A proximal-gradient inertial algorithm with Tikhonov regularization: strong convergence to the minimal norm solution

We investigate the strong convergence properties of a proximal-gradient inertial algorithm with two Tikhonov regularization terms in connection with the minimization problem of the sum of a convex lower semi-continuous function f and a smooth convex function g. For the appropriate setting of the par...

Full description

Saved in:
Bibliographic Details
Published inOptimization methods & software Vol. 40; no. 4; pp. 947 - 976
Main Author László, Szilárd Csaba
Format Journal Article
LanguageEnglish
Published Taylor & Francis 04.07.2025
Subjects
Online AccessGet full text
ISSN1055-6788
1029-4937
DOI10.1080/10556788.2025.2517172

Cover

Abstract We investigate the strong convergence properties of a proximal-gradient inertial algorithm with two Tikhonov regularization terms in connection with the minimization problem of the sum of a convex lower semi-continuous function f and a smooth convex function g. For the appropriate setting of the parameters, we provide the strong convergence of the generated sequence $ (x_k){_{k\ge 0}} $ ( x k ) k ≥ 0 to the minimum norm minimizer of our objective function f + g. Further, we obtain fast convergence to zero of the objective function values in a generated sequence but also for the discrete velocity and the sub-gradient of the objective function. We also show that for another setting of the parameters the optimal rate of order $ \mathcal {O}(k^{-2}) $ O ( k − 2 ) for the potential energy $ (f+g)(x_k)-\min (f+g) $ ( f + g ) ( x k ) − min ( f + g ) can be obtained.
AbstractList We investigate the strong convergence properties of a proximal-gradient inertial algorithm with two Tikhonov regularization terms in connection with the minimization problem of the sum of a convex lower semi-continuous function f and a smooth convex function g. For the appropriate setting of the parameters, we provide the strong convergence of the generated sequence $ (x_k){_{k\ge 0}} $ ( x k ) k ≥ 0 to the minimum norm minimizer of our objective function f + g. Further, we obtain fast convergence to zero of the objective function values in a generated sequence but also for the discrete velocity and the sub-gradient of the objective function. We also show that for another setting of the parameters the optimal rate of order $ \mathcal {O}(k^{-2}) $ O ( k − 2 ) for the potential energy $ (f+g)(x_k)-\min (f+g) $ ( f + g ) ( x k ) − min ( f + g ) can be obtained.
Author László, Szilárd Csaba
Author_xml – sequence: 1
  givenname: Szilárd Csaba
  surname: László
  fullname: László, Szilárd Csaba
  email: szilard.laszlo@math.utcluj.ro, laszlosziszi@yahoo.com
  organization: Technical University of Cluj-Napoca
BookMark eNp9kM1OwzAQhC1UJNrCIyD5BVJsx3EcTlQVf1IlLuVsObGTGhy7sl1KeXoStVy57O5hZzTzzcDEeacBuMVogRFHdxgVBSs5XxBEigUpcIlLcgGmGJEqo1VeTsa7KLLx6QrMYvxACFFM2RSkJdwF_216abMuSGW0S9A4HZKRFkrb-WDStoeHYcKN-dx6579g0N3eymB-ZDLe3cOYgncdbLz70qHTrtEweZi2GvbGjd7Q-dDD6O1-FFyDy1baqG_Oew7enx43q5ds_fb8ulqus4YwlDKqiaK61kMbwklFlOKoxFrxWrU5JZjlJWN1TjnnTVlXZaUo4y0nUqGaVS3O56A4-TbBxxh0K3ZhSBOOAiMxohN_6MSITpzRDbqHk864dsgtDz5YJZI8Wh_aIF1josj_t_gF8ox6LA
Cites_doi 10.1007/s10589-024-00620-5
10.1006/jdeq.2001.4034
10.1016/j.jmaa.2016.12.017
10.1007/s00186-024-00867-y
10.1007/s10957-015-0746-4
10.1016/j.jmaa.2023.127689
10.1137/20M1382027
10.1137/080716542
10.1007/s10957-018-1369-3
10.1007/s00245-023-09997-x
10.1007/s00211-015-0751-4
10.1007/s00013-010-0181-6
10.1007/978-1-4419-8853-9
10.1006/jdeq.1996.0104
10.1137/15M1046095
10.1007/978-1-4419-9467-7
10.1007/s10107-020-01591-1
10.1007/s10107-020-01528-8
10.1016/j.cnsns.2025.108924
10.1016/j.jde.2008.08.007
10.1007/s10589-023-00536-6
10.1016/j.jde.2023.03.014
10.1016/j.jde.2021.12.005
10.1007/s00245-024-10163-0
10.1515/anona-2020-0143
ContentType Journal Article
Copyright 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2025
Copyright_xml – notice: 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. 2025
DBID 0YH
AAYXX
CITATION
DOI 10.1080/10556788.2025.2517172
DatabaseName Taylor & Francis - Revues - OpenAccess
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: 0YH
  name: Taylor & Francis Free Journals (Free resource, activated by CARLI)
  url: https://www.tandfonline.com
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1029-4937
EndPage 976
ExternalDocumentID 10_1080_10556788_2025_2517172
2517172
Genre Research Article
GrantInformation_xml – fundername: CNCS-UEFISCDI
– fundername: Ministry of Research, Innovation and Digitization
  grantid: PN-III-P1-1.1-TE-2021-0138
GroupedDBID .4S
.7F
.DC
.QJ
0BK
0R~
0YH
123
29N
30N
4.4
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABDBF
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AHDZW
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CCCUG
CE4
CS3
DGEBU
DKSSO
DU5
EAP
EBS
EST
ESX
E~A
E~B
F5P
GTTXZ
H13
HF~
HZ~
H~P
IPNFZ
J.P
KYCEM
LJTGL
M4Z
NA5
NY~
O9-
P2P
PQQKQ
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TTHFI
TUROJ
TWF
UT5
UU3
ZGOLN
~S~
AAYXX
CITATION
ID FETCH-LOGICAL-c260t-4e2d4ebe17228292dd8071ed8bdf342163766b34888c7b979d468f82ad0b69f13
IEDL.DBID 0YH
ISSN 1055-6788
IngestDate Wed Oct 01 05:38:48 EDT 2025
Mon Oct 20 23:46:41 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License open-access: http://creativecommons.org/licenses/by-nc-nd/4.0/: This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built upon in any way. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the author(s) or with their consent.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c260t-4e2d4ebe17228292dd8071ed8bdf342163766b34888c7b979d468f82ad0b69f13
OpenAccessLink https://www.tandfonline.com/doi/abs/10.1080/10556788.2025.2517172
PageCount 30
ParticipantIDs crossref_primary_10_1080_10556788_2025_2517172
informaworld_taylorfrancis_310_1080_10556788_2025_2517172
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-07-04
PublicationDateYYYYMMDD 2025-07-04
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-04
  day: 04
PublicationDecade 2020
PublicationTitle Optimization methods & software
PublicationYear 2025
Publisher Taylor & Francis
Publisher_xml – name: Taylor & Francis
References e_1_3_4_4_1
e_1_3_4_3_1
e_1_3_4_2_1
e_1_3_4_9_1
e_1_3_4_8_1
e_1_3_4_7_1
e_1_3_4_20_1
e_1_3_4_6_1
e_1_3_4_5_1
e_1_3_4_23_1
e_1_3_4_24_1
e_1_3_4_21_1
e_1_3_4_22_1
e_1_3_4_28_1
e_1_3_4_25_1
e_1_3_4_26_1
e_1_3_4_30_1
e_1_3_4_12_1
e_1_3_4_13_1
e_1_3_4_10_1
Tikhonov A.N. (e_1_3_4_31_1) 1977
e_1_3_4_11_1
e_1_3_4_16_1
e_1_3_4_17_1
e_1_3_4_14_1
e_1_3_4_15_1
e_1_3_4_18_1
e_1_3_4_19_1
Nesterov Y. (e_1_3_4_27_1) 1983; 27
Stolz O. (e_1_3_4_29_1) 1885
References_xml – ident: e_1_3_4_26_1
  doi: 10.1007/s10589-024-00620-5
– ident: e_1_3_4_4_1
  doi: 10.1006/jdeq.2001.4034
– ident: e_1_3_4_8_1
  doi: 10.1016/j.jmaa.2016.12.017
– ident: e_1_3_4_5_1
  doi: 10.1007/s00186-024-00867-y
– ident: e_1_3_4_10_1
– ident: e_1_3_4_19_1
  doi: 10.1007/s10957-015-0746-4
– ident: e_1_3_4_18_1
  doi: 10.1016/j.jmaa.2023.127689
– ident: e_1_3_4_2_1
  doi: 10.1137/20M1382027
– ident: e_1_3_4_15_1
  doi: 10.1137/080716542
– ident: e_1_3_4_9_1
  doi: 10.1007/s10957-018-1369-3
– ident: e_1_3_4_13_1
  doi: 10.1007/s00245-023-09997-x
– ident: e_1_3_4_7_1
  doi: 10.1007/s00211-015-0751-4
– ident: e_1_3_4_21_1
  doi: 10.1007/s00013-010-0181-6
– ident: e_1_3_4_28_1
  doi: 10.1007/978-1-4419-8853-9
– ident: e_1_3_4_3_1
  doi: 10.1006/jdeq.1996.0104
– volume-title: Solutions of Ill-Posed Problems
  year: 1977
  ident: e_1_3_4_31_1
– ident: e_1_3_4_6_1
  doi: 10.1137/15M1046095
– ident: e_1_3_4_14_1
  doi: 10.1007/978-1-4419-9467-7
– volume: 27
  start-page: 372
  year: 1983
  ident: e_1_3_4_27_1
  article-title: A method of solving a convex programming problem with convergence rate O(1/k2)
  publication-title: Soviet Math. Dokl.
– ident: e_1_3_4_12_1
  doi: 10.1007/s10107-020-01591-1
– ident: e_1_3_4_17_1
  doi: 10.1007/s10107-020-01528-8
– ident: e_1_3_4_25_1
  doi: 10.1016/j.cnsns.2025.108924
– ident: e_1_3_4_20_1
  doi: 10.1016/j.jde.2008.08.007
– ident: e_1_3_4_22_1
  doi: 10.1007/s10589-023-00536-6
– ident: e_1_3_4_24_1
  doi: 10.1016/j.jde.2023.03.014
– ident: e_1_3_4_11_1
  doi: 10.1016/j.jde.2021.12.005
– volume-title: Vorlesungen über allgemeine Arithmetik: nach den Neueren Ansichten
  year: 1885
  ident: e_1_3_4_29_1
– ident: e_1_3_4_23_1
  doi: 10.1007/s00245-024-10163-0
– ident: e_1_3_4_16_1
  doi: 10.1515/anona-2020-0143
– ident: e_1_3_4_30_1
SSID ssj0004146
Score 2.3917458
Snippet We investigate the strong convergence properties of a proximal-gradient inertial algorithm with two Tikhonov regularization terms in connection with the...
SourceID crossref
informaworld
SourceType Index Database
Publisher
StartPage 947
SubjectTerms convex optimization
Inertial algorithm
optimal rate
proximal-gradient algorithm
strong convergence
Tikhonov regularization
Title A proximal-gradient inertial algorithm with Tikhonov regularization: strong convergence to the minimal norm solution
URI https://www.tandfonline.com/doi/abs/10.1080/10556788.2025.2517172
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: aylor and Francis Online
  customDbUrl:
  mediaType: online
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: AHDZW
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAWR
  databaseName: Taylor & Francis Science and Technology Library-DRAA
  customDbUrl:
  eissn: 1029-4937
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004146
  issn: 1055-6788
  databaseCode: 30N
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.tandfonline.com/page/title-lists
  providerName: Taylor & Francis
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagXWBAPEV5yQOrS5o4icNWAVXEwNSKxxLZsd1WtAlKDb-fs5OIdoCFMVLOSs539p393XcIXSdc8xgsieQ8CIhllCMsUJQoCC-kDjzJa7TFU5RO6ONL2KIJVw2s0ubQuiaKcGu1dW4uVi0i7sb1dITUDbI7P-xbzi3YhbdR148HiTVs7zX9KY1sCoxAhFiZtojnt2E2tqcN8tK1bWe0j_aaeBEP6wk-QFuqOES7ayyCR8gMsQWjzJd8QaaVg3AZbGv6wHkXmC-mZTU3syW2R654PH-flUX5hSvXhL5qyjBv8cqeiU-xQ6G7gkyFTYkhPMSWfQTGxgV8JG5N9RhNRg_ju5Q0zRRIDimLIVT5ksKMwT_ay1NfSgbRhZJMwJRQH8KyOIpEAP7M8lgkcSJpxDTzufRElOhBcII6RVmoU4RDeCvXksY8EFQMOAt5Dr6tBfOYhuWyh_qtDrOPmjMjGzRUpK3SM6v0rFF6DyXrms6MO6zQdWeRLPhT9uwfsudoxz469C29QB1TfapLiDGMuHJWdIW6w_T-7fkbIfjK1A
linkProvider Taylor & Francis
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagDMCAeIry9MDq0sZO4rBViCpA6dRKZYqc2G4r2gSFwO_n7CQiHWBhTs5Kzj777nzfdwjdBEILH1YSSQSlxDDKEU4VIwrcC6lpV4qy2mLkhRP2NHWnDSyMKas0MbQuiSLsXm2M2ySj65K4W9vUEWI3CO8ct2NIt-AY3kRbLriLpn1D9zX8wUZWCCMQIUamRvH8Nsza-bTGXto4dwb7aK9yGHG_nOEDtKHSQ7TboBE8QkUfm2qUxUosySy3NVwFNqA-sN4lFstZli-K-QqbnCseL97mWZp94dx2oc8rHOYd_jBJ8Rm2ZegWkalwkWHwD7GhH4GxcQofieu1eowmg4fxfUiqbgokgZilIEw5ksGUwT-a21NHSg7uhZI8hjlhDvhlvufFFAyaJ34c-IFkHtfcEbIbe4Hu0RPUSrNUnSLswluJlswXNGZxT3BXJGDcOuZdrmG_bKNOrcPovSTNiHoVF2mt9MgoPaqU3kZBU9NRYbMVumwtEtE_Zc_-IXuNtsPxyzAaPo6ez9GOeWRLcdkFahX5p7oEh6OIr-yK-gart8yW
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI5gSAgOiKcYzxy4ZmxN2qbcJmAaD00cNglOVdI028TWTl3g9-OkrRgHuHBuHbWOXdvp588IXUVCixAsiSSCUmIZ5QinKSMppBdK07YSJdpiEPRH7PHVr9GEywpWaWtoXRJFuG-1de6F0jUi7trNdITSDao7z29Zzi2Iwutow-cQ3sCk22_979bIqsEIRIiVqZt4flvmR3j6QV66EnZ6u2inyhdxt9zgPbSWZvtoe4VF8ACZLrZglOlczMi4cBAug21PHzjvDIvZOC-mZjLH9sgVD6fvkzzLP3HhhtAXVRvmDV7aM_Exdih015CZYpNjSA-xZR-BtXEGD4lrUz1Eo9798LZPqmEKJIGSxRCWeorBjsE72p-nnlIcsotUcQlbwjxIy8IgkBT8mSehjMJIsYBr7gnVlkGkO_QINbI8S48R9uGuRCsWCiqZ7AjuiwR8W0ve5ho-l03UqnUYL0rOjLhTUZHWSo-t0uNK6U0UrWo6Nu6wQpeTRWL6p-zJP2Qv0ebLXS9-fhg8naIte8UBcdkZapjiIz2HdMPIC2dQX6JUy8g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+proximal-gradient+inertial+algorithm+with+Tikhonov+regularization%3A+strong+convergence+to+the+minimal+norm+solution&rft.jtitle=Optimization+methods+%26+software&rft.au=L%C3%A1szl%C3%B3%2C+Szil%C3%A1rd+Csaba&rft.date=2025-07-04&rft.pub=Taylor+%26+Francis&rft.issn=1055-6788&rft.eissn=1029-4937&rft.volume=40&rft.issue=4&rft.spage=947&rft.epage=976&rft_id=info:doi/10.1080%2F10556788.2025.2517172&rft.externalDBID=0YH&rft.externalDocID=2517172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1055-6788&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1055-6788&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1055-6788&client=summon