specific issues. To solve these problems and enhance the nonlinear optimization performance, an improved metaheuristic particle swarm optimization (PSO) model is proposed here. First, the optimization principles and model of the new method are introduced, and algorithms of the improved PSO are presented by updating the displacement and velocity of the moving particle according to Euler–Maruyama (EM) principle rather than traditional standard normal distribution. Then, the influence of the model parameters, input dimensions, and different nonlinear problems on the PSO optimization characterizations are studied by Pareto set solving and optimization performance comparison. The analysis regarding diverse nonlinear problems and optimization methods manifests that the improved method is capable of solving various nonlinear problems especially for multiobjective models, while the robustness and reliability can always keep consistent regardless of the change of model parameters. Finally, the performance evaluation is exhibited by the case study of nonlinear parameter optimization, 3 groups of CEC benchmark problems, and rank-sum test for 6 comparable optimization algorithms, which all verify its effectiveness and reliability, as well as the significance and great application promise. The results show that the new proposed PSO method has the fastest convergence speed and least iteration numbers in searching for the global best solution of 9 nonlinear problems among 8 different optimization models indicated by the p values smaller than 0.05. Additionally, the main conclusions showing the calculation efficiency, stability, robustness, and great application promise of the proposed method are summarized, and future work is discussed. |
| Author | Liu, Shiwei He, Lingsong Shan, Longxiang Wang, Dongqiao Wang, Qiaohua Hua, Xia Liu, Yong Sun, Yanhua |
| Author_xml | – sequence: 1 givenname: Shiwei orcidid: 0000-0002-5389-1930 surname: Liu fullname: Liu, Shiwei – sequence: 2 givenname: Xia orcidid: 0000-0002-0953-3044 surname: Hua fullname: Hua, Xia – sequence: 3 givenname: Longxiang surname: Shan fullname: Shan, Longxiang – sequence: 4 givenname: Dongqiao surname: Wang fullname: Wang, Dongqiao – sequence: 5 givenname: Yong surname: Liu fullname: Liu, Yong – sequence: 6 givenname: Qiaohua surname: Wang fullname: Wang, Qiaohua – sequence: 7 givenname: Yanhua surname: Sun fullname: Sun, Yanhua – sequence: 8 givenname: Lingsong surname: He fullname: He, Lingsong |
| BookMark | eNp9kEtLAzEYRYMo2FZ3_oABt47Nl3eXpfgoVCuo4C6kkwSnzCRjZmqpv94p7caNq7s5XO49Q3QaYnAIXQG-BeB8TDBhYyGIAsAnaAB4onIA-DhFA6wUyxVIeo6GbbvGGEAyPkDzacjmdZPit7PZi0ldWVQue92aVGfLpivr8sd0ZQzZk-s-o818TNlzDFUZnEl_iAt05k3VustjjtD7_d3b7DFfLB_ms-kiL4jAXW6Vo6woMLaeOSqBGUMcVYUnnKyI8xNwgkvJhBIcqKV-ZRWTK0K8EAxPLB2h_NC7CY3ZbU1V6SaVtUk7DVjvPei9B3300PPXB74_-bVxbafXcZNCP1FTIJQrKjHtqZsDVaTYtsn5_0t_AeV3ayQ |
| Cites_doi | 10.1016/j.advengsoft.2020.102865 10.1016/s0165-0114(98)00471-0 10.1007/s10107-005-0685-1 10.1016/j.jsv.2016.11.006 10.1016/j.asoc.2013.07.021 10.1016/j.swevo.2019.100569 10.1155/2021/5990999 10.1016/j.ijthermalsci.2021.107427 10.1016/j.cnsns.2011.08.035 10.1016/j.amc.2008.10.045 10.1007/s12532-020-00196-1 10.1166/jcies.2012.1016 10.1016/j.neucom.2017.10.051 10.1016/j.swevo.2019.100573 10.1155/2019/5213759 10.1016/j.jappgeo.2017.11.016 10.2307/j.ctvcm4hcj 10.1002/rnc.5451 10.1016/j.neucom.2013.01.027 10.1016/j.neucom.2020.07.061 10.1016/j.energy.2019.116847 10.1109/tdei.2015.005383 10.1109/tevc.2018.2836912 10.1016/j.compgeo.2008.02.004 10.1109/ICIC53490.2021.9692931 10.1007/978-3-030-42760-3 10.1007/s10479-022-04655-x 10.1007/s00521-019-04696-7 10.1002/sim.8865 10.1016/s0167-8191(03)00013-9 10.1002/ett.3523 10.1109/tie.2015.2464171 10.1109/tsmc.2021.3138550 10.1109/tnnls.2017.2761443 10.1109/tnn.2006.890809 10.1016/j.epsr.2009.01.001 10.1007/s44196-021-00039-4 10.1080/10618600.2020.1869027 10.1007/s11012-013-9699-6 10.1109/ICSCC.2019.8843624 10.1007/978-3-642-55692-0_4 10.1109/tcyb.2018.2833281 10.1137/19m1263121 10.1007/s12532-018-0139-4 10.1016/j.cie.2020.106429 10.1080/19386362.2019.1677050 10.1007/s10107-004-0560-5 10.1109/mci.2017.2742868 10.1007/s10957-017-1071-x 10.1109/CCECE47787.2020.9255784 10.1007/s10479-007-0172-6 10.3390/a10020057 10.1007/s10589-008-9218-1 10.1016/j.eswa.2011.02.075 10.1155/2018/4258676 10.1109/CEC48606.2020.9185901 |
| ContentType | Journal Article |
| Copyright | Copyright © 2024 Shiwei Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| Copyright_xml | – notice: Copyright © 2024 Shiwei Liu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0 |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U ADTOC UNPAY |
| DOI | 10.1155/2024/6628110 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database (Proquest) ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1098-111X |
| Editor | Eugenio Vocaturo |
| Editor_xml | – fullname: Eugenio Vocaturo |
| ExternalDocumentID | 10.1155/2024/6628110 10_1155_2024_6628110 |
| GroupedDBID | -~X .3N .4S .DC .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 24P 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAMMB AANHP AAONW AASGY AAXRX AAYXX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJCF ABJNI ABPVW ABUWG ACAHQ ACBWZ ACCMX ACCZN ACGFS ACIWK ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEIMD AENEX AFBPY AFGKR AFKRA AFZJQ AGQPQ AGXDD AI. AIDQK AIDYY AIQQE AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZQEC AZVAB BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CCPQU CITATION CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EDO EJD F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H.T H.X H13 HBH HCIFZ HF~ HHY HVGLF HZ~ I-F IX1 J0M JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M59 M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2P P2W P2X P4D PALCI PHGZM PHGZT PIMPY PQGLB PQQKQ PTHSS PUEGO Q.N Q11 QB0 QRW R.K RIWAO RJQFR ROL RX1 RYL SAMSI SUPJJ TN5 TUS UB1 V2E VH1 W8V W99 WBKPD WH7 WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XPP XV2 ZY4 ZZTAW ~IA ~WT 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK AAJEY JQ2 L6V L7M L~C L~D M0N P62 PKEHL PQEST PQUKI PRINS Q9U ADTOC UNPAY |
| ID | FETCH-LOGICAL-c260t-d8e34cc00df4e3714aa2e38cf252b2ef91e65774686513d3fbd847b22f66409d3 |
| IEDL.DBID | UNPAY |
| ISSN | 0884-8173 1098-111X |
| IngestDate | Sun Sep 07 10:44:26 EDT 2025 Fri Jul 25 12:10:05 EDT 2025 Wed Oct 01 03:27:43 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c260t-d8e34cc00df4e3714aa2e38cf252b2ef91e65774686513d3fbd847b22f66409d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5389-1930 0000-0002-0953-3044 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1155/2024/6628110 |
| PQID | 3123583703 |
| PQPubID | 1026350 |
| ParticipantIDs | unpaywall_primary_10_1155_2024_6628110 proquest_journals_3123583703 crossref_primary_10_1155_2024_6628110 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-00-00 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – year: 2024 text: 2024-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | International journal of intelligent systems |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | e_1_2_12_2_2 e_1_2_12_4_2 e_1_2_12_19_2 e_1_2_12_17_2 e_1_2_12_15_2 Nadeau P. C. (e_1_2_12_54_2) 2020 e_1_2_12_38_2 e_1_2_12_59_2 e_1_2_12_41_2 e_1_2_12_20_2 e_1_2_12_43_2 e_1_2_12_62_2 e_1_2_12_22_2 e_1_2_12_24_2 e_1_2_12_47_2 e_1_2_12_60_2 Ashraf A. (e_1_2_12_45_2) 2023; 70 Leutenegger S. (e_1_2_12_3_2) 2013; 2013 e_1_2_12_26_2 e_1_2_12_49_2 e_1_2_12_28_2 Shehata A. A. (e_1_2_12_56_2) 2021; 70 Hosseinpourfard R. (e_1_2_12_27_2) 2015; 12 e_1_2_12_52_2 e_1_2_12_31_2 e_1_2_12_33_2 e_1_2_12_35_2 e_1_2_12_58_2 e_1_2_12_14_2 e_1_2_12_12_2 e_1_2_12_10_2 e_1_2_12_6_2 e_1_2_12_50_2 e_1_2_12_8_2 e_1_2_12_5_2 e_1_2_12_18_2 e_1_2_12_1_2 e_1_2_12_16_2 e_1_2_12_37_2 e_1_2_12_39_2 e_1_2_12_40_2 e_1_2_12_21_2 e_1_2_12_42_2 e_1_2_12_63_2 e_1_2_12_23_2 e_1_2_12_44_2 e_1_2_12_25_2 e_1_2_12_46_2 e_1_2_12_61_2 e_1_2_12_48_2 e_1_2_12_29_2 e_1_2_12_30_2 e_1_2_12_51_2 e_1_2_12_32_2 e_1_2_12_53_2 e_1_2_12_34_2 e_1_2_12_55_2 e_1_2_12_36_2 e_1_2_12_57_2 e_1_2_12_13_2 e_1_2_12_11_2 e_1_2_12_7_2 e_1_2_12_9_2 |
| References_xml | – ident: e_1_2_12_49_2 doi: 10.1016/j.advengsoft.2020.102865 – ident: e_1_2_12_7_2 doi: 10.1016/s0165-0114(98)00471-0 – ident: e_1_2_12_16_2 doi: 10.1007/s10107-005-0685-1 – ident: e_1_2_12_36_2 doi: 10.1016/j.jsv.2016.11.006 – ident: e_1_2_12_29_2 doi: 10.1016/j.asoc.2013.07.021 – ident: e_1_2_12_53_2 doi: 10.1016/j.swevo.2019.100569 – ident: e_1_2_12_26_2 – ident: e_1_2_12_40_2 doi: 10.1155/2021/5990999 – volume: 70 year: 2021 ident: e_1_2_12_56_2 article-title: Optimal Placement and Sizing of FACTS Devices Based on Autonomous Groups Particle Swarm Optimization Technique publication-title: Archives of Electrical Engineering – ident: e_1_2_12_57_2 doi: 10.1016/j.ijthermalsci.2021.107427 – ident: e_1_2_12_10_2 doi: 10.1016/j.cnsns.2011.08.035 – ident: e_1_2_12_24_2 doi: 10.1016/j.amc.2008.10.045 – ident: e_1_2_12_15_2 doi: 10.1007/s12532-020-00196-1 – ident: e_1_2_12_44_2 doi: 10.1166/jcies.2012.1016 – ident: e_1_2_12_63_2 doi: 10.1016/j.neucom.2017.10.051 – ident: e_1_2_12_58_2 doi: 10.1016/j.swevo.2019.100573 – ident: e_1_2_12_35_2 doi: 10.1155/2019/5213759 – ident: e_1_2_12_39_2 doi: 10.1016/j.jappgeo.2017.11.016 – ident: e_1_2_12_1_2 doi: 10.2307/j.ctvcm4hcj – ident: e_1_2_12_50_2 doi: 10.1002/rnc.5451 – ident: e_1_2_12_12_2 doi: 10.1016/j.neucom.2013.01.027 – ident: e_1_2_12_11_2 doi: 10.1016/j.neucom.2020.07.061 – ident: e_1_2_12_43_2 doi: 10.1016/j.energy.2019.116847 – ident: e_1_2_12_20_2 doi: 10.1109/tdei.2015.005383 – ident: e_1_2_12_52_2 doi: 10.1109/tevc.2018.2836912 – ident: e_1_2_12_4_2 doi: 10.1016/j.compgeo.2008.02.004 – ident: e_1_2_12_42_2 doi: 10.1109/ICIC53490.2021.9692931 – ident: e_1_2_12_17_2 doi: 10.1007/978-3-030-42760-3 – ident: e_1_2_12_41_2 doi: 10.1007/s10479-022-04655-x – ident: e_1_2_12_47_2 doi: 10.1007/s00521-019-04696-7 – ident: e_1_2_12_62_2 doi: 10.1002/sim.8865 – ident: e_1_2_12_5_2 doi: 10.1016/s0167-8191(03)00013-9 – ident: e_1_2_12_38_2 doi: 10.1002/ett.3523 – volume: 70 year: 2023 ident: e_1_2_12_45_2 article-title: Analysis of Brain Imaging Data for the Detection of Early Age Autism Spectrum Disorder Using Transfer Learning Approaches for Internet of Things publication-title: IEEE Transactions on Consumer Electronics – ident: e_1_2_12_22_2 doi: 10.1109/tie.2015.2464171 – ident: e_1_2_12_48_2 doi: 10.1109/tsmc.2021.3138550 – ident: e_1_2_12_32_2 doi: 10.1109/tnnls.2017.2761443 – ident: e_1_2_12_28_2 doi: 10.1109/tnn.2006.890809 – ident: e_1_2_12_25_2 doi: 10.1016/j.epsr.2009.01.001 – ident: e_1_2_12_51_2 doi: 10.1007/s44196-021-00039-4 – ident: e_1_2_12_19_2 doi: 10.1080/10618600.2020.1869027 – ident: e_1_2_12_21_2 doi: 10.1007/s11012-013-9699-6 – ident: e_1_2_12_60_2 doi: 10.1109/ICSCC.2019.8843624 – volume: 12 year: 2015 ident: e_1_2_12_27_2 article-title: Chaotic Pso Using the Lorenz System: An Efficient Approach for Optimizing Nonlinear Problems publication-title: Çankaya University Journal of Science and Engineering – ident: e_1_2_12_2_2 doi: 10.1007/978-3-642-55692-0_4 – volume-title: Multiobjective Nelder-Mead Algorithm Using a Mesh-Map of Weighted Sums year: 2020 ident: e_1_2_12_54_2 – ident: e_1_2_12_34_2 doi: 10.1109/tcyb.2018.2833281 – ident: e_1_2_12_33_2 doi: 10.1137/19m1263121 – ident: e_1_2_12_14_2 doi: 10.1007/s12532-018-0139-4 – ident: e_1_2_12_30_2 doi: 10.1016/j.cie.2020.106429 – ident: e_1_2_12_6_2 doi: 10.1080/19386362.2019.1677050 – ident: e_1_2_12_9_2 doi: 10.1007/s10107-004-0560-5 – ident: e_1_2_12_61_2 doi: 10.1109/mci.2017.2742868 – ident: e_1_2_12_31_2 doi: 10.1007/s10957-017-1071-x – ident: e_1_2_12_13_2 – ident: e_1_2_12_55_2 doi: 10.1109/CCECE47787.2020.9255784 – ident: e_1_2_12_18_2 doi: 10.1007/s10479-007-0172-6 – ident: e_1_2_12_46_2 doi: 10.3390/a10020057 – ident: e_1_2_12_8_2 doi: 10.1007/s10589-008-9218-1 – ident: e_1_2_12_23_2 doi: 10.1016/j.eswa.2011.02.075 – ident: e_1_2_12_37_2 doi: 10.1155/2018/4258676 – ident: e_1_2_12_59_2 doi: 10.1109/CEC48606.2020.9185901 – volume: 2013 year: 2013 ident: e_1_2_12_3_2 article-title: Keyframe-Based Visual-Inertial Slam Using Nonlinear Optimization publication-title: Proceedings of Robotis Science and Systems (RSS) |
| SSID | ssj0011745 |
| Score | 2.3754072 |
| Snippet | Nonlinear optimization is becoming more challenging in information sciences and various industrial applications, but nonlinear problems solved by the classical... |
| SourceID | unpaywall proquest crossref |
| SourceType | Open Access Repository Aggregation Database Index Database |
| SubjectTerms | Accuracy Algorithms Approximation Brownian motion Convergence Field programmable gate arrays Heuristic methods Hierarchies Industrial applications Linear programming Machine learning Methods Multiple objective analysis Normal distribution Optimization models Optimization techniques Parameter robustness Particle swarm optimization Performance evaluation Portfolio management Problem solving Reliability Robustness (mathematics) |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV07T8MwED6VMsDCG1EoyAOwWW38SjIgVBCoIBEqoFK3yI6dqYRSWlX8e-zEKbB0tz3cne--O_vuAzjXmoWxcF9xolBiphXFsQxjzLiJSShUTEq6t6dE9IfsccRHDUjqXhj3rbL2iaWj1h-Zq5F3aNnUSa2BXk8-sWONcq-rNYWG9NQK-qocMbYG68RNxmrC-s1dMnhZvitY_M0rXMlwFIS0_grPuasCsI4QJApcN-3fIPWLPDfmxUR-L-R4_CcI3e_AlkePqFepexcaptiD7ZqZAfmLug8PvQJV5QKj0cBbB3pdyOk7erZO4t13X6KnkkAaWeSKkmpohpz-W3EAw_u7t9s-9qQJOLOpyQzryFCWZd2uzplx4_ikJIZGWU44UcTkcWAEt5hPRIIHVNNcaRugFCG5EDbX0_QQmsVHYY4AdQ3PMqpM2THPqVL2XKaDOFZ2l9VtCy5qKaWTajZGWuYUnKdOmqmXZgvatQhTf0O-0l99tuByKdaV5xyvPucENt3qqj7ShuZsOjenFjHM1Jk3gx_f5ryf priority: 102 providerName: ProQuest |
| Title | An Improved Particle Swarm Optimization Method for Nonlinear Optimization |
| URI | https://www.proquest.com/docview/3123583703 https://doi.org/10.1155/2024/6628110 |
| UnpaywallVersion | publishedVersion |
| Volume | 2024 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 issn: 1098-111X databaseCode: ADMLS dateStart: 19860301 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1098-111X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011745 issn: 1098-111X databaseCode: BENPR dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1098-111X databaseCode: DR2 dateStart: 19960101 customDbUrl: isFulltext: true eissn: 1098-111X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011745 providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1098-111X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0011745 issn: 1098-111X databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3LT8IwGP-icNCL-Iwokh7Q25D1xXZEBdHIJCIJnpZ17S7CJDhC9K-3eylwUE_LkrZpvke_39d-D4CalLRp8zgUx2p6BpWCGLbXtA3KlI2bXNg4affWc3h3SO9HbLQBtTwXZvn9Xpu62Denl5xjy4zzqIqcacRdgOLQ6bdeUoBIDSt9SDbj0phadUd5fPva9FXL8wMnt-bh1PtYeOPxkmXplKCd7ykNKHmtzyNR9z_XyjX-teld2MmgJWqlsrAHGyrch1LetgFlWnwAd60QpXcJSqJ-JjposPBmE_SoT5BJlpqJekl3aaRhLXLSihrebGXEIQw77efrrpF1VDB87bdEhrQUob7faMiAqrhWn-dhRSw_wAwLrALbVJxpQMgtzkwiSSCktl4C44Bz7QhKcgSF8C1Ux4Aaivk-ESpJp2dECL0ulaZtCz1LM74M5zm13WlaOMNNHA7G3Jg-bkafMlRyVriZ-ry7JMngJfo0KsPFN3t-XefkvwNPYTv-Ta9RKlCIZnN1poFFJKqwaXVuq1Bs3fQeBvp71Xb6T9VM2r4AtM3G4g |
| linkProvider | Unpaywall |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV25UsMwEN3hKKDhZginCqDzEOuyVTAM5ySEBIZjhs5IllwlTghhMvwc34ZkywQaOnpri9Xz6u1Kuw9gX2saCe6e4sSRDKhWJBAyEgFlRuCIK4ELubd2hzee6PUze56Cz6oXxj2rrGJiEah1P3U18iNSNHUSC9CTwWvgVKPc7WoloSG9tII-LkaM-caOlvkY2xTu7bh5Yff7AOOry8fzRuBVBoLUcvlRoGNDaJrW6zqjxs2vkxIbEqcZZlhhk4nQcGZJEo85C4kmmdI2oiuMM85tcqSJtTsNs5RQYZO_2bPLzt399z2G5fus5LE0iMOIVE_vGXNVB3rEOY5D173781CcMN2593wgP8ay2_1x6F0twYJnq-i0hNcyTJl8BRYrJQjkA8MqNE9zVJYnjEZ3Ho3oYSyHPXRrg1LPd3uidiFYjSxTRp1ySIcc_vpiDZ7-xX3rMJP3c7MBqG5YmhJlig59RpSydqkOhVB2lcVSDQ4qLyWDchZHUuQwjCXOm4n3Zg22Kxcm_o98Syb4qcHht1v_tLP5t509mGs8tm-Sm2antQXzbmVZm9mGmdHw3exYtjJSux4SCF7-G4VfN0X5BQ |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JTsMwEB2xSMCFHVEo4ANwi9p4S3xAqKKUlqUgARK3EMfOqU1LKar4Nb4OO3EKXLj1Hs_h-WX8PJ4F4FgpGghuU3HCIPaoksQTcSA8yrTAAZcC5-Pe7rq8_UyvX9jLHHyVtTA2rbL0ibmjVoPExshrJC_qJIagtdSlRTw0W-fDN89OkLIvreU4jYIiN_pzYq5v72edptnrE4xbl08Xbc9NGPASo-PHngo1oUlSr6uUatu7Lo6xJmGSYoYl1qnwNWdGIPGQM58okkplvLnEOOXcXIwUMXbnYTGwXdxtlXrravqCYZQ-KxQs9UI_IGXSPWM23kBrnOPQt3W7v4_DH427_JEN489J3Ov9Ou5a67DqdCpqFMTagDmdbcJaOQMCOZewBZ1GhorAhFbowfEQPU7iUR_dG3fUd3We6C4fVY2MRkbdoj1HPPrzxTY8zwS8HVjIBpneBVTXLEmI1HltPiNSGrtU-UJIs8qwqAInJUrRsOjCEeW3F8Yii2bk0KxAtYQwcv_ie_TDnAqcTmH9187e_3aOYMlwL7rtdG_2YcUuLIIyVVgYjz70gZEpY3mY8wHB66wJ-A1d2Paf |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NT8IwFH8hcNCL-BlRND2gtyHr17YjMRA0AUmUBE9Lu3YXZRIcIfrX222dAgf12KRtmvfR93vt-wBoKUW9gGehOL4nHKokcQLhBQ5lOsAelwHO270NR3wwofdTNq1Aq8yFWf-_N6Yu883pDefYd7M8qhpnBnFXoTYZjbvPBUCkjl98JLtZaUyjutMyvn1r-abl-YGTO8tkLj5W4vV1zbL069Arz1QElLy0l6lsR59b5Rr_OvQ-7FloibqFLBxARSeHUC_bNiCrxUdw101Q8ZagFRpb0UGPK7GYoQdzg8xsaiYa5t2lkYG1aFRU1BCLjRnHMOn3nm4Hju2o4ETGb0kd5WtCo6jTUTHVWa0-IbAmfhRjhiXWceBqzgwg5D5nLlEklspYL4lxzLlxBBU5gWryluhTQB3NoohInafTMyKl2ZcqNwikWWUY34CrktrhvCicEeYOB2NhRp_Q0qcBzZIVoVWf95DkGbzE3EYNuP5mz6_7nP134jnsZsPiGaUJ1XSx1BcGWKTy0srVF9Liws4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Improved+Particle+Swarm+Optimization+Method+for+Nonlinear+Optimization&rft.jtitle=International+journal+of+intelligent+systems&rft.au=Liu%2C+Shiwei&rft.au=Xia+Hua&rft.au=Longxiang+Shan&rft.au=Wang%2C+Dongqiao&rft.date=2024&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0884-8173&rft.eissn=1098-111X&rft.volume=2024&rft_id=info:doi/10.1155%2F2024%2F6628110&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0884-8173&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0884-8173&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0884-8173&client=summon |