A novel framework for detecting non‐recurrent road traffic anomalies by combining a temporal graph convolutional network and hierarchical time memory detector

A non‐recurrent road traffic anomaly refers to a sudden change in the capacity of a road segment, which deviates from the general traffic patterns, and is usually caused by abnormal traffic events such as traffic accidents and unexpected road maintenance. Timely and accurate detection of non‐recurre...

Full description

Saved in:
Bibliographic Details
Published inTransactions in GIS Vol. 27; no. 1; pp. 239 - 259
Main Authors Liang, Zhewei, Wang, Jingyi, Ren, Shuliang, Yu, Yin, Guan, Qingfeng
Format Journal Article
LanguageEnglish
Published Oxford Blackwell Publishing Ltd 01.02.2023
Subjects
Online AccessGet full text
ISSN1361-1682
1467-9671
DOI10.1111/tgis.13022

Cover

Abstract A non‐recurrent road traffic anomaly refers to a sudden change in the capacity of a road segment, which deviates from the general traffic patterns, and is usually caused by abnormal traffic events such as traffic accidents and unexpected road maintenance. Timely and accurate detection of non‐recurrent road traffic anomalies facilitates immediate handling to reduce the wastage of resources and the risk of secondary accidents. Compared with other types of traffic anomaly detection methods, prediction algorithms are suitable for detecting non‐recurrent anomalies for their potential ability to distinguish non‐recurrent anomalies from recurrent congestion (e.g., rush hours). A typical prediction algorithm detects an anomaly when the difference between the predicted traffic parameter (i.e., speed) and the actual one is greater than a threshold. However, the subjective setting of thresholds in many prediction algorithms greatly affects the detection performance. This study proposes a novel framework for non‐recurrent road traffic anomaly detection (NRRTAD). The temporal graph convolutional network (T‐GCN) model acts as the predictor to learn the general traffic patterns of road segments by capturing both the topological effects and temporal patterns of traffic flows, and to predict the “normal” traffic speeds. The hierarchical time memory detector (HTM‐detector) algorithm acts as the detector to evaluate the differences between the predicted speeds and the actual speeds to detect non‐recurrent anomalies without setting a threshold. In the experiments with traffic datasets of Beijing, NRRTAD outperformed other methods, not only achieving the highest detection rates but also exhibiting higher resilience to noise. The main advantages of NRRTAD are as follows: (1) adopting the T‐GCN with a weighted graph to integrate differentiated connection strengths of multiple types of topological relations between road segments as well as temporal traffic patterns improves the prediction performance; and (2) utilizing a flexible mechanism in the HTM‐detector to adapt to changing stream data not only avoids subjective setting of a threshold, but also improves the accuracy and robustness of anomaly detection.
AbstractList A non‐recurrent road traffic anomaly refers to a sudden change in the capacity of a road segment, which deviates from the general traffic patterns, and is usually caused by abnormal traffic events such as traffic accidents and unexpected road maintenance. Timely and accurate detection of non‐recurrent road traffic anomalies facilitates immediate handling to reduce the wastage of resources and the risk of secondary accidents. Compared with other types of traffic anomaly detection methods, prediction algorithms are suitable for detecting non‐recurrent anomalies for their potential ability to distinguish non‐recurrent anomalies from recurrent congestion (e.g., rush hours). A typical prediction algorithm detects an anomaly when the difference between the predicted traffic parameter (i.e., speed) and the actual one is greater than a threshold. However, the subjective setting of thresholds in many prediction algorithms greatly affects the detection performance. This study proposes a novel framework for non‐recurrent road traffic anomaly detection (NRRTAD). The temporal graph convolutional network (T‐GCN) model acts as the predictor to learn the general traffic patterns of road segments by capturing both the topological effects and temporal patterns of traffic flows, and to predict the “normal” traffic speeds. The hierarchical time memory detector (HTM‐detector) algorithm acts as the detector to evaluate the differences between the predicted speeds and the actual speeds to detect non‐recurrent anomalies without setting a threshold. In the experiments with traffic datasets of Beijing, NRRTAD outperformed other methods, not only achieving the highest detection rates but also exhibiting higher resilience to noise. The main advantages of NRRTAD are as follows: (1) adopting the T‐GCN with a weighted graph to integrate differentiated connection strengths of multiple types of topological relations between road segments as well as temporal traffic patterns improves the prediction performance; and (2) utilizing a flexible mechanism in the HTM‐detector to adapt to changing stream data not only avoids subjective setting of a threshold, but also improves the accuracy and robustness of anomaly detection.
Author Ren, Shuliang
Yu, Yin
Wang, Jingyi
Guan, Qingfeng
Liang, Zhewei
Author_xml – sequence: 1
  givenname: Zhewei
  surname: Liang
  fullname: Liang, Zhewei
  organization: China University of Geosciences
– sequence: 2
  givenname: Jingyi
  surname: Wang
  fullname: Wang, Jingyi
  organization: ChangJiang Waterway Bureau Survey Center
– sequence: 3
  givenname: Shuliang
  surname: Ren
  fullname: Ren, Shuliang
  organization: China University of Geosciences
– sequence: 4
  givenname: Yin
  surname: Yu
  fullname: Yu, Yin
  organization: Wuhan Highlander Technology Co
– sequence: 5
  givenname: Qingfeng
  surname: Guan
  fullname: Guan, Qingfeng
  email: guanqf@cug.edu.cn
  organization: China University of Geosciences
BookMark eNp9kc9O3DAQxq2KSgXKhSew1BtSqB1v7OSIUEuRkHoAztHEGe-aJvYy9oL2xiPwCDxbn6RelnPnMqP5fvNH-o7YQYgBGTuV4lyW-J6XPp1LJer6EzuUC22qTht5UGqlZSV1W39hRyk9CCEWi84csrcLHuITTtwRzPgc6Q93kfiIGW32YVnU8PflldBuiDBkThFGngmc85ZDiDNMHhMfttzGefBhNwM847yOBBNfEqxXRQpPcdpkH0PpBczvhyCMfOWRgOzK2yJkPyOfcY60_fgg0lf22cGU8OQjH7P7nz_uLn9VN7-vri8vbipba1FXnWlHUK3thG2ka0HCqK1qR6WEhGEU2g0LYYwYButQNk2HiKppNJgWDGqtjtm3_d41xccNptw_xA2Vd1NfG6MaaRpRF-psT1mKKRG6fk1-Btr2UvQ7B_qdA_27AwWWe_jZT7j9D9nfXV3f7mf-AQCpkBk
Cites_doi 10.4236/jtts.2014.43023
10.48550/arXiv.2001.02908
10.1109/TITS.2007.894193
10.1016/j.future.2020.07.021
10.48550/arXiv.1801.02143
10.1186/s12544‐018‐0300‐1
10.1061/(ASCE)0733‐947X(2002)128:1(21)
10.1016/j.eswa.2016.12.018
10.48550/arXiv.2006.13215
10.1109/TITS.2004.843112
10.1109/ACCESS.2019.2893124
10.4018/IJSWIS.297038
10.1109/MWSCAS.2017.8053243
10.1109/YAC.2016.7804912
10.1007/978-3-319-39958-4_8
10.4018/IJSWIS.297144
10.1109/ACCESS.2021.3062114
10.4018/IJSSCI.285592
10.1016/j.trc.2016.10.019
10.1145/3292500.3330884
10.23919/SOFTCOM.2019.8903822
10.1109/CCDC.2017.7978991
10.3390/s18071984
10.3390/ijgi10070485
10.1007/978-3-319-15165-6
10.1162/neco.1997.9.8.1735
10.1016/j.trpro.2016.06.043
10.1109/TITS.2019.2935152
10.1109/ICMLA.2015.141
10.1109/TITS.2014.2345663
10.1287/mnsc.23.7.768
10.1109/LGRS.2017.2780843
10.1109/TITS.2022.3220089
10.1109/TITS.2022.3197640
10.1061/(ASCE)0733‐947X(1995)121:3(249)
10.1109/CYBERI.2018.8337551
10.1007/978-3-319-93417-4_38
10.1109/ITSC.2018.8569402
10.1111/j.1540‐5907.2010.00447.x
10.1016/j.future.2015.11.013
10.1109/TITS.2022.3217054
10.1109/ACCESS.2019.2916853
10.1109/TITS.2016.2613997
10.1016/j.aap.2018.01.024
10.3389/fncir.2016.00023
10.1109/TITS.2011.2157689
10.1016/j.trc.2017.02.024
10.1080/15472450.2014.977046
10.1080/13658816.2019.1697879
ContentType Journal Article
Copyright 2023 John Wiley & Sons Ltd.
Copyright_xml – notice: 2023 John Wiley & Sons Ltd.
DBID AAYXX
CITATION
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
DOI 10.1111/tgis.13022
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ProQuest Computer Science Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Technology Research Database
Computer and Information Systems Abstracts – Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1467-9671
EndPage 259
ExternalDocumentID 10_1111_tgis_13022
TGIS13022
Genre researchArticle
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 42171466
GroupedDBID -~X
.3N
.GA
.Y3
05W
0R~
10A
123
1OB
1OC
29Q
31~
33P
4.4
50Y
50Z
51W
51Y
52M
52O
52Q
52S
52T
52U
52W
5HH
5LA
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8V8
930
A04
AABNI
AAESR
AAHHS
AAHQN
AAMNL
AANHP
AAONW
AAOUF
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABJNI
ABPVW
ABSOO
ABTAH
ACAHQ
ACBKW
ACBWZ
ACCFJ
ACCZN
ACGFS
ACHQT
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXQS
ACYXJ
ADBBV
ADEMA
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADXAS
ADZMN
AEEZP
AEIGN
AEIMD
AEMOZ
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFKFF
AFPWT
AFRAH
AFWVQ
AFYRF
AFZJQ
AHBTC
AHQJS
AIFKG
AIURR
AIWBW
AJBDE
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ASTYK
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BMXJE
BNVMJ
BQESF
BROTX
BRXPI
BY8
CAG
COF
CS3
D-C
D-D
DCZOG
DPXWK
DR2
DRFUL
DRSSH
DU5
EAD
EAP
EAYBP
EBA
EBO
EBR
EBS
EBU
EDH
EJD
EMK
ESX
F00
F01
FEDTE
G-S
G.N
G50
GODZA
HGLYW
HVGLF
HZI
HZ~
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC4
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MM-
MRFUL
MRSSH
MSFUL
MSSSH
MXFUL
MXSSH
N04
N06
N9A
NF~
O66
O9-
OIG
P2W
P2Y
P4C
PALCI
PQQKQ
Q.N
Q11
QB0
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TH9
UB1
W8V
W99
WBKPD
WIH
WII
WMRSR
WOHZO
WQZ
WRC
WSUWO
WXSBR
XG1
ZY4
ZZTAW
~IA
~WP
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AIDQK
AIDYY
AIQQE
CITATION
7SC
8FD
F1W
FR3
H96
JQ2
KR7
L.G
L7M
L~C
L~D
ID FETCH-LOGICAL-c2602-978da38c90c51f8a1ad6c38d3301abd06fb40770bbcfe1559eee3556a78a7e663
IEDL.DBID DR2
ISSN 1361-1682
IngestDate Tue Aug 12 09:40:46 EDT 2025
Wed Oct 01 03:57:10 EDT 2025
Wed Jan 22 16:24:11 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c2602-978da38c90c51f8a1ad6c38d3301abd06fb40770bbcfe1559eee3556a78a7e663
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2773517502
PQPubID 45950
PageCount 1
ParticipantIDs proquest_journals_2773517502
crossref_primary_10_1111_tgis_13022
wiley_primary_10_1111_tgis_13022_TGIS13022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Transactions in GIS
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 9
2019; 7
2010; 54
1990; 1287
2015; 19
2012
1979; 722
2022; 23
2016; 10
2016; 73
2011; 12
2020; 34
1977; 23
2016; 18
2015; 7
2016; 15
1997; 9
2017; 73
2018; 130
2018; 18
2021; 10
2014; 4
2017; 15
2022
2020
2017; 79
2002; 128
2014; 16
2007; 8
2019
2022; 14
2018
2017
2005; 6
2016
2016; 61
2015
2020; 113
2020; 21
1995; 121
2018; 10
2022; 18
2022; 19
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
Ahmad S. (e_1_2_10_2_1) 2016
e_1_2_10_40_1
Ahmed M. S. (e_1_2_10_3_1) 1979; 722
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Barua A. (e_1_2_10_6_1) 2022
Bolshinsky E. (e_1_2_10_9_1) 2012
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
e_1_2_10_52_1
e_1_2_10_19_1
e_1_2_10_54_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
Persaud B. N. (e_1_2_10_36_1) 1990; 1287
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 16
  start-page: 865
  issue: 2
  year: 2014
  end-page: 873
  article-title: Traffic flow prediction with big data: A deep learning approach
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 128
  start-page: 21
  issue: 1
  year: 2002
  end-page: 30
  article-title: Comparison of fuzzy‐wavelet radial basis function neural network freeway incident detection model with California algorithm
  publication-title: Journal of Transportation Engineering
– start-page: 328
  year: 2017
  end-page: 331
– volume: 113
  start-page: 304
  year: 2020
  end-page: 317
  article-title: Robust detection of atrial fibrillation from short‐term electrocardiogram using convolutional neural networks
  publication-title: Future Generation Computer Systems
– volume: 15
  start-page: 207
  issue: 2
  year: 2017
  end-page: 211
  article-title: A CFCC‐LSTM model for sea surface temperature prediction
  publication-title: IEEE Geoscience and Remote Sensing Letters
– start-page: 1
  year: 2022
  end-page: 17
  article-title: KST‐GCN: A knowledge‐driven spatial‐temporal graph convolutional network for traffic forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1
  year: 2019
  end-page: 6
– volume: 54
  start-page: 561
  issue: 2
  year: 2010
  end-page: 581
  article-title: What to do about missing values in time‐series cross‐section data
  publication-title: American Journal of Political Science
– volume: 61
  start-page: 97
  year: 2016
  end-page: 107
  article-title: Urban traffic congestion estimation and prediction based on floating car trajectory data
  publication-title: Future Generation Computer Systems
– volume: 10
  start-page: 22
  issue: 2
  year: 2018
  article-title: Overview of traffic incident duration analysis and prediction
  publication-title: European Transport Research Review
– start-page: 1
  year: 2022
  end-page: 17
  article-title: Robust and hierarchical spatial relation analysis for traffic forecasting
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 121
  start-page: 249
  issue: 3
  year: 1995
  end-page: 254
  article-title: Short‐term prediction of traffic volume in urban arterials
  publication-title: Journal of Transportation Engineering
– volume: 19
  start-page: 1770
  year: 2022
  end-page: 1782
– start-page: 92
  year: 2016
  end-page: 104
– start-page: 1597
  year: 2017
  end-page: 1600
– volume: 73
  start-page: 183
  year: 2016
  end-page: 201
  article-title: Short‐term speed predictions exploiting big data on large urban road networks
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 4
  start-page: 256
  issue: 3
  year: 2014
  end-page: 266
  article-title: Real‐time road traffic anomaly detection
  publication-title: Journal of Transportation Technologies
– volume: 130
  start-page: 160
  year: 2018
  end-page: 166
  article-title: Modeling when and where a secondary accident occurs
  publication-title: Accident Analysis & Prevention
– volume: 34
  start-page: 969
  issue: 5
  year: 2020
  end-page: 995
  article-title: A novel residual graph convolution deep learning model for short‐term network‐based traffic forecasting
  publication-title: International Journal of Geographical Information Science
– volume: 12
  start-page: 695
  issue: 3
  year: 2011
  end-page: 704
  article-title: Detection and classification of traffic anomalies using microscopic traffic variables
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 79
  start-page: 1
  year: 2017
  end-page: 17
  article-title: Deep learning for short‐term traffic flow prediction
  publication-title: Transportation Research Part C: Emerging Technologies
– volume: 21
  start-page: 1
  year: 2020
  end-page: 11
  article-title: T‐GCN: A temporal graph convolutional network for traffic prediction
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 18
  start-page: 1
  issue: 1
  year: 2022
  end-page: 15
  article-title: Information entropy augmented high density crowd counting network
  publication-title: International Journal on Semantic Web and Information Systems
– start-page: 1
  year: 2018
  end-page: 5
– year: 2019
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Computation
– volume: 15
  start-page: 513
  year: 2016
  end-page: 524
  article-title: Spatio‐temporal congestion patterns in urban traffic networks
  publication-title: Transportation Research Procedia
– year: 2020
  article-title: Traffic congestion anomaly detection and prediction using deep learning
  publication-title: arXiv:2006.13215
– volume: 9
  start-page: 35973
  year: 2021
  end-page: 35983
  article-title: AST‐GCN: Attribute‐augmented spatiotemporal graph convolutional network for traffic forecasting
  publication-title: IEEE Access
– start-page: 2814
  year: 2017
  end-page: 2819
– volume: 10
  issue: 7
  year: 2021
  article-title: A3t‐gcn: Attention temporal graph convolutional network for traffic forecasting
  publication-title: ISPRS International Journal of Geo‐Information
– volume: 1287
  start-page: 167
  year: 1990
  end-page: 175
  article-title: Congestion identification aspects of the McMaster incident detection algorithm
  publication-title: Transportation Research Record
– volume: 14
  start-page: 1
  issue: 1
  year: 2022
  end-page: 19
  article-title: GIS‐based multi‐criteria decision‐support system and machine learning for hospital site selection: Case study Oran, Algeria
  publication-title: International Journal of Software Science and Computational Intelligence
– start-page: 38
  year: 2015
  end-page: 44
– year: 2020
  article-title: Spatial‐temporal transformer networks for traffic flow forecasting
  publication-title: arXiv:2001.02908
– year: 2016
– volume: 73
  start-page: 43
  year: 2017
  end-page: 56
  article-title: Detection of traffic congestion and incidents from GPS trace analysis
  publication-title: Expert Systems with Applications
– volume: 23
  start-page: 768
  issue: 7
  year: 1977
  end-page: 774
  article-title: Kalman filtering applied to statistical forecasting
  publication-title: Management Science
– volume: 18
  start-page: 1958
  issue: 7
  year: 2016
  end-page: 1973
  article-title: A unified framework for vehicle rerouting and traffic light control to reduce traffic congestion
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– year: 2012
– start-page: 593
  year: 2018
  end-page: 607
– volume: 18
  start-page: 1
  issue: 1
  year: 2022
  end-page: 16
  article-title: Handling data scarcity through data augmentation in training of deep neural networks for 3D data processing
  publication-title: International Journal on Semantic Web and Information Systems
– volume: 7
  start-page: 12192
  year: 2019
  end-page: 12205
  article-title: A survey on urban traffic anomalies detection algorithms
  publication-title: IEEE Access
– start-page: 324
  year: 2016
  end-page: 328
– volume: 6
  start-page: 38
  issue: 1
  year: 2005
  end-page: 42
  article-title: Traffic‐incident detection‐algorithm based on nonparametric regression
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 722
  start-page: 1
  year: 1979
  end-page: 9
  article-title: Analysis of freeway traffic time‐series data by using box‐Jenkins techniques
  publication-title: Transportation Research Record
– volume: 7
  year: 2015
– year: 2018
  article-title: Deep bidirectional and unidirectional LSTM recurrent neural network for network‐wide traffic speed prediction
  publication-title: arXiv:1801.02143
– volume: 7
  start-page: 63036
  year: 2019
  end-page: 63044
  article-title: STLP‐OD: Spatial and temporal label propagation for traffic outlier detection
  publication-title: IEEE Access
– volume: 19
  start-page: 205
  issue: 2
  year: 2015
  end-page: 213
  article-title: Automatic incident detection for urban expressways based on segment traffic flow density
  publication-title: Journal of Intelligent Transportation Systems
– volume: 10
  year: 2016
  article-title: Why neurons have thousands of synapses, a theory of sequence memory in neocortex
  publication-title: Frontiers in Neural Circuits
– volume: 18
  issue: 7
  year: 2018
  article-title: Road anomalies detection system evaluation
  publication-title: Sensors
– volume: 23
  start-page: 23433
  issue: 12
  year: 2022
  end-page: 23446
  article-title: Learning all dynamics: Traffic forecasting via locality‐aware spatio‐temporal joint transformer
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– start-page: 1011
  year: 2018
  end-page: 1016
– volume: 8
  start-page: 351
  issue: 2
  year: 2007
  end-page: 358
  article-title: Traffic management center use of incident detection algorithms: Findings of a nationwide survey
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– ident: e_1_2_10_39_1
  doi: 10.4236/jtts.2014.43023
– ident: e_1_2_10_48_1
  doi: 10.48550/arXiv.2001.02908
– ident: e_1_2_10_47_1
  doi: 10.1109/TITS.2007.894193
– ident: e_1_2_10_34_1
  doi: 10.1016/j.future.2020.07.021
– ident: e_1_2_10_12_1
  doi: 10.48550/arXiv.1801.02143
– ident: e_1_2_10_29_1
  doi: 10.1186/s12544‐018‐0300‐1
– ident: e_1_2_10_25_1
  doi: 10.1061/(ASCE)0733‐947X(2002)128:1(21)
– ident: e_1_2_10_13_1
  doi: 10.1016/j.eswa.2016.12.018
– ident: e_1_2_10_32_1
  doi: 10.48550/arXiv.2006.13215
– volume: 722
  start-page: 1
  year: 1979
  ident: e_1_2_10_3_1
  article-title: Analysis of freeway traffic time‐series data by using box‐Jenkins techniques
  publication-title: Transportation Research Record
– ident: e_1_2_10_45_1
  doi: 10.1109/TITS.2004.843112
– ident: e_1_2_10_15_1
  doi: 10.1109/ACCESS.2019.2893124
– ident: e_1_2_10_43_1
  doi: 10.4018/IJSWIS.297038
– ident: e_1_2_10_14_1
  doi: 10.1109/MWSCAS.2017.8053243
– ident: e_1_2_10_18_1
  doi: 10.1109/YAC.2016.7804912
– ident: e_1_2_10_30_1
  doi: 10.1007/978-3-319-39958-4_8
– ident: e_1_2_10_21_1
  doi: 10.4018/IJSWIS.297144
– ident: e_1_2_10_55_1
  doi: 10.1109/ACCESS.2021.3062114
– ident: e_1_2_10_8_1
  doi: 10.4018/IJSSCI.285592
– ident: e_1_2_10_19_1
  doi: 10.1016/j.trc.2016.10.019
– volume-title: Traffic flow forecast survey
  year: 2012
  ident: e_1_2_10_9_1
– ident: e_1_2_10_35_1
  doi: 10.1145/3292500.3330884
– ident: e_1_2_10_7_1
  doi: 10.23919/SOFTCOM.2019.8903822
– ident: e_1_2_10_44_1
  doi: 10.1109/CCDC.2017.7978991
– ident: e_1_2_10_50_1
– ident: e_1_2_10_42_1
  doi: 10.3390/s18071984
– ident: e_1_2_10_4_1
  doi: 10.3390/ijgi10070485
– ident: e_1_2_10_16_1
  doi: 10.1007/978-3-319-15165-6
– ident: e_1_2_10_23_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_10_40_1
  doi: 10.1016/j.trpro.2016.06.043
– ident: e_1_2_10_53_1
  doi: 10.1109/TITS.2019.2935152
– ident: e_1_2_10_28_1
  doi: 10.1109/ICMLA.2015.141
– ident: e_1_2_10_31_1
  doi: 10.1109/TITS.2014.2345663
– ident: e_1_2_10_33_1
  doi: 10.1287/mnsc.23.7.768
– ident: e_1_2_10_49_1
  doi: 10.1109/LGRS.2017.2780843
– ident: e_1_2_10_54_1
  doi: 10.1109/TITS.2022.3220089
– ident: e_1_2_10_17_1
  doi: 10.1109/TITS.2022.3197640
– ident: e_1_2_10_20_1
  doi: 10.1061/(ASCE)0733‐947X(1995)121:3(249)
– volume-title: Real‐time anomaly detection for streaming analytics
  year: 2016
  ident: e_1_2_10_2_1
– ident: e_1_2_10_26_1
  doi: 10.1109/CYBERI.2018.8337551
– ident: e_1_2_10_41_1
  doi: 10.1007/978-3-319-93417-4_38
– ident: e_1_2_10_56_1
  doi: 10.1109/ITSC.2018.8569402
– ident: e_1_2_10_24_1
  doi: 10.1111/j.1540‐5907.2010.00447.x
– ident: e_1_2_10_27_1
  doi: 10.1016/j.future.2015.11.013
– ident: e_1_2_10_51_1
  doi: 10.1109/TITS.2022.3217054
– ident: e_1_2_10_38_1
  doi: 10.1109/ACCESS.2019.2916853
– ident: e_1_2_10_10_1
  doi: 10.1109/TITS.2016.2613997
– volume: 1287
  start-page: 167
  year: 1990
  ident: e_1_2_10_36_1
  article-title: Congestion identification aspects of the McMaster incident detection algorithm
  publication-title: Transportation Research Record
– ident: e_1_2_10_46_1
  doi: 10.1016/j.aap.2018.01.024
– ident: e_1_2_10_22_1
  doi: 10.3389/fncir.2016.00023
– ident: e_1_2_10_5_1
  doi: 10.1109/TITS.2011.2157689
– ident: e_1_2_10_37_1
  doi: 10.1016/j.trc.2017.02.024
– start-page: 1770
  volume-title: IEEE Transactions on Dependable and Secure Computing
  year: 2022
  ident: e_1_2_10_6_1
– ident: e_1_2_10_11_1
  doi: 10.1080/15472450.2014.977046
– ident: e_1_2_10_52_1
  doi: 10.1080/13658816.2019.1697879
SSID ssj0004497
Score 2.3188798
Snippet A non‐recurrent road traffic anomaly refers to a sudden change in the capacity of a road segment, which deviates from the general traffic patterns, and is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Index Database
Publisher
StartPage 239
SubjectTerms Accidents
Algorithms
Anomalies
Artificial neural networks
Detection
Predictions
Road maintenance
Roads & highways
Segments
Sensors
Topology
Traffic
Traffic accidents
Traffic accidents & safety
Traffic flow
Traffic speed
Title A novel framework for detecting non‐recurrent road traffic anomalies by combining a temporal graph convolutional network and hierarchical time memory detector
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftgis.13022
https://www.proquest.com/docview/2773517502
Volume 27
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1467-9671
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0004497
  issn: 1361-1682
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1361-1682
  databaseCode: DR2
  dateStart: 19970101
  customDbUrl:
  isFulltext: true
  eissn: 1467-9671
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004497
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NatwwEBYhl-TSn6Sl26ZlIDkVvGgtr2xDLyF0uwkkh2QX9lKMJI9padZbvE5gc-oj9BH6bHmSzMh2d9tDobkZ27L1M5K-kUbfJ8SRKbBQUYJBjANyUAzqIFEmDRRzZ2mjCyX5vPP5hR5Po7PZcLYlPnRnYRp-iN8Lbtwz_HjNHdzY5UYnr8mxZy3jkAfggdLen7pcc0dFUaOsojQrISdhy03KYTzrpH_ORmuIuQlU_Uwzeio-d3lsAky-9W9q23d3f9E3PrYQz8STFoLCcWMzz8UWlntip1VD_7LaF7-OoVzc4jUUXeQWELSFHHnDgaY6elre__hZ8VI9kztBtTA51JVhOgow5WJO4B6XYFdA-bFeggIMtCxY1-D_Axzv3to93SubcHRKnQPLc_sNDrIfqL_OEeYcD7xqc7CoXojp6OPkZBy0Sg6BI38pDMhVzY1KXCrdcFAkZmBy7VSSKxpejM2lLiw5lrG01hXIG6WISNaiTZyYGAkUvRTbVDR8JUCnaKWKtIuliVKlbWqZhVBGsXSRk2FPHHYtmn1vCDuyztHh2s58bffEQdfYWdtpl1kYx2pIcIo_8t632j--kE0-nV75q9f_8_IbscuC9U3c94HYrqsbfEuwprbvvPk-AH5S-FY
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQeygXaPkRLaWMBCekVN7Y6yTHCtFuoe0BtlJvke1MBKKbrbIp0nLqI_QR-mx9EmYcb7dwQIJblMSJf8b2N_b4-4R4a2uslc4xyXBADopFk-TKFoli7ixjTa0kn3c-PjGjU_3xbHgWY3P4LEzPD3G34MY9I4zX3MF5QfpeL-_Is2cx45RG4FVtyFFhTPR5yR6lda-togxrIedpZCflQJ5l2t_noyXIvA9Vw1yz_7gXVJ0FikIOMfm-e9m5Xf_zDwLH_y7GungUUSjs9WazIR5g80SsRUH0r_On4mYPmukPPId6EbwFhG6hQt5zoNmOnja3V9ctr9YzvxO0U1tB11pmpADbTCeE73EGbg6UIRdUKMBCJMI6h_Af4JD3aPp0r-kj0il1BazQHfY4yISg-zZBmHBI8DzmYNo-E6f7H8bvR0kUc0g8uUxpQt5qZVXuC-mHgzq3A1sZr_JK0QhjXSVN7ci3zKRzvkbeK0VEMhhjs9xmSLjouVihouELAaZAJ5U2PpNWF8q4wjERodSZ9NrLdFO8WTRpedFzdpQLX4druwy1vSm2F61dxn47K9MsU0NCVPyRd6HZ_vKFcnxw-CVcbf3Ly6_F2mh8fFQeHZ58eikesn59Hwa-LVa69hJfEcrp3E6w5V_8_Px3
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NbtQwELZQKwEX2vKjFlo6EpyQUnljr5McK9ql5adC0Eq9RbYzEajdbJVNkbanPgKPwLPxJJ1xvGzhgAS3KIkT_4ztGfvz9wnx0tZYK51jkuGAAhSLJsmVLRLF3FnGmlpJPu_84cgcnOi3p8PTiM3hszA9P8SvBTfuGWG85g6OF1V9q5d3FNmzmHFKI_CyHhY5I_r2Pi3Yo7TutVWUYS3kPI3spAzkWaT9fT5aOJm3XdUw14xWekHVaaAoZIjJ2c5l53b81R8Ejv9djFXxIHqhsNubzZq4g81DcS8Kon-ZPRI_dqGZfMNzqOfgLSDvFirkPQea7ehp8_P6e8ur9czvBO3EVtC1lhkpwDaTMfn3OAU3A8qQCyoUYCESYZ1D-A8w5D2aPt1rekQ6pa6AFbrDHgeZEHRfxwhjhgTPYg4m7WNxMto_fn2QRDGHxFPIlCYUrVZW5b6QfjioczuwlfEqrxSNMNZV0tSOYstMOudr5L1SRCSDMTbLbYbkFz0RS1Q0XBdgCnRSaeMzaXWhjCscExFKnUmvvUw3xIt5k5YXPWdHOY91uLbLUNsbYnPe2mXst9MyzTI1JI-KP_IqNNtfvlAevzn8HK6e_svL2-Lux71R-f7w6N0zcZ_l63sU-KZY6tpL3CInp3PPgynfAKuK-_s
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+framework+for+detecting+non%E2%80%90recurrent+road+traffic+anomalies+by+combining+a+temporal+graph+convolutional+network+and+hierarchical+time+memory+detector&rft.jtitle=Transactions+in+GIS&rft.au=Liang%2C+Zhewei&rft.au=Wang%2C+Jingyi&rft.au=Ren%2C+Shuliang&rft.au=Yin%2C+Yu&rft.date=2023-02-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=1361-1682&rft.eissn=1467-9671&rft.volume=27&rft.issue=1&rft.spage=239&rft.epage=259&rft_id=info:doi/10.1111%2Ftgis.13022&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-1682&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-1682&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-1682&client=summon