Dynamic Event-Triggered Adaptive Neural Output Feedback Control for MSVs Using Composite Learning

This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information. Utilizing the specific advantages of adaptive neural network and disturbance observer, a classification reconstruction idea is developed. Based on...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on intelligent transportation systems Vol. 24; no. 1; pp. 787 - 800
Main Authors Zhu, Guibing, Ma, Yong, Li, Zhixiong, Malekian, Reza, Sotelo, M.
Format Journal Article
LanguageEnglish
Published New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1524-9050
1558-0016
1558-0016
DOI10.1109/TITS.2022.3217152

Cover

Abstract This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information. Utilizing the specific advantages of adaptive neural network and disturbance observer, a classification reconstruction idea is developed. Based on this idea, a novel adaptive neural-based state observer with disturbance observer is proposed to recover the unmeasurable velocity. Under the vector-backstepping design framework, the classification reconstruction idea and adaptive neural-based state observer are used to resolve the control design issue for MSVs. To improve the control performance, the serial-parallel estimation model is introduced to obtain a prediction error, and then a composite learning law is designed by embedding the prediction error and estimate of lumped disturbance. To reduce the mechanical wear of actuator, a dynamic event triggering protocol is established between the control law and actuator. Finally, a new dynamic event-triggered composite learning adaptive neural output feedback control solution is developed. Employing the Lyapunov stability theory, it is strictly proved that all signals in the closed-loop control system of MSVs are bounded. Simulation and comparison results validate the effectiveness of control solution.
AbstractList This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information. Utilizing the specific advantages of adaptive neural network and disturbance observer, a classification reconstruction idea is developed. Based on this idea, a novel adaptive neural-based state observer with disturbance observer is proposed to recover the unmeasurable velocity. Under the vector-backstepping design framework, the classification reconstruction idea and adaptive neural-based state observer are used to resolve the control design issue for MSVs. To improve the control performance, the serial-parallel estimation model is introduced to obtain a prediction error, and then a composite learning law is designed by embedding the prediction error and estimate of lumped disturbance. To reduce the mechanical wear of actuator, a dynamic event triggering protocol is established between the control law and actuator. Finally, a new dynamic event-triggered composite learning adaptive neural output feedback control solution is developed. Employing the Lyapunov stability theory, it is strictly proved that all signals in the closed-loop control system of MSVs are bounded. Simulation and comparison results validate the effectiveness of control solution.
Author Sotelo, M.
Zhu, Guibing
Ma, Yong
Li, Zhixiong
Malekian, Reza
Author_xml – sequence: 1
  givenname: Guibing
  orcidid: 0000-0002-8267-9437
  surname: Zhu
  fullname: Zhu, Guibing
  email: zhuguibing2003@163.com
  organization: School of Maritime, Zhejiang Ocean University, Zhoushan, China
– sequence: 2
  givenname: Yong
  orcidid: 0000-0003-0418-9210
  surname: Ma
  fullname: Ma, Yong
  email: myongdl@whut.edu.cn
  organization: Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan, China
– sequence: 3
  givenname: Zhixiong
  orcidid: 0000-0003-4067-0669
  surname: Li
  fullname: Li, Zhixiong
  email: zhixiong.li@yonsei.ac.kr
  organization: Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland
– sequence: 4
  givenname: Reza
  orcidid: 0000-0002-2763-8085
  surname: Malekian
  fullname: Malekian, Reza
  email: reza.malekian@ieee.org
  organization: Department of Computer Science and Media Technology, Malmö University, Malmö, Sweden
– sequence: 5
  givenname: M.
  orcidid: 0000-0001-8809-2103
  surname: Sotelo
  fullname: Sotelo, M.
  email: miguel.sotelo@uah.es
  organization: Department of Computer Engineering, University of Alcal, Alcala de Henares (Madrid), Spain
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-56495$$DView record from Swedish Publication Index
BookMark eNp9kEtP4zAUha0RIw0w_AA0G0tsSfEzjpdVKQ-pDAsybC03ua7MtHGwHRD_nkRFLFiwuldH59zHd4QOutABQqeUzCgl-qK-rR9mjDA244wqKtkPdEilrApCaHkw9UwUmkjyCx2l9DSqQlJ6iOzlW2d3vsHLF-hyUUe_2UCEFs9b22f_AvgvDNFu8f2Q-yHjK4B2bZv_eBG6HMMWuxDx3cNjwv-S7zajvOtD8hnwCmzsRuk3-unsNsHJRz1G9dWyXtwUq_vr28V8VTSsJLmomFAtbSizSrfOsfGXRtq1s67SVSkZGx-ggnNdsrXSmrJSOyJL3ginuZL8GJ3vx6ZX6Ie16aPf2fhmgvXm0j_OTYgbs7ODkaXQk_1sb-9jeB4gZfMUhtiNBxqmFFFKc1qOLrp3NTGkFMF9jqXETNzNxN1M3M0H9zGjvmQan232Ey_rt98m_-yTHgA-N2ktBK8Efwd3XpEE
CODEN ITISFG
CitedBy_id crossref_primary_10_1109_TITS_2023_3326271
crossref_primary_10_1007_s00521_024_10612_5
crossref_primary_10_1016_j_oceaneng_2024_116830
crossref_primary_10_1109_TITS_2023_3314800
crossref_primary_10_1109_TITS_2024_3436882
crossref_primary_10_1080_17445302_2024_2443077
crossref_primary_10_1109_TVT_2024_3432736
crossref_primary_10_1109_TFUZZ_2024_3488316
crossref_primary_10_1109_TSMC_2024_3379375
crossref_primary_10_1016_j_ins_2023_119948
crossref_primary_10_1016_j_oceaneng_2025_120715
crossref_primary_10_1016_j_knosys_2023_111292
crossref_primary_10_1016_j_chaos_2024_115597
crossref_primary_10_1109_TITS_2024_3495997
crossref_primary_10_1016_j_oceaneng_2024_119712
crossref_primary_10_1109_TITS_2024_3429330
crossref_primary_10_1109_TITS_2023_3297252
crossref_primary_10_3390_app131810035
crossref_primary_10_1016_j_oceaneng_2024_116947
crossref_primary_10_1109_ACCESS_2023_3326442
crossref_primary_10_1109_TITS_2024_3519444
crossref_primary_10_1177_01423312241263386
crossref_primary_10_1016_j_oceaneng_2024_116702
crossref_primary_10_1109_TITS_2024_3488752
crossref_primary_10_1016_j_jfranklin_2023_10_033
crossref_primary_10_1109_TSMC_2023_3256538
crossref_primary_10_1016_j_oceaneng_2023_115054
crossref_primary_10_1016_j_oceaneng_2024_117894
crossref_primary_10_1016_j_oceaneng_2025_120503
crossref_primary_10_1109_TITS_2023_3324346
crossref_primary_10_1016_j_conengprac_2023_105789
crossref_primary_10_1016_j_oceaneng_2024_118022
crossref_primary_10_1109_TITS_2024_3447673
crossref_primary_10_1016_j_chaos_2024_115166
crossref_primary_10_1109_TIV_2023_3331905
crossref_primary_10_1002_rnc_7534
crossref_primary_10_1007_s11071_024_10116_w
crossref_primary_10_1109_JAS_2024_124617
crossref_primary_10_1016_j_engappai_2025_110237
crossref_primary_10_1109_TAI_2024_3353150
crossref_primary_10_1002_rob_22481
crossref_primary_10_1007_s00202_024_02655_7
crossref_primary_10_1016_j_chaos_2024_115649
crossref_primary_10_1109_TIV_2023_3317336
Cites_doi 10.1080/00207179.2021.2011960
10.1109/TNNLS.2021.3053292
10.1109/TITS.2021.3066461
10.1109/TIE.2020.2978713
10.1109/MITS.2019.2903517
10.1109/TAC.2000.880994
10.1109/TII.2020.3004343
10.1016/j.isatra.2018.12.047
10.1007/978-1-4757-6577-9
10.1109/TAC.2009.2015562
10.1109/TFUZZ.2020.3006562
10.1109/TIE.2021.3120442
10.1016/j.oceaneng.2022.111169
10.1016/j.automatica.2016.11.024
10.1109/TITS.2022.3170322
10.1109/TSMC.2020.2964808
10.1109/TIE.2019.2920599
10.1109/TITS.2021.3124635
10.1016/j.jfranklin.2020.06.010
10.1109/TCST.2006.872507
10.1109/TIM.2015.2459551
10.1109/TFUZZ.2020.3032784
10.1109/TCYB.2020.3005800
10.1109/TCST.2012.2183676
10.1109/TAC.2007.904277
10.1137/S0363012992232555
10.1016/j.isatra.2019.03.007
10.1109/TNNLS.2021.3100147
10.1109/.2005.1469806
10.1109/JOE.2018.2877895
10.1016/j.fmre.2022.09.013
10.1109/TCYB.2020.3009992
10.1109/TAC.2014.2366855
10.1016/j.oceaneng.2019.04.051
10.1109/TSMCB.2009.2033563
10.1109/TNNLS.2022.3141419
10.1109/9.486648
10.1016/j.conengprac.2021.104785
10.1016/j.automatica.2004.10.006
10.1109/TVT.2019.2955020
10.1016/j.oceaneng.2013.05.021
10.1109/TCYB.2014.2311824
10.1109/TNNLS.2021.3090054
10.1016/S0167-6911(97)00068-6
10.1109/TMECH.2017.2660528
10.1109/TNNLS.2022.3176625
10.1109/TIE.2018.2842720
10.1109/TITS.2021.3054177
10.1007/s11633-021-1306-z
10.1016/j.arcontrol.2012.09.008
10.1016/j.jfranklin.2018.07.033
10.1109/TVT.2021.3063687
10.1109/JOE.2018.2880622
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
DOI 10.1109/TITS.2022.3217152
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0016
EndPage 800
ExternalDocumentID oai_DiVA_org_mau_56495
10_1109_TITS_2022_3217152
9944384
Genre orig-research
GrantInformation_xml – fundername: Knowledge Innovation Program of Wuhan-Basic Research
  grantid: 2022010801010181
– fundername: Natural Science Foundation of Zhejiang Province
  grantid: LY21E090005
  funderid: 10.13039/501100004731
– fundername: Research Project of Wuhan University of Technology Chongqing Research Institute
  grantid: YF2021-12
  funderid: 10.13039/501100007724
– fundername: Innovation Research Team Project of the Hainan Natural Science Foundation
  grantid: 722CXTD518
  funderid: 10.13039/501100004761
– fundername: Excellent Youth Foundation of Hubei Scientific Committee
  grantid: 2020CFA055
  funderid: 10.13039/501100009994
– fundername: National Science Foundation of China
  grantid: 52022073; 62073251
  funderid: 10.13039/501100001809
– fundername: Norwegian Financial Mechanism 2014–2021
  grantid: 2020/37/K/ST8/02748
– fundername: Science and Technology Project of Zhoushan
  grantid: 2022C41006
GroupedDBID -~X
0R~
29I
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
ZY4
AAYXX
CITATION
7SC
7SP
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
ID FETCH-LOGICAL-c260t-8247d1c12a79dff2202c5abfaf89865225241433962b7991269f0563c4f93753
IEDL.DBID RIE
ISSN 1524-9050
1558-0016
IngestDate Fri Aug 29 03:11:57 EDT 2025
Mon Jun 30 04:24:58 EDT 2025
Wed Oct 01 05:03:15 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Wed Aug 27 02:20:47 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c260t-8247d1c12a79dff2202c5abfaf89865225241433962b7991269f0563c4f93753
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8267-9437
0000-0003-4067-0669
0000-0001-8809-2103
0000-0002-2763-8085
0000-0003-0418-9210
PQID 2770779316
PQPubID 75735
PageCount 14
ParticipantIDs swepub_primary_oai_DiVA_org_mau_56495
proquest_journals_2770779316
crossref_primary_10_1109_TITS_2022_3217152
ieee_primary_9944384
crossref_citationtrail_10_1109_TITS_2022_3217152
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
2023
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on intelligent transportation systems
PublicationTitleAbbrev TITS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref12
ref15
ref14
ref53
ref52
ref11
ref10
ref17
ref16
ref19
ref18
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref40
  doi: 10.1080/00207179.2021.2011960
– ident: ref21
  doi: 10.1109/TNNLS.2021.3053292
– ident: ref33
  doi: 10.1109/TITS.2021.3066461
– ident: ref36
  doi: 10.1109/TIE.2020.2978713
– ident: ref11
  doi: 10.1109/MITS.2019.2903517
– ident: ref52
  doi: 10.1109/TAC.2000.880994
– ident: ref4
  doi: 10.1109/TII.2020.3004343
– ident: ref16
  doi: 10.1016/j.isatra.2018.12.047
– ident: ref46
  doi: 10.1007/978-1-4757-6577-9
– ident: ref47
  doi: 10.1109/TAC.2009.2015562
– ident: ref30
  doi: 10.1109/TFUZZ.2020.3006562
– ident: ref37
  doi: 10.1109/TIE.2021.3120442
– ident: ref17
  doi: 10.1016/j.oceaneng.2022.111169
– ident: ref29
  doi: 10.1016/j.automatica.2016.11.024
– ident: ref2
  doi: 10.1109/TITS.2022.3170322
– ident: ref15
  doi: 10.1109/TSMC.2020.2964808
– ident: ref50
  doi: 10.1109/TIE.2019.2920599
– ident: ref34
  doi: 10.1109/TITS.2021.3124635
– ident: ref51
  doi: 10.1016/j.jfranklin.2020.06.010
– ident: ref25
  doi: 10.1109/TCST.2006.872507
– ident: ref23
  doi: 10.1109/TIM.2015.2459551
– ident: ref48
  doi: 10.1109/TFUZZ.2020.3032784
– ident: ref20
  doi: 10.1109/TCYB.2020.3005800
– ident: ref24
  doi: 10.1109/TCST.2012.2183676
– ident: ref31
  doi: 10.1109/TAC.2007.904277
– ident: ref45
  doi: 10.1137/S0363012992232555
– ident: ref27
  doi: 10.1016/j.isatra.2019.03.007
– ident: ref13
  doi: 10.1109/TNNLS.2021.3100147
– ident: ref22
  doi: 10.1109/.2005.1469806
– ident: ref10
  doi: 10.1109/JOE.2018.2877895
– ident: ref35
  doi: 10.1016/j.fmre.2022.09.013
– ident: ref26
  doi: 10.1109/TCYB.2020.3009992
– ident: ref39
  doi: 10.1109/TAC.2014.2366855
– ident: ref8
  doi: 10.1016/j.oceaneng.2019.04.051
– ident: ref53
  doi: 10.1109/TSMCB.2009.2033563
– ident: ref18
  doi: 10.1109/TNNLS.2022.3141419
– ident: ref44
  doi: 10.1109/9.486648
– ident: ref5
  doi: 10.1016/j.conengprac.2021.104785
– ident: ref41
  doi: 10.1016/j.automatica.2004.10.006
– ident: ref6
  doi: 10.1109/TVT.2019.2955020
– ident: ref14
  doi: 10.1016/j.oceaneng.2013.05.021
– ident: ref19
  doi: 10.1109/TCYB.2014.2311824
– ident: ref32
  doi: 10.1109/TNNLS.2021.3090054
– ident: ref43
  doi: 10.1016/S0167-6911(97)00068-6
– ident: ref3
  doi: 10.1109/TMECH.2017.2660528
– ident: ref12
  doi: 10.1109/TNNLS.2022.3176625
– ident: ref42
  doi: 10.1109/TIE.2018.2842720
– ident: ref7
  doi: 10.1109/TITS.2021.3054177
– ident: ref38
  doi: 10.1007/s11633-021-1306-z
– ident: ref1
  doi: 10.1016/j.arcontrol.2012.09.008
– ident: ref49
  doi: 10.1016/j.jfranklin.2018.07.033
– ident: ref28
  doi: 10.1109/TVT.2021.3063687
– ident: ref9
  doi: 10.1109/JOE.2018.2880622
SSID ssj0014511
Score 2.5726929
Snippet This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information....
SourceID swepub
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 787
SubjectTerms Actuators
Adaptive control
adaptive neural network
Adaptive systems
Artificial neural networks
Classification
classification reconstruction
Closed loops
Control theory
disturbance observer
Disturbance observers
event-triggered control
Feedback control
Learning
Marine surface vehicles
Neural networks
Output feedback
Reconstruction
State observers
Surface vehicles
Technological innovation
Uncertainty
Vehicle dynamics
Wear
Title Dynamic Event-Triggered Adaptive Neural Output Feedback Control for MSVs Using Composite Learning
URI https://ieeexplore.ieee.org/document/9944384
https://www.proquest.com/docview/2770779316
https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-56495
Volume 24
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0016
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014511
  issn: 1524-9050
  databaseCode: RIE
  dateStart: 20000101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_YAtLRi-ZIP7aVqlsSxHfu4AlZQadsDAXGzYsdGiHZZQXLh1zN2shEgVHFLJNty_Cb2G3v8BuCbL9LCm8wlmVcuYdykiQyvntbCUOpZHpP2zX6L0wv264pfrcDP4S6Mcy4Gn7lxeIxn-fWdbcNW2aFSjOWSrcJqIUV3V2s4MQg6W1EblbJEpXx5gpml6rA8K8_RE6R0nCMBzzh9sQbFpCov-eVzzdC4zkw3YLbsYRdecjtuGzO2j6_EG9_7CZuw3hNOMuks5BOsuPln-PhMhnALquMuLT05CcGPSYkO-3VI4UkmdbUI0yEJEh7YyJ-2WbQNmeKKZyp7S466OHeCxJfMzi8fSAxAIGGOCbFgjvTqrddfoJyelEenSZ96IbHo4DSJpKyoM5vRqlC19xRHz_LK-MpLJQVyNhxmZFq5EtQUSDGpUB6pVG6ZR77D86-wNr-bu20gVJici1o6UTPGLfIPoyTDTjqmkKvIEaRLLLTtZclDdoy_OronqdIBPh3g0z18I_gxVFl0mhz_K7wVUBgK9gCMYG8JuO7_2gdNC7RcnLAyMYLvnREM9YIM9_HN5UQjnPpf1Wou0Lfcebv1XfgQ0tJ3WzV7sNbct24fyUtjDqLVPgHh6umq
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH5i3YFx2MYArYxtPmwXREri2E58rICqDMoOZIibFTs2QoxS0eSyX79nJ41gmqbdEsm2HH8v9vfs5-8BfHFZnDmd2Chx0kaM6zjK_aujldCUOpaGpH2zCzH9wb5d8-s1OOjvwlhrQ_CZHfnHcJZfPZjGb5UdSslYmrMX8JIzxnh7W6s_M_BKW0EdlbJIxnx1hpnE8rA4LS7RF6R0lCIFTzh9tgqFtCrPGeZT1dCw0kzewGzVxzbA5G7U1Hpkfv0h3_i_H_EWXneUk4xbG9mENTt_BxtPhAi3oDxuE9OTEx_-GBXost_4JJ5kXJULPyESL-KBjXxv6kVTkwmuebo0d-SojXQnSH3J7PJqSUIIAvGzjI8Gs6TTb73ZhmJyUhxNoy75QmTQxamjnLKsSkxCy0xWzlEcPcNL7UqXy1wga8NhRq6VSkF1hiSTCumQTKWGOWQ8PN2Bwfxhbt8DoUKnXFS5FRWCZpCBaJkz7KRlEtlKPoR4hYUynTC5z4_xUwUHJZbKw6c8fKqDbwj7fZVFq8rxr8JbHoW-YAfAEPZWgKvuv10qmqHt4pSViCF8bY2gr-eFuI9vr8YK4VT3ZaO4QO9y9--tf4b1aTE7V-enF2cf4JVPUt9u3OzBoH5s7EekMrX-FCz4N0VQ7Pc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Event-Triggered+Adaptive+Neural+Output+Feedback+Control+for+MSVs+Using+Composite+Learning&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhu%2C+Guibing&rft.au=Ma%2C+Yong&rft.au=Li%2C+Zhixiong&rft.au=Malekian%2C+Reza&rft.date=2023&rft.issn=1524-9050&rft.volume=24&rft.issue=1&rft.spage=787&rft_id=info:doi/10.1109%2Ftits.2022.3217152&rft.externalDocID=oai_DiVA_org_mau_56495
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon