Dynamic Event-Triggered Adaptive Neural Output Feedback Control for MSVs Using Composite Learning
This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information. Utilizing the specific advantages of adaptive neural network and disturbance observer, a classification reconstruction idea is developed. Based on...
Saved in:
| Published in | IEEE transactions on intelligent transportation systems Vol. 24; no. 1; pp. 787 - 800 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1524-9050 1558-0016 1558-0016 |
| DOI | 10.1109/TITS.2022.3217152 |
Cover
| Abstract | This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information. Utilizing the specific advantages of adaptive neural network and disturbance observer, a classification reconstruction idea is developed. Based on this idea, a novel adaptive neural-based state observer with disturbance observer is proposed to recover the unmeasurable velocity. Under the vector-backstepping design framework, the classification reconstruction idea and adaptive neural-based state observer are used to resolve the control design issue for MSVs. To improve the control performance, the serial-parallel estimation model is introduced to obtain a prediction error, and then a composite learning law is designed by embedding the prediction error and estimate of lumped disturbance. To reduce the mechanical wear of actuator, a dynamic event triggering protocol is established between the control law and actuator. Finally, a new dynamic event-triggered composite learning adaptive neural output feedback control solution is developed. Employing the Lyapunov stability theory, it is strictly proved that all signals in the closed-loop control system of MSVs are bounded. Simulation and comparison results validate the effectiveness of control solution. |
|---|---|
| AbstractList | This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information. Utilizing the specific advantages of adaptive neural network and disturbance observer, a classification reconstruction idea is developed. Based on this idea, a novel adaptive neural-based state observer with disturbance observer is proposed to recover the unmeasurable velocity. Under the vector-backstepping design framework, the classification reconstruction idea and adaptive neural-based state observer are used to resolve the control design issue for MSVs. To improve the control performance, the serial-parallel estimation model is introduced to obtain a prediction error, and then a composite learning law is designed by embedding the prediction error and estimate of lumped disturbance. To reduce the mechanical wear of actuator, a dynamic event triggering protocol is established between the control law and actuator. Finally, a new dynamic event-triggered composite learning adaptive neural output feedback control solution is developed. Employing the Lyapunov stability theory, it is strictly proved that all signals in the closed-loop control system of MSVs are bounded. Simulation and comparison results validate the effectiveness of control solution. |
| Author | Sotelo, M. Zhu, Guibing Ma, Yong Li, Zhixiong Malekian, Reza |
| Author_xml | – sequence: 1 givenname: Guibing orcidid: 0000-0002-8267-9437 surname: Zhu fullname: Zhu, Guibing email: zhuguibing2003@163.com organization: School of Maritime, Zhejiang Ocean University, Zhoushan, China – sequence: 2 givenname: Yong orcidid: 0000-0003-0418-9210 surname: Ma fullname: Ma, Yong email: myongdl@whut.edu.cn organization: Hubei Key Laboratory of Inland Shipping Technology, School of Navigation, Wuhan University of Technology, Wuhan, China – sequence: 3 givenname: Zhixiong orcidid: 0000-0003-4067-0669 surname: Li fullname: Li, Zhixiong email: zhixiong.li@yonsei.ac.kr organization: Faculty of Mechanical Engineering, Opole University of Technology, Opole, Poland – sequence: 4 givenname: Reza orcidid: 0000-0002-2763-8085 surname: Malekian fullname: Malekian, Reza email: reza.malekian@ieee.org organization: Department of Computer Science and Media Technology, Malmö University, Malmö, Sweden – sequence: 5 givenname: M. orcidid: 0000-0001-8809-2103 surname: Sotelo fullname: Sotelo, M. email: miguel.sotelo@uah.es organization: Department of Computer Engineering, University of Alcal, Alcala de Henares (Madrid), Spain |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-56495$$DView record from Swedish Publication Index |
| BookMark | eNp9kEtP4zAUha0RIw0w_AA0G0tsSfEzjpdVKQ-pDAsybC03ua7MtHGwHRD_nkRFLFiwuldH59zHd4QOutABQqeUzCgl-qK-rR9mjDA244wqKtkPdEilrApCaHkw9UwUmkjyCx2l9DSqQlJ6iOzlW2d3vsHLF-hyUUe_2UCEFs9b22f_AvgvDNFu8f2Q-yHjK4B2bZv_eBG6HMMWuxDx3cNjwv-S7zajvOtD8hnwCmzsRuk3-unsNsHJRz1G9dWyXtwUq_vr28V8VTSsJLmomFAtbSizSrfOsfGXRtq1s67SVSkZGx-ggnNdsrXSmrJSOyJL3ginuZL8GJ3vx6ZX6Ie16aPf2fhmgvXm0j_OTYgbs7ODkaXQk_1sb-9jeB4gZfMUhtiNBxqmFFFKc1qOLrp3NTGkFMF9jqXETNzNxN1M3M0H9zGjvmQan232Ey_rt98m_-yTHgA-N2ktBK8Efwd3XpEE |
| CODEN | ITISFG |
| CitedBy_id | crossref_primary_10_1109_TITS_2023_3326271 crossref_primary_10_1007_s00521_024_10612_5 crossref_primary_10_1016_j_oceaneng_2024_116830 crossref_primary_10_1109_TITS_2023_3314800 crossref_primary_10_1109_TITS_2024_3436882 crossref_primary_10_1080_17445302_2024_2443077 crossref_primary_10_1109_TVT_2024_3432736 crossref_primary_10_1109_TFUZZ_2024_3488316 crossref_primary_10_1109_TSMC_2024_3379375 crossref_primary_10_1016_j_ins_2023_119948 crossref_primary_10_1016_j_oceaneng_2025_120715 crossref_primary_10_1016_j_knosys_2023_111292 crossref_primary_10_1016_j_chaos_2024_115597 crossref_primary_10_1109_TITS_2024_3495997 crossref_primary_10_1016_j_oceaneng_2024_119712 crossref_primary_10_1109_TITS_2024_3429330 crossref_primary_10_1109_TITS_2023_3297252 crossref_primary_10_3390_app131810035 crossref_primary_10_1016_j_oceaneng_2024_116947 crossref_primary_10_1109_ACCESS_2023_3326442 crossref_primary_10_1109_TITS_2024_3519444 crossref_primary_10_1177_01423312241263386 crossref_primary_10_1016_j_oceaneng_2024_116702 crossref_primary_10_1109_TITS_2024_3488752 crossref_primary_10_1016_j_jfranklin_2023_10_033 crossref_primary_10_1109_TSMC_2023_3256538 crossref_primary_10_1016_j_oceaneng_2023_115054 crossref_primary_10_1016_j_oceaneng_2024_117894 crossref_primary_10_1016_j_oceaneng_2025_120503 crossref_primary_10_1109_TITS_2023_3324346 crossref_primary_10_1016_j_conengprac_2023_105789 crossref_primary_10_1016_j_oceaneng_2024_118022 crossref_primary_10_1109_TITS_2024_3447673 crossref_primary_10_1016_j_chaos_2024_115166 crossref_primary_10_1109_TIV_2023_3331905 crossref_primary_10_1002_rnc_7534 crossref_primary_10_1007_s11071_024_10116_w crossref_primary_10_1109_JAS_2024_124617 crossref_primary_10_1016_j_engappai_2025_110237 crossref_primary_10_1109_TAI_2024_3353150 crossref_primary_10_1002_rob_22481 crossref_primary_10_1007_s00202_024_02655_7 crossref_primary_10_1016_j_chaos_2024_115649 crossref_primary_10_1109_TIV_2023_3317336 |
| Cites_doi | 10.1080/00207179.2021.2011960 10.1109/TNNLS.2021.3053292 10.1109/TITS.2021.3066461 10.1109/TIE.2020.2978713 10.1109/MITS.2019.2903517 10.1109/TAC.2000.880994 10.1109/TII.2020.3004343 10.1016/j.isatra.2018.12.047 10.1007/978-1-4757-6577-9 10.1109/TAC.2009.2015562 10.1109/TFUZZ.2020.3006562 10.1109/TIE.2021.3120442 10.1016/j.oceaneng.2022.111169 10.1016/j.automatica.2016.11.024 10.1109/TITS.2022.3170322 10.1109/TSMC.2020.2964808 10.1109/TIE.2019.2920599 10.1109/TITS.2021.3124635 10.1016/j.jfranklin.2020.06.010 10.1109/TCST.2006.872507 10.1109/TIM.2015.2459551 10.1109/TFUZZ.2020.3032784 10.1109/TCYB.2020.3005800 10.1109/TCST.2012.2183676 10.1109/TAC.2007.904277 10.1137/S0363012992232555 10.1016/j.isatra.2019.03.007 10.1109/TNNLS.2021.3100147 10.1109/.2005.1469806 10.1109/JOE.2018.2877895 10.1016/j.fmre.2022.09.013 10.1109/TCYB.2020.3009992 10.1109/TAC.2014.2366855 10.1016/j.oceaneng.2019.04.051 10.1109/TSMCB.2009.2033563 10.1109/TNNLS.2022.3141419 10.1109/9.486648 10.1016/j.conengprac.2021.104785 10.1016/j.automatica.2004.10.006 10.1109/TVT.2019.2955020 10.1016/j.oceaneng.2013.05.021 10.1109/TCYB.2014.2311824 10.1109/TNNLS.2021.3090054 10.1016/S0167-6911(97)00068-6 10.1109/TMECH.2017.2660528 10.1109/TNNLS.2022.3176625 10.1109/TIE.2018.2842720 10.1109/TITS.2021.3054177 10.1007/s11633-021-1306-z 10.1016/j.arcontrol.2012.09.008 10.1016/j.jfranklin.2018.07.033 10.1109/TVT.2021.3063687 10.1109/JOE.2018.2880622 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS |
| DOI | 10.1109/TITS.2022.3217152 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1558-0016 |
| EndPage | 800 |
| ExternalDocumentID | oai_DiVA_org_mau_56495 10_1109_TITS_2022_3217152 9944384 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Knowledge Innovation Program of Wuhan-Basic Research grantid: 2022010801010181 – fundername: Natural Science Foundation of Zhejiang Province grantid: LY21E090005 funderid: 10.13039/501100004731 – fundername: Research Project of Wuhan University of Technology Chongqing Research Institute grantid: YF2021-12 funderid: 10.13039/501100007724 – fundername: Innovation Research Team Project of the Hainan Natural Science Foundation grantid: 722CXTD518 funderid: 10.13039/501100004761 – fundername: Excellent Youth Foundation of Hubei Scientific Committee grantid: 2020CFA055 funderid: 10.13039/501100009994 – fundername: National Science Foundation of China grantid: 52022073; 62073251 funderid: 10.13039/501100001809 – fundername: Norwegian Financial Mechanism 2014–2021 grantid: 2020/37/K/ST8/02748 – fundername: Science and Technology Project of Zhoushan grantid: 2022C41006 |
| GroupedDBID | -~X 0R~ 29I 4.4 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AIBXA AKJIK AKQYR ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ H~9 IFIPE IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNS ZY4 AAYXX CITATION 7SC 7SP 8FD FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS |
| ID | FETCH-LOGICAL-c260t-8247d1c12a79dff2202c5abfaf89865225241433962b7991269f0563c4f93753 |
| IEDL.DBID | RIE |
| ISSN | 1524-9050 1558-0016 |
| IngestDate | Fri Aug 29 03:11:57 EDT 2025 Mon Jun 30 04:24:58 EDT 2025 Wed Oct 01 05:03:15 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Wed Aug 27 02:20:47 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c260t-8247d1c12a79dff2202c5abfaf89865225241433962b7991269f0563c4f93753 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8267-9437 0000-0003-4067-0669 0000-0001-8809-2103 0000-0002-2763-8085 0000-0003-0418-9210 |
| PQID | 2770779316 |
| PQPubID | 75735 |
| PageCount | 14 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_mau_56495 proquest_journals_2770779316 crossref_primary_10_1109_TITS_2022_3217152 ieee_primary_9944384 crossref_citationtrail_10_1109_TITS_2022_3217152 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Jan. 2023-1-00 20230101 2023 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on intelligent transportation systems |
| PublicationTitleAbbrev | TITS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 ref12 ref15 ref14 ref53 ref52 ref11 ref10 ref17 ref16 ref19 ref18 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref40 doi: 10.1080/00207179.2021.2011960 – ident: ref21 doi: 10.1109/TNNLS.2021.3053292 – ident: ref33 doi: 10.1109/TITS.2021.3066461 – ident: ref36 doi: 10.1109/TIE.2020.2978713 – ident: ref11 doi: 10.1109/MITS.2019.2903517 – ident: ref52 doi: 10.1109/TAC.2000.880994 – ident: ref4 doi: 10.1109/TII.2020.3004343 – ident: ref16 doi: 10.1016/j.isatra.2018.12.047 – ident: ref46 doi: 10.1007/978-1-4757-6577-9 – ident: ref47 doi: 10.1109/TAC.2009.2015562 – ident: ref30 doi: 10.1109/TFUZZ.2020.3006562 – ident: ref37 doi: 10.1109/TIE.2021.3120442 – ident: ref17 doi: 10.1016/j.oceaneng.2022.111169 – ident: ref29 doi: 10.1016/j.automatica.2016.11.024 – ident: ref2 doi: 10.1109/TITS.2022.3170322 – ident: ref15 doi: 10.1109/TSMC.2020.2964808 – ident: ref50 doi: 10.1109/TIE.2019.2920599 – ident: ref34 doi: 10.1109/TITS.2021.3124635 – ident: ref51 doi: 10.1016/j.jfranklin.2020.06.010 – ident: ref25 doi: 10.1109/TCST.2006.872507 – ident: ref23 doi: 10.1109/TIM.2015.2459551 – ident: ref48 doi: 10.1109/TFUZZ.2020.3032784 – ident: ref20 doi: 10.1109/TCYB.2020.3005800 – ident: ref24 doi: 10.1109/TCST.2012.2183676 – ident: ref31 doi: 10.1109/TAC.2007.904277 – ident: ref45 doi: 10.1137/S0363012992232555 – ident: ref27 doi: 10.1016/j.isatra.2019.03.007 – ident: ref13 doi: 10.1109/TNNLS.2021.3100147 – ident: ref22 doi: 10.1109/.2005.1469806 – ident: ref10 doi: 10.1109/JOE.2018.2877895 – ident: ref35 doi: 10.1016/j.fmre.2022.09.013 – ident: ref26 doi: 10.1109/TCYB.2020.3009992 – ident: ref39 doi: 10.1109/TAC.2014.2366855 – ident: ref8 doi: 10.1016/j.oceaneng.2019.04.051 – ident: ref53 doi: 10.1109/TSMCB.2009.2033563 – ident: ref18 doi: 10.1109/TNNLS.2022.3141419 – ident: ref44 doi: 10.1109/9.486648 – ident: ref5 doi: 10.1016/j.conengprac.2021.104785 – ident: ref41 doi: 10.1016/j.automatica.2004.10.006 – ident: ref6 doi: 10.1109/TVT.2019.2955020 – ident: ref14 doi: 10.1016/j.oceaneng.2013.05.021 – ident: ref19 doi: 10.1109/TCYB.2014.2311824 – ident: ref32 doi: 10.1109/TNNLS.2021.3090054 – ident: ref43 doi: 10.1016/S0167-6911(97)00068-6 – ident: ref3 doi: 10.1109/TMECH.2017.2660528 – ident: ref12 doi: 10.1109/TNNLS.2022.3176625 – ident: ref42 doi: 10.1109/TIE.2018.2842720 – ident: ref7 doi: 10.1109/TITS.2021.3054177 – ident: ref38 doi: 10.1007/s11633-021-1306-z – ident: ref1 doi: 10.1016/j.arcontrol.2012.09.008 – ident: ref49 doi: 10.1016/j.jfranklin.2018.07.033 – ident: ref28 doi: 10.1109/TVT.2021.3063687 – ident: ref9 doi: 10.1109/JOE.2018.2880622 |
| SSID | ssj0014511 |
| Score | 2.5726929 |
| Snippet | This paper investigates the control issue of marine surface vehicles (MSVs) subject to internal and external uncertainties without velocity information.... |
| SourceID | swepub proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 787 |
| SubjectTerms | Actuators Adaptive control adaptive neural network Adaptive systems Artificial neural networks Classification classification reconstruction Closed loops Control theory disturbance observer Disturbance observers event-triggered control Feedback control Learning Marine surface vehicles Neural networks Output feedback Reconstruction State observers Surface vehicles Technological innovation Uncertainty Vehicle dynamics Wear |
| Title | Dynamic Event-Triggered Adaptive Neural Output Feedback Control for MSVs Using Composite Learning |
| URI | https://ieeexplore.ieee.org/document/9944384 https://www.proquest.com/docview/2770779316 https://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-56495 |
| Volume | 24 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-0016 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014511 issn: 1524-9050 databaseCode: RIE dateStart: 20000101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1NT9wwEB0Bp_YAtLRi-ZIP7aVqlsSxHfu4AlZQadsDAXGzYsdGiHZZQXLh1zN2shEgVHFLJNty_Cb2G3v8BuCbL9LCm8wlmVcuYdykiQyvntbCUOpZHpP2zX6L0wv264pfrcDP4S6Mcy4Gn7lxeIxn-fWdbcNW2aFSjOWSrcJqIUV3V2s4MQg6W1EblbJEpXx5gpml6rA8K8_RE6R0nCMBzzh9sQbFpCov-eVzzdC4zkw3YLbsYRdecjtuGzO2j6_EG9_7CZuw3hNOMuks5BOsuPln-PhMhnALquMuLT05CcGPSYkO-3VI4UkmdbUI0yEJEh7YyJ-2WbQNmeKKZyp7S466OHeCxJfMzi8fSAxAIGGOCbFgjvTqrddfoJyelEenSZ96IbHo4DSJpKyoM5vRqlC19xRHz_LK-MpLJQVyNhxmZFq5EtQUSDGpUB6pVG6ZR77D86-wNr-bu20gVJici1o6UTPGLfIPoyTDTjqmkKvIEaRLLLTtZclDdoy_OronqdIBPh3g0z18I_gxVFl0mhz_K7wVUBgK9gCMYG8JuO7_2gdNC7RcnLAyMYLvnREM9YIM9_HN5UQjnPpf1Wou0Lfcebv1XfgQ0tJ3WzV7sNbct24fyUtjDqLVPgHh6umq |
| linkProvider | IEEE |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1BT9swFH5i3YFx2MYArYxtPmwXREri2E58rICqDMoOZIibFTs2QoxS0eSyX79nJ41gmqbdEsm2HH8v9vfs5-8BfHFZnDmd2Chx0kaM6zjK_aujldCUOpaGpH2zCzH9wb5d8-s1OOjvwlhrQ_CZHfnHcJZfPZjGb5UdSslYmrMX8JIzxnh7W6s_M_BKW0EdlbJIxnx1hpnE8rA4LS7RF6R0lCIFTzh9tgqFtCrPGeZT1dCw0kzewGzVxzbA5G7U1Hpkfv0h3_i_H_EWXneUk4xbG9mENTt_BxtPhAi3oDxuE9OTEx_-GBXost_4JJ5kXJULPyESL-KBjXxv6kVTkwmuebo0d-SojXQnSH3J7PJqSUIIAvGzjI8Gs6TTb73ZhmJyUhxNoy75QmTQxamjnLKsSkxCy0xWzlEcPcNL7UqXy1wga8NhRq6VSkF1hiSTCumQTKWGOWQ8PN2Bwfxhbt8DoUKnXFS5FRWCZpCBaJkz7KRlEtlKPoR4hYUynTC5z4_xUwUHJZbKw6c8fKqDbwj7fZVFq8rxr8JbHoW-YAfAEPZWgKvuv10qmqHt4pSViCF8bY2gr-eFuI9vr8YK4VT3ZaO4QO9y9--tf4b1aTE7V-enF2cf4JVPUt9u3OzBoH5s7EekMrX-FCz4N0VQ7Pc |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Event-Triggered+Adaptive+Neural+Output+Feedback+Control+for+MSVs+Using+Composite+Learning&rft.jtitle=IEEE+transactions+on+intelligent+transportation+systems&rft.au=Zhu%2C+Guibing&rft.au=Ma%2C+Yong&rft.au=Li%2C+Zhixiong&rft.au=Malekian%2C+Reza&rft.date=2023&rft.issn=1524-9050&rft.volume=24&rft.issue=1&rft.spage=787&rft_id=info:doi/10.1109%2Ftits.2022.3217152&rft.externalDocID=oai_DiVA_org_mau_56495 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1524-9050&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1524-9050&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1524-9050&client=summon |