A novel framework for detecting non‐recurrent road traffic anomalies by combining a temporal graph convolutional network and hierarchical time memory detector
A non‐recurrent road traffic anomaly refers to a sudden change in the capacity of a road segment, which deviates from the general traffic patterns, and is usually caused by abnormal traffic events such as traffic accidents and unexpected road maintenance. Timely and accurate detection of non‐recurre...
Saved in:
| Published in | Transactions in GIS Vol. 27; no. 1; pp. 239 - 259 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford
Blackwell Publishing Ltd
01.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1361-1682 1467-9671 |
| DOI | 10.1111/tgis.13022 |
Cover
| Abstract | A non‐recurrent road traffic anomaly refers to a sudden change in the capacity of a road segment, which deviates from the general traffic patterns, and is usually caused by abnormal traffic events such as traffic accidents and unexpected road maintenance. Timely and accurate detection of non‐recurrent road traffic anomalies facilitates immediate handling to reduce the wastage of resources and the risk of secondary accidents. Compared with other types of traffic anomaly detection methods, prediction algorithms are suitable for detecting non‐recurrent anomalies for their potential ability to distinguish non‐recurrent anomalies from recurrent congestion (e.g., rush hours). A typical prediction algorithm detects an anomaly when the difference between the predicted traffic parameter (i.e., speed) and the actual one is greater than a threshold. However, the subjective setting of thresholds in many prediction algorithms greatly affects the detection performance. This study proposes a novel framework for non‐recurrent road traffic anomaly detection (NRRTAD). The temporal graph convolutional network (T‐GCN) model acts as the predictor to learn the general traffic patterns of road segments by capturing both the topological effects and temporal patterns of traffic flows, and to predict the “normal” traffic speeds. The hierarchical time memory detector (HTM‐detector) algorithm acts as the detector to evaluate the differences between the predicted speeds and the actual speeds to detect non‐recurrent anomalies without setting a threshold. In the experiments with traffic datasets of Beijing, NRRTAD outperformed other methods, not only achieving the highest detection rates but also exhibiting higher resilience to noise. The main advantages of NRRTAD are as follows: (1) adopting the T‐GCN with a weighted graph to integrate differentiated connection strengths of multiple types of topological relations between road segments as well as temporal traffic patterns improves the prediction performance; and (2) utilizing a flexible mechanism in the HTM‐detector to adapt to changing stream data not only avoids subjective setting of a threshold, but also improves the accuracy and robustness of anomaly detection. |
|---|---|
| AbstractList | A non‐recurrent road traffic anomaly refers to a sudden change in the capacity of a road segment, which deviates from the general traffic patterns, and is usually caused by abnormal traffic events such as traffic accidents and unexpected road maintenance. Timely and accurate detection of non‐recurrent road traffic anomalies facilitates immediate handling to reduce the wastage of resources and the risk of secondary accidents. Compared with other types of traffic anomaly detection methods, prediction algorithms are suitable for detecting non‐recurrent anomalies for their potential ability to distinguish non‐recurrent anomalies from recurrent congestion (e.g., rush hours). A typical prediction algorithm detects an anomaly when the difference between the predicted traffic parameter (i.e., speed) and the actual one is greater than a threshold. However, the subjective setting of thresholds in many prediction algorithms greatly affects the detection performance. This study proposes a novel framework for non‐recurrent road traffic anomaly detection (NRRTAD). The temporal graph convolutional network (T‐GCN) model acts as the predictor to learn the general traffic patterns of road segments by capturing both the topological effects and temporal patterns of traffic flows, and to predict the “normal” traffic speeds. The hierarchical time memory detector (HTM‐detector) algorithm acts as the detector to evaluate the differences between the predicted speeds and the actual speeds to detect non‐recurrent anomalies without setting a threshold. In the experiments with traffic datasets of Beijing, NRRTAD outperformed other methods, not only achieving the highest detection rates but also exhibiting higher resilience to noise. The main advantages of NRRTAD are as follows: (1) adopting the T‐GCN with a weighted graph to integrate differentiated connection strengths of multiple types of topological relations between road segments as well as temporal traffic patterns improves the prediction performance; and (2) utilizing a flexible mechanism in the HTM‐detector to adapt to changing stream data not only avoids subjective setting of a threshold, but also improves the accuracy and robustness of anomaly detection. |
| Author | Ren, Shuliang Yu, Yin Wang, Jingyi Guan, Qingfeng Liang, Zhewei |
| Author_xml | – sequence: 1 givenname: Zhewei surname: Liang fullname: Liang, Zhewei organization: China University of Geosciences – sequence: 2 givenname: Jingyi surname: Wang fullname: Wang, Jingyi organization: ChangJiang Waterway Bureau Survey Center – sequence: 3 givenname: Shuliang surname: Ren fullname: Ren, Shuliang organization: China University of Geosciences – sequence: 4 givenname: Yin surname: Yu fullname: Yu, Yin organization: Wuhan Highlander Technology Co – sequence: 5 givenname: Qingfeng surname: Guan fullname: Guan, Qingfeng email: guanqf@cug.edu.cn organization: China University of Geosciences |
| BookMark | eNp9kc9O3DAQxq2KSgXKhSew1BtSqB1v7OSIUEuRkHoAztHEGe-aJvYy9oL2xiPwCDxbn6RelnPnMqP5fvNH-o7YQYgBGTuV4lyW-J6XPp1LJer6EzuUC22qTht5UGqlZSV1W39hRyk9CCEWi84csrcLHuITTtwRzPgc6Q93kfiIGW32YVnU8PflldBuiDBkThFGngmc85ZDiDNMHhMfttzGefBhNwM847yOBBNfEqxXRQpPcdpkH0PpBczvhyCMfOWRgOzK2yJkPyOfcY60_fgg0lf22cGU8OQjH7P7nz_uLn9VN7-vri8vbipba1FXnWlHUK3thG2ka0HCqK1qR6WEhGEU2g0LYYwYButQNk2HiKppNJgWDGqtjtm3_d41xccNptw_xA2Vd1NfG6MaaRpRF-psT1mKKRG6fk1-Btr2UvQ7B_qdA_27AwWWe_jZT7j9D9nfXV3f7mf-AQCpkBk |
| Cites_doi | 10.4236/jtts.2014.43023 10.48550/arXiv.2001.02908 10.1109/TITS.2007.894193 10.1016/j.future.2020.07.021 10.48550/arXiv.1801.02143 10.1186/s12544‐018‐0300‐1 10.1061/(ASCE)0733‐947X(2002)128:1(21) 10.1016/j.eswa.2016.12.018 10.48550/arXiv.2006.13215 10.1109/TITS.2004.843112 10.1109/ACCESS.2019.2893124 10.4018/IJSWIS.297038 10.1109/MWSCAS.2017.8053243 10.1109/YAC.2016.7804912 10.1007/978-3-319-39958-4_8 10.4018/IJSWIS.297144 10.1109/ACCESS.2021.3062114 10.4018/IJSSCI.285592 10.1016/j.trc.2016.10.019 10.1145/3292500.3330884 10.23919/SOFTCOM.2019.8903822 10.1109/CCDC.2017.7978991 10.3390/s18071984 10.3390/ijgi10070485 10.1007/978-3-319-15165-6 10.1162/neco.1997.9.8.1735 10.1016/j.trpro.2016.06.043 10.1109/TITS.2019.2935152 10.1109/ICMLA.2015.141 10.1109/TITS.2014.2345663 10.1287/mnsc.23.7.768 10.1109/LGRS.2017.2780843 10.1109/TITS.2022.3220089 10.1109/TITS.2022.3197640 10.1061/(ASCE)0733‐947X(1995)121:3(249) 10.1109/CYBERI.2018.8337551 10.1007/978-3-319-93417-4_38 10.1109/ITSC.2018.8569402 10.1111/j.1540‐5907.2010.00447.x 10.1016/j.future.2015.11.013 10.1109/TITS.2022.3217054 10.1109/ACCESS.2019.2916853 10.1109/TITS.2016.2613997 10.1016/j.aap.2018.01.024 10.3389/fncir.2016.00023 10.1109/TITS.2011.2157689 10.1016/j.trc.2017.02.024 10.1080/15472450.2014.977046 10.1080/13658816.2019.1697879 |
| ContentType | Journal Article |
| Copyright | 2023 John Wiley & Sons Ltd. |
| Copyright_xml | – notice: 2023 John Wiley & Sons Ltd. |
| DBID | AAYXX CITATION 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| DOI | 10.1111/tgis.13022 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ProQuest Computer Science Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Technology Research Database Computer and Information Systems Abstracts – Academic ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography |
| EISSN | 1467-9671 |
| EndPage | 259 |
| ExternalDocumentID | 10_1111_tgis_13022 TGIS13022 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 42171466 |
| GroupedDBID | -~X .3N .GA .Y3 05W 0R~ 10A 123 1OB 1OC 29Q 31~ 33P 4.4 50Y 50Z 51W 51Y 52M 52O 52Q 52S 52T 52U 52W 5HH 5LA 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 8V8 930 A04 AABNI AAESR AAHHS AAHQN AAMNL AANHP AAONW AAOUF AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABJNI ABPVW ABSOO ABTAH ACAHQ ACBKW ACBWZ ACCFJ ACCZN ACGFS ACHQT ACIWK ACPOU ACRPL ACSCC ACUHS ACXQS ACYXJ ADBBV ADEMA ADEOM ADIZJ ADKYN ADMGS ADNMO ADXAS ADZMN AEEZP AEIGN AEIMD AEMOZ AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFKFF AFPWT AFRAH AFWVQ AFYRF AFZJQ AHBTC AHQJS AIFKG AIURR AIWBW AJBDE AKVCP ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ASTYK AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BMXJE BNVMJ BQESF BROTX BRXPI BY8 CAG COF CS3 D-C D-D DCZOG DPXWK DR2 DRFUL DRSSH DU5 EAD EAP EAYBP EBA EBO EBR EBS EBU EDH EJD EMK ESX F00 F01 FEDTE G-S G.N G50 GODZA HGLYW HVGLF HZI HZ~ IHE IX1 J0M K1G K48 LATKE LC2 LC4 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MM- MRFUL MRSSH MSFUL MSSSH MXFUL MXSSH N04 N06 N9A NF~ O66 O9- OIG P2W P2Y P4C PALCI PQQKQ Q.N Q11 QB0 R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TH9 UB1 W8V W99 WBKPD WIH WII WMRSR WOHZO WQZ WRC WSUWO WXSBR XG1 ZY4 ZZTAW ~IA ~WP AAMMB AAYXX AEFGJ AEYWJ AGHNM AGQPQ AGXDD AIDQK AIDYY AIQQE CITATION 7SC 8FD F1W FR3 H96 JQ2 KR7 L.G L7M L~C L~D |
| ID | FETCH-LOGICAL-c2602-978da38c90c51f8a1ad6c38d3301abd06fb40770bbcfe1559eee3556a78a7e663 |
| IEDL.DBID | DR2 |
| ISSN | 1361-1682 |
| IngestDate | Tue Aug 12 09:40:46 EDT 2025 Wed Oct 01 03:57:10 EDT 2025 Wed Jan 22 16:24:11 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c2602-978da38c90c51f8a1ad6c38d3301abd06fb40770bbcfe1559eee3556a78a7e663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2773517502 |
| PQPubID | 45950 |
| PageCount | 1 |
| ParticipantIDs | proquest_journals_2773517502 crossref_primary_10_1111_tgis_13022 wiley_primary_10_1111_tgis_13022_TGIS13022 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 20230201 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Transactions in GIS |
| PublicationYear | 2023 |
| Publisher | Blackwell Publishing Ltd |
| Publisher_xml | – name: Blackwell Publishing Ltd |
| References | 2021; 9 2019; 7 2010; 54 1990; 1287 2015; 19 2012 1979; 722 2022; 23 2016; 10 2016; 73 2011; 12 2020; 34 1977; 23 2016; 18 2015; 7 2016; 15 1997; 9 2017; 73 2018; 130 2018; 18 2021; 10 2014; 4 2017; 15 2022 2020 2017; 79 2002; 128 2014; 16 2007; 8 2019 2022; 14 2018 2017 2005; 6 2016 2016; 61 2015 2020; 113 2020; 21 1995; 121 2018; 10 2022; 18 2022; 19 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 Ahmad S. (e_1_2_10_2_1) 2016 e_1_2_10_40_1 Ahmed M. S. (e_1_2_10_3_1) 1979; 722 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Barua A. (e_1_2_10_6_1) 2022 Bolshinsky E. (e_1_2_10_9_1) 2012 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 e_1_2_10_52_1 e_1_2_10_19_1 e_1_2_10_54_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 Persaud B. N. (e_1_2_10_36_1) 1990; 1287 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 16 start-page: 865 issue: 2 year: 2014 end-page: 873 article-title: Traffic flow prediction with big data: A deep learning approach publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 128 start-page: 21 issue: 1 year: 2002 end-page: 30 article-title: Comparison of fuzzy‐wavelet radial basis function neural network freeway incident detection model with California algorithm publication-title: Journal of Transportation Engineering – start-page: 328 year: 2017 end-page: 331 – volume: 113 start-page: 304 year: 2020 end-page: 317 article-title: Robust detection of atrial fibrillation from short‐term electrocardiogram using convolutional neural networks publication-title: Future Generation Computer Systems – volume: 15 start-page: 207 issue: 2 year: 2017 end-page: 211 article-title: A CFCC‐LSTM model for sea surface temperature prediction publication-title: IEEE Geoscience and Remote Sensing Letters – start-page: 1 year: 2022 end-page: 17 article-title: KST‐GCN: A knowledge‐driven spatial‐temporal graph convolutional network for traffic forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1 year: 2019 end-page: 6 – volume: 54 start-page: 561 issue: 2 year: 2010 end-page: 581 article-title: What to do about missing values in time‐series cross‐section data publication-title: American Journal of Political Science – volume: 61 start-page: 97 year: 2016 end-page: 107 article-title: Urban traffic congestion estimation and prediction based on floating car trajectory data publication-title: Future Generation Computer Systems – volume: 10 start-page: 22 issue: 2 year: 2018 article-title: Overview of traffic incident duration analysis and prediction publication-title: European Transport Research Review – start-page: 1 year: 2022 end-page: 17 article-title: Robust and hierarchical spatial relation analysis for traffic forecasting publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 121 start-page: 249 issue: 3 year: 1995 end-page: 254 article-title: Short‐term prediction of traffic volume in urban arterials publication-title: Journal of Transportation Engineering – volume: 19 start-page: 1770 year: 2022 end-page: 1782 – start-page: 92 year: 2016 end-page: 104 – start-page: 1597 year: 2017 end-page: 1600 – volume: 73 start-page: 183 year: 2016 end-page: 201 article-title: Short‐term speed predictions exploiting big data on large urban road networks publication-title: Transportation Research Part C: Emerging Technologies – volume: 4 start-page: 256 issue: 3 year: 2014 end-page: 266 article-title: Real‐time road traffic anomaly detection publication-title: Journal of Transportation Technologies – volume: 130 start-page: 160 year: 2018 end-page: 166 article-title: Modeling when and where a secondary accident occurs publication-title: Accident Analysis & Prevention – volume: 34 start-page: 969 issue: 5 year: 2020 end-page: 995 article-title: A novel residual graph convolution deep learning model for short‐term network‐based traffic forecasting publication-title: International Journal of Geographical Information Science – volume: 12 start-page: 695 issue: 3 year: 2011 end-page: 704 article-title: Detection and classification of traffic anomalies using microscopic traffic variables publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 79 start-page: 1 year: 2017 end-page: 17 article-title: Deep learning for short‐term traffic flow prediction publication-title: Transportation Research Part C: Emerging Technologies – volume: 21 start-page: 1 year: 2020 end-page: 11 article-title: T‐GCN: A temporal graph convolutional network for traffic prediction publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 18 start-page: 1 issue: 1 year: 2022 end-page: 15 article-title: Information entropy augmented high density crowd counting network publication-title: International Journal on Semantic Web and Information Systems – start-page: 1 year: 2018 end-page: 5 – year: 2019 – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Computation – volume: 15 start-page: 513 year: 2016 end-page: 524 article-title: Spatio‐temporal congestion patterns in urban traffic networks publication-title: Transportation Research Procedia – year: 2020 article-title: Traffic congestion anomaly detection and prediction using deep learning publication-title: arXiv:2006.13215 – volume: 9 start-page: 35973 year: 2021 end-page: 35983 article-title: AST‐GCN: Attribute‐augmented spatiotemporal graph convolutional network for traffic forecasting publication-title: IEEE Access – start-page: 2814 year: 2017 end-page: 2819 – volume: 10 issue: 7 year: 2021 article-title: A3t‐gcn: Attention temporal graph convolutional network for traffic forecasting publication-title: ISPRS International Journal of Geo‐Information – volume: 1287 start-page: 167 year: 1990 end-page: 175 article-title: Congestion identification aspects of the McMaster incident detection algorithm publication-title: Transportation Research Record – volume: 14 start-page: 1 issue: 1 year: 2022 end-page: 19 article-title: GIS‐based multi‐criteria decision‐support system and machine learning for hospital site selection: Case study Oran, Algeria publication-title: International Journal of Software Science and Computational Intelligence – start-page: 38 year: 2015 end-page: 44 – year: 2020 article-title: Spatial‐temporal transformer networks for traffic flow forecasting publication-title: arXiv:2001.02908 – year: 2016 – volume: 73 start-page: 43 year: 2017 end-page: 56 article-title: Detection of traffic congestion and incidents from GPS trace analysis publication-title: Expert Systems with Applications – volume: 23 start-page: 768 issue: 7 year: 1977 end-page: 774 article-title: Kalman filtering applied to statistical forecasting publication-title: Management Science – volume: 18 start-page: 1958 issue: 7 year: 2016 end-page: 1973 article-title: A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion publication-title: IEEE Transactions on Intelligent Transportation Systems – year: 2012 – start-page: 593 year: 2018 end-page: 607 – volume: 18 start-page: 1 issue: 1 year: 2022 end-page: 16 article-title: Handling data scarcity through data augmentation in training of deep neural networks for 3D data processing publication-title: International Journal on Semantic Web and Information Systems – volume: 7 start-page: 12192 year: 2019 end-page: 12205 article-title: A survey on urban traffic anomalies detection algorithms publication-title: IEEE Access – start-page: 324 year: 2016 end-page: 328 – volume: 6 start-page: 38 issue: 1 year: 2005 end-page: 42 article-title: Traffic‐incident detection‐algorithm based on nonparametric regression publication-title: IEEE Transactions on Intelligent Transportation Systems – volume: 722 start-page: 1 year: 1979 end-page: 9 article-title: Analysis of freeway traffic time‐series data by using box‐Jenkins techniques publication-title: Transportation Research Record – volume: 7 year: 2015 – year: 2018 article-title: Deep bidirectional and unidirectional LSTM recurrent neural network for network‐wide traffic speed prediction publication-title: arXiv:1801.02143 – volume: 7 start-page: 63036 year: 2019 end-page: 63044 article-title: STLP‐OD: Spatial and temporal label propagation for traffic outlier detection publication-title: IEEE Access – volume: 19 start-page: 205 issue: 2 year: 2015 end-page: 213 article-title: Automatic incident detection for urban expressways based on segment traffic flow density publication-title: Journal of Intelligent Transportation Systems – volume: 10 year: 2016 article-title: Why neurons have thousands of synapses, a theory of sequence memory in neocortex publication-title: Frontiers in Neural Circuits – volume: 18 issue: 7 year: 2018 article-title: Road anomalies detection system evaluation publication-title: Sensors – volume: 23 start-page: 23433 issue: 12 year: 2022 end-page: 23446 article-title: Learning all dynamics: Traffic forecasting via locality‐aware spatio‐temporal joint transformer publication-title: IEEE Transactions on Intelligent Transportation Systems – start-page: 1011 year: 2018 end-page: 1016 – volume: 8 start-page: 351 issue: 2 year: 2007 end-page: 358 article-title: Traffic management center use of incident detection algorithms: Findings of a nationwide survey publication-title: IEEE Transactions on Intelligent Transportation Systems – ident: e_1_2_10_39_1 doi: 10.4236/jtts.2014.43023 – ident: e_1_2_10_48_1 doi: 10.48550/arXiv.2001.02908 – ident: e_1_2_10_47_1 doi: 10.1109/TITS.2007.894193 – ident: e_1_2_10_34_1 doi: 10.1016/j.future.2020.07.021 – ident: e_1_2_10_12_1 doi: 10.48550/arXiv.1801.02143 – ident: e_1_2_10_29_1 doi: 10.1186/s12544‐018‐0300‐1 – ident: e_1_2_10_25_1 doi: 10.1061/(ASCE)0733‐947X(2002)128:1(21) – ident: e_1_2_10_13_1 doi: 10.1016/j.eswa.2016.12.018 – ident: e_1_2_10_32_1 doi: 10.48550/arXiv.2006.13215 – volume: 722 start-page: 1 year: 1979 ident: e_1_2_10_3_1 article-title: Analysis of freeway traffic time‐series data by using box‐Jenkins techniques publication-title: Transportation Research Record – ident: e_1_2_10_45_1 doi: 10.1109/TITS.2004.843112 – ident: e_1_2_10_15_1 doi: 10.1109/ACCESS.2019.2893124 – ident: e_1_2_10_43_1 doi: 10.4018/IJSWIS.297038 – ident: e_1_2_10_14_1 doi: 10.1109/MWSCAS.2017.8053243 – ident: e_1_2_10_18_1 doi: 10.1109/YAC.2016.7804912 – ident: e_1_2_10_30_1 doi: 10.1007/978-3-319-39958-4_8 – ident: e_1_2_10_21_1 doi: 10.4018/IJSWIS.297144 – ident: e_1_2_10_55_1 doi: 10.1109/ACCESS.2021.3062114 – ident: e_1_2_10_8_1 doi: 10.4018/IJSSCI.285592 – ident: e_1_2_10_19_1 doi: 10.1016/j.trc.2016.10.019 – volume-title: Traffic flow forecast survey year: 2012 ident: e_1_2_10_9_1 – ident: e_1_2_10_35_1 doi: 10.1145/3292500.3330884 – ident: e_1_2_10_7_1 doi: 10.23919/SOFTCOM.2019.8903822 – ident: e_1_2_10_44_1 doi: 10.1109/CCDC.2017.7978991 – ident: e_1_2_10_50_1 – ident: e_1_2_10_42_1 doi: 10.3390/s18071984 – ident: e_1_2_10_4_1 doi: 10.3390/ijgi10070485 – ident: e_1_2_10_16_1 doi: 10.1007/978-3-319-15165-6 – ident: e_1_2_10_23_1 doi: 10.1162/neco.1997.9.8.1735 – ident: e_1_2_10_40_1 doi: 10.1016/j.trpro.2016.06.043 – ident: e_1_2_10_53_1 doi: 10.1109/TITS.2019.2935152 – ident: e_1_2_10_28_1 doi: 10.1109/ICMLA.2015.141 – ident: e_1_2_10_31_1 doi: 10.1109/TITS.2014.2345663 – ident: e_1_2_10_33_1 doi: 10.1287/mnsc.23.7.768 – ident: e_1_2_10_49_1 doi: 10.1109/LGRS.2017.2780843 – ident: e_1_2_10_54_1 doi: 10.1109/TITS.2022.3220089 – ident: e_1_2_10_17_1 doi: 10.1109/TITS.2022.3197640 – ident: e_1_2_10_20_1 doi: 10.1061/(ASCE)0733‐947X(1995)121:3(249) – volume-title: Real‐time anomaly detection for streaming analytics year: 2016 ident: e_1_2_10_2_1 – ident: e_1_2_10_26_1 doi: 10.1109/CYBERI.2018.8337551 – ident: e_1_2_10_41_1 doi: 10.1007/978-3-319-93417-4_38 – ident: e_1_2_10_56_1 doi: 10.1109/ITSC.2018.8569402 – ident: e_1_2_10_24_1 doi: 10.1111/j.1540‐5907.2010.00447.x – ident: e_1_2_10_27_1 doi: 10.1016/j.future.2015.11.013 – ident: e_1_2_10_51_1 doi: 10.1109/TITS.2022.3217054 – ident: e_1_2_10_38_1 doi: 10.1109/ACCESS.2019.2916853 – ident: e_1_2_10_10_1 doi: 10.1109/TITS.2016.2613997 – volume: 1287 start-page: 167 year: 1990 ident: e_1_2_10_36_1 article-title: Congestion identification aspects of the McMaster incident detection algorithm publication-title: Transportation Research Record – ident: e_1_2_10_46_1 doi: 10.1016/j.aap.2018.01.024 – ident: e_1_2_10_22_1 doi: 10.3389/fncir.2016.00023 – ident: e_1_2_10_5_1 doi: 10.1109/TITS.2011.2157689 – ident: e_1_2_10_37_1 doi: 10.1016/j.trc.2017.02.024 – start-page: 1770 volume-title: IEEE Transactions on Dependable and Secure Computing year: 2022 ident: e_1_2_10_6_1 – ident: e_1_2_10_11_1 doi: 10.1080/15472450.2014.977046 – ident: e_1_2_10_52_1 doi: 10.1080/13658816.2019.1697879 |
| SSID | ssj0004497 |
| Score | 2.3188798 |
| Snippet | A non‐recurrent road traffic anomaly refers to a sudden change in the capacity of a road segment, which deviates from the general traffic patterns, and is... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 239 |
| SubjectTerms | Accidents Algorithms Anomalies Artificial neural networks Detection Predictions Road maintenance Roads & highways Segments Sensors Topology Traffic Traffic accidents Traffic accidents & safety Traffic flow Traffic speed |
| Title | A novel framework for detecting non‐recurrent road traffic anomalies by combining a temporal graph convolutional network and hierarchical time memory detector |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.13022 https://www.proquest.com/docview/2773517502 |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1467-9671 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0004497 issn: 1361-1682 databaseCode: ABDBF dateStart: 19990101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1361-1682 databaseCode: DR2 dateStart: 19970101 customDbUrl: isFulltext: true eissn: 1467-9671 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004497 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhl-TSn6Sl26ZlIDkVvGgtr2xDLyF0uwkkh2QX9lKMJI9padZbvE5gc-oj9BH6bHmSzMh2d9tDobkZ27L1M5K-kUbfJ8SRKbBQUYJBjANyUAzqIFEmDRRzZ2mjCyX5vPP5hR5Po7PZcLYlPnRnYRp-iN8Lbtwz_HjNHdzY5UYnr8mxZy3jkAfggdLen7pcc0dFUaOsojQrISdhy03KYTzrpH_ORmuIuQlU_Uwzeio-d3lsAky-9W9q23d3f9E3PrYQz8STFoLCcWMzz8UWlntip1VD_7LaF7-OoVzc4jUUXeQWELSFHHnDgaY6elre__hZ8VI9kztBtTA51JVhOgow5WJO4B6XYFdA-bFeggIMtCxY1-D_Axzv3to93SubcHRKnQPLc_sNDrIfqL_OEeYcD7xqc7CoXojp6OPkZBy0Sg6BI38pDMhVzY1KXCrdcFAkZmBy7VSSKxpejM2lLiw5lrG01hXIG6WISNaiTZyYGAkUvRTbVDR8JUCnaKWKtIuliVKlbWqZhVBGsXSRk2FPHHYtmn1vCDuyztHh2s58bffEQdfYWdtpl1kYx2pIcIo_8t632j--kE0-nV75q9f_8_IbscuC9U3c94HYrqsbfEuwprbvvPk-AH5S-FY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQeygXaPkRLaWMBCekVN7Y6yTHCtFuoe0BtlJvke1MBKKbrbIp0nLqI_QR-mx9EmYcb7dwQIJblMSJf8b2N_b4-4R4a2uslc4xyXBADopFk-TKFoli7ixjTa0kn3c-PjGjU_3xbHgWY3P4LEzPD3G34MY9I4zX3MF5QfpeL-_Is2cx45RG4FVtyFFhTPR5yR6lda-togxrIedpZCflQJ5l2t_noyXIvA9Vw1yz_7gXVJ0FikIOMfm-e9m5Xf_zDwLH_y7GungUUSjs9WazIR5g80SsRUH0r_On4mYPmukPPId6EbwFhG6hQt5zoNmOnja3V9ctr9YzvxO0U1tB11pmpADbTCeE73EGbg6UIRdUKMBCJMI6h_Af4JD3aPp0r-kj0il1BazQHfY4yISg-zZBmHBI8DzmYNo-E6f7H8bvR0kUc0g8uUxpQt5qZVXuC-mHgzq3A1sZr_JK0QhjXSVN7ci3zKRzvkbeK0VEMhhjs9xmSLjouVihouELAaZAJ5U2PpNWF8q4wjERodSZ9NrLdFO8WTRpedFzdpQLX4druwy1vSm2F61dxn47K9MsU0NCVPyRd6HZ_vKFcnxw-CVcbf3Ly6_F2mh8fFQeHZ58eikesn59Hwa-LVa69hJfEcrp3E6w5V_8_Px3 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQKwEX2vKjFlo6EpyQUnljr5McK9ql5adC0Eq9RbYzEajdbJVNkbanPgKPwLPxJJ1xvGzhgAS3KIkT_4ztGfvz9wnx0tZYK51jkuGAAhSLJsmVLRLF3FnGmlpJPu_84cgcnOi3p8PTiM3hszA9P8SvBTfuGWG85g6OF1V9q5d3FNmzmHFKI_CyHhY5I_r2Pi3Yo7TutVWUYS3kPI3spAzkWaT9fT5aOJm3XdUw14xWekHVaaAoZIjJ2c5l53b81R8Ejv9djFXxIHqhsNubzZq4g81DcS8Kon-ZPRI_dqGZfMNzqOfgLSDvFirkPQea7ehp8_P6e8ur9czvBO3EVtC1lhkpwDaTMfn3OAU3A8qQCyoUYCESYZ1D-A8w5D2aPt1rekQ6pa6AFbrDHgeZEHRfxwhjhgTPYg4m7WNxMto_fn2QRDGHxFPIlCYUrVZW5b6QfjioczuwlfEqrxSNMNZV0tSOYstMOudr5L1SRCSDMTbLbYbkFz0RS1Q0XBdgCnRSaeMzaXWhjCscExFKnUmvvUw3xIt5k5YXPWdHOY91uLbLUNsbYnPe2mXst9MyzTI1JI-KP_IqNNtfvlAevzn8HK6e_svL2-Lux71R-f7w6N0zcZ_l63sU-KZY6tpL3CInp3PPgynfAKuK-_s |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+framework+for+detecting+non%E2%80%90recurrent+road+traffic+anomalies+by+combining+a+temporal+graph+convolutional+network+and+hierarchical+time+memory+detector&rft.jtitle=Transactions+in+GIS&rft.au=Liang%2C+Zhewei&rft.au=Wang%2C+Jingyi&rft.au=Ren%2C+Shuliang&rft.au=Yin%2C+Yu&rft.date=2023-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=27&rft.issue=1&rft.spage=239&rft.epage=259&rft_id=info:doi/10.1111%2Ftgis.13022&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon |